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In a rectangular region, the multilayered laminar unsteady flow and temperature distribution of the immiscible Maxwell fractional
fluids by two parallel moving walls are studied. The flow of the fluid occurs in the presence of Robin’s boundaries and linear fluid-
fluid interface conditions due to the motion of the parallel walls on its planes and the time-dependent pressure gradient. The
problem is defined as a mathematical model which focuses on the fluid memory, which is represented by a constituent equation
with the Caputo time-fractional derivative. The integral transformations approach (the Laplace transform and the finite sine-
Fourier transform) is used to determine analytical solutions for velocity, shear stress, and the temperature fields with fluid
interface, initial, and boundary conditions. For semianalytical solutions, the algorithms of Talbot are used to calculate the
Laplace inverse transformation. We used the Mathcad software for graphical illustration and numerical computation. It has
been observed that the memory effect is significant on both fluid motion and temperature flow.

1. Introduction

In nature, there often exist flows of immiscible materials. Due
to its broad application in research, medicine, geophysics,
industry, petroleum engineering, and hydrogeology, the
study of simultaneous flow of two or more immiscible fluids
is significant [1–4]. The numerous applications include the
recovery of petroleum oil, blood flow through the veins of a
capillary vessel, the treatment of machinery, the processing
of organic film and mucus in living cells, the removal of car-
bon dioxide from the environment, the control of groundwa-
ter, crude oil pipeline flows, and the formation of blisters in
microfluid and bubble trains.

In some industrial problems, fluid flow is multicompo-
nent, and therefore, there are layers of fluids having different
densities and viscosities. The interface of these layers creates
moving boundaries in between the walls of the channel in
which fluid is flowing. This causes flow phenomenon to be

not only nonlinear but also very complex and its study
challenging.

A long-wave technique was used for the first study of the
linear stability of the viscoelastic two-layered simultaneous
Poiseuille and Couette flow by Yih [5]. It has been seen that
the Kelvin-Helmholtz instability can occur due to viscosity
and density stratification. Several scientists subsequently
researched the stability/instability of the immiscible fluid
flow in two or multifaceted layers [6–8]. The existence and
uniqueness of the simultaneous multilayered Couette/Poi-
seuille fluid motions in channel/pipes were investigated by
Le Meur [9], and the approximated Oldroyd differential
component and the viscosity proportions were found impor-
tant to a unique result. The Couette-Poiseuille motion of the
two-layer fluids was taken into account by Kalogirou and
Blyth [10] to examine stability. The fluid in the bottom layer
is surrounded by surfactants which adsorbed on the inter-
face. The thickness ratio of the fluid viscosity is considerably
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higher, and when the flow is relatively stable, the surfactant is
soluble enough.

Immiscible fluid flows are frequently encountered in the
design of industrial processes and equipment. Indeed, several
flow patterns of interest exist for different flow conditions in
liquid-liquid flows. In [11], the two-phase flow of immiscible
fluids in porous media is described in continuous models as
the momentum exchanges between the two steps by simply
making generalizations of the Darcy law for single phases of
development and adding saturation-dependent porosity and
permeability. By extending the principle of Buckley-Leverett,
authors examine the effect of the cross-cutting words on con-
centration profiles and pressure losses for various fluids. It has
been shown that the outcomes on dual-phase flow might
increase when the impact of the fluid-fluid interfaces appears
close to that of the solid-fluid interfaces with the permeability
of the porous medium. Hisham et al. [12] reported a two-layer
analysis in the presence of time-dependent pressure gradient
of the immiscible Maxwell fluids between two simultaneous
moving plates. With the support of integral transformation,
Laplace and finite Fourier Sine transformation, analytical solu-
tions for velocity, and shear stress are retrieved. The increase
in kinematic viscosity decreases the maximum speed value.
In a rectangular channel with two parallel translating plates
in the presence of a time-dependent pressure gradient, Rauf
et al. [13] proposed analytical and semianalytical solutions
for the velocity fields and temperature fields for the simulta-
neous flow of the n-immiscible Maxwell fractional fluid. It
has been found that the heat transfer in ordinary fluids is
higher than those of thermal memory fluids; however, the
memory parameters affect the fluids’ velocities as accelerating
factors. Some other important multilayer flow problems are
studied in [14–16]. The parallel flow of the fractional Maxwell
fluid inside a cylindrical domain has been studied by Rauf et al.
[17] in the presence of pressure gradient in the flow direction.
The Laplace transformations, in combination with the finite
Weber and Hankel transformation of zeroth order provide
analytical solutions to flow velocities and shear stresses. The
fluid velocity was shown to decrease as the values of the frac-
tional parameters have been increased. The study ofmultilayer
flow of generalized immiscible Maxwell fluids between two
parallel plates with Robin boundary conditions is still lacking
in the literature. The aim of this article is to fill this gap in
the literature.

The fractional operators have been intensively incorpo-
rated in recent decades for mathematical modeling of the
numerous topics in real life. Many dynamic memory pro-
cesses can be investigated using time-fractional derivative
operators. The fractional calculus thus became an essential
component in biology, chemistry, physics, and many areas
of engineering. Hristov [18, 19], Povstenko and Kyrylych
[20, 21], Zheng et al. [22], Baleanu et al. [23, 24], and Hilfer
[25] have a comprehensive description of the theory of frac-
tional operators with their properties and applications. Refer-
ences [26–38] include mathematical observations and
potential implementations and applications of the fractional
differential Calculus.

In this paper, we have studied the multilayer flow
between the two parallel plates of immiscible fractional

Maxwell fluids. In the vicinity of the fractional heat flux
in fluid layers, we assumed an unsteady, incompressible,
and fully established one-dimensional fluid motion
induced by the motion of the boundary plates and by
the applied pressure gradient as a function of time. More-
over, we took into account the Robin boundary conditions
on the boundary plates and the linear interfacial fluid-fluid
conditions between two consecutive layers. We have used
finite Fourier sine-cosine transformation, which is ideal
for the Robin-type boundary conditions, along with the
Laplace transformation, to explore analytical solutions for
velocities and shear stresses. Using the Laplace transform
along with Tablot’s techniques for the numerical inversion
of Laplace, a semianalytical solution is recovered for ther-
mal profile.

2. Mathematical Modeling

The flow region is

D′ = x′, y′, z′
� �

x′, z′∈ −∞,∞ð Þ, y′ ∈ 0, h′
h i���n o

, ð1Þ

with the boundary plates positioned at y′ = 0 and y′ = h′ > 0.
To begin with at time t ′ = 0, the two walls and the fluids
inside are at rest with the atmospheric temperature T2o:After
this instance, the boundary plate positioned at y′ = 0 move
with velocity u′1o =U0 f ′1ðt ′Þ along the x′-axis and the wall
temperature Tog′1ðt ′Þ, while the channel plate y′ = h′ moves
with the wall velocity u′2o =U0 f ′2ðt ′Þ analogous with the x′
-axis and the wall temperature Tog′2ðt ′Þ (Figure 1). It has
been assumed that the functions f 1′ðt ′Þ, f ′2ðt ′Þ, g′1ðt ′Þ, and
g′2ðt ′Þ are piece-wise continuous functions, and f ′1ð0Þ = g
′1ð0Þ = f ′2ð0Þ = g′2ð0Þ = 0. We consider that the velocity vec-

tor is of the formV′
!

= ðu′ðy′, t ′Þ, 0, 0Þ. We assume the simul-
taneous n-immiscible Maxwell fluids between two parallel
boundary planes. It divides the domain of flow ½0, h′� into n
subdomains 0 = h′0 < h′1 < h′2 ⋯ <h′n = h′. In the region y′
∈ ½hi−1′ , hi′�, h′i−1 < h′i, Maxwell fluid flow has the viscosity
μi, relaxation time λ′i = μi/Gi, density ρi, Gi, the elastic mod-
ulus, temperature T′iðy′, t ′Þ, velocity u′iðy′, t ′Þ, the shear
stress τ′iðy′, t ′Þ, and the thermal flux q′iðy′, t ′Þ, where i = 1
, 2,⋯, n.

The Maxwell fluids are supposed to be incompressible
and immiscible, and the stream is linear, unsteady, and
completely established. The fluid flow is produced by the
applied pressure gradient as a function of time towards flow
and by the motion of the boundary walls. In view of the
assumptions on the velocity vectors, the continuity equation
is indistinguishably fulfilled by all velocities u′iðy′, t ′Þ, i ∈ I1n,
where I1n ≔ f1, 2,⋯,ng, and we assume that I1n−1 ≔ f1,⋯,n
− 1g: The system of constitutive equations of motion and
the initial, boundary, and the fluid-fluid interface conditions
are given, respectively, as follows:
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(i) The n-linear momentum equations:

ρi
∂ui′
∂t ′

=
∂τi′
∂y′

−
∂p′
∂x′

, i ∈ I1n: ð2Þ

(ii) The n-constitutive equations:

τi′+ λ′i
∂τi′
∂t ′

= μi
∂ui′
∂y′

, i ∈ I1n: ð3Þ

(iii) The corresponding n-initial conditions:

ui′ y′, 0
� �

= 0, τi′ y′, 0
� �

= 0, i ∈ I1n: ð4Þ

(iv) The boundary condition:

(v) At the interface, we assume the continuity of Robin
conditions:

ui′ hi′, t ′
� �

+ li′
∂ui′ y′, t ′
� �
∂y′ y ′=hi′

���
= ui+1′ hi′, t ′

� �
− li′

∂ui+1′ y′, t ′
� �
∂y′

j
y ′=hi′ ,

τi′ hi′, t ′
� �

= τi+1′ hi′, t ′
� �

, i ∈ I1n−1: ð6Þ

The system of constitutive relations for temperature and
heat flux is given by the following:

(i) The n-thermal transport balance equations:

O

𝜌n, 𝜇n, 𝜆n, u′n (y′, t′), Tn′ (y′, t′ n)

𝜌1, 𝜇1, 𝜆1, u′1 (y′, t′), T1′ (y′, t′

u′1 (0, t′) – l′0 = U0f′1 (t′)
𝜕u′1 (y, t′)

𝜕y′

x′

hn–1

h1h2

hn – h

y′

|y′–0

(T′1 (0, t′) –T2o) – 𝛿′0 = Tog′1 (t′)
𝜕T′1 (y, t′)

𝜕y′
|y′–0

u′n (h′, t′) + l′′n = U0f′2 (t′)
𝜕u′n (y′, t′)

𝜕y′
|y′–h′

(T′n (h′, t′) –T2o) – 𝛿′n = Tog′2 (t′)
𝜕T′n (y, t′)

𝜕y′
|y′–h′

Figure 1: Geometry of the problem.

at the lower wall y′ = 0, u′1 0, t ′
� �

− l′0
∂u1′ y, t ′
� �
∂y′

������
y ′=0

=U0 f ′1 t ′
� �

,

at the upper wall y′ = hn′ = h′, un′ h′, t ′
� �

+ ln′
∂un′ y′, t ′
� �
∂y′

������
y ′=h′

=U0 f 2′ t ′
� �

:

ð5Þ
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ρicip
∂Ti′ y′, t ′
� �
∂t ′

= −
∂qi′ y′, t ′
� �
∂y′

, i ∈ I1n: ð7Þ

(ii) The n-thermal fluxes with Fourier’s law:

qi′ y′, t ′
� �

= −ki
∂Ti′ y′, t ′
� �
∂y′

, i ∈ I1n, ð8Þ

where ki and cip are the thermal conductivity and the specific heat
at constant pressure, respectively. We consider the following:

(i) n-Initial conditions:

Ti′ y′, 0
� �

= T2o, qi′ y′, 0
� �

= q0, i ∈ I
1
n: ð9Þ

(ii) Boundary conditions:

T1′ 0, t ′
� �

− T2o

� �
− δ′0

∂T1′ y, t ′
� �
∂y′

������
y ′=0

= Tog′1 t ′
� �

,

Tn′ h′, t′
� �

− T2o

� �
+ δ′n

∂T′n y′, t ′
� �
∂y′

������
y ′=h′

= Tog2′ t ′
� �

:

ð10Þ

(iii) Interface conditions:

Ti′ hi′, t ′
� �

− T2o

� �
+ δ′i

∂Ti′ y′, t ′
� �
∂y′ y ′=hi′

���
= Ti+1′ hi′, t ′

� �
− T2o

� �
− δ′i

∂Ti+1′ y′, t ′
� �
∂y′

������
y ′=hi′

, q′i h′i, t ′
� �

= q′i+1 h′i, t ′
� �

, i = 1, 2,⋯, n − 1:

ð11Þ

Consider the nondimensional variables

x =
x′
h′

, y =
y′
h′

, t =
ν1t ′
h′2

, ui =
ui′
U0

, τi =
h′τi′
μ1U0

, νi =
μi
ρi
,

p =
h′p′
μ1U0

, λi =
λ′iν1
h′2

, ai =
ρi
ρ1

, bi =
μi
μ1

, f1 tð Þ = f 1′
h′2t
ν1

 !
,

g1 tð Þ = g1′
h′2t
ν1

 !
, Ti =

Ti′ − T2o
To

, qi =
qi′
q0

, σi =
νi
ν1

,

Pri =
μicip
ki

, f2 tð Þ = f 2′
h′2t
ν1

 !
, hi =

hi′
h′

, g2 tð Þ = g2′
h′2t
ν1

 !
,

l j =
l′ j
h′

, δj =
δ′ j
h′

i ∈ I1n, j = 0, 1, 2,⋯, n:

ð12Þ

The dimensionless form of the governing Equations
(2)–(11) are reduced into the following form:

ai
∂ui
∂t

= −
∂p
∂x

+
∂τi
∂y

, i ∈ I1n, ð13Þ

τi + λi
∂τi
∂t

= bi
∂ui
∂y

, i ∈ I1n, ð14Þ

ν1γ0ρicip
∂Ti

∂t
= −

∂qi
∂y

, i ∈ I1n, ð15Þ

qi = −γ0ki
∂Ti

∂y
, i ∈ I1n, ð16Þ

along with the following:

(i) The dimensionless n-initial conditions:

Ti y, 0ð Þ = 0, qi y, 0ð Þ = 1, ui y, 0ð Þ = 0, τi y, 0ð Þ = 0, i ∈ I1n:
ð17Þ

(ii) The dimensionless boundary condition:

on the bottom plate y = 0,

u1 0, tð Þ − l0
∂u1 y, tð Þ

∂y

����
y=0

= f1 tð Þ,

T1 0, tð Þ − δ0
∂T1 y, tð Þ

∂y

����
y=0

= g1 tð Þ,

ð18Þ

on the upper plate y′ = hn = 1,

un 1, tð Þ + ln
∂un y, tð Þ

∂y

����
y=1

= f2 tð Þ,

Tn 1, tð Þ + δn
∂Tn y, tð Þ

∂y

����
y=1

= g2 tð Þ:

ð19Þ

(iii) The nondimensional interface conditions:

ui hi, tð Þ + li
∂ui y, tð Þ

∂y y=hi

��
= ui+1 hi, tð Þ − li

∂ui+1 y, tð Þ
∂y

����
y=hi

, τi hi, tð Þ

= τi+1 hi, tð Þ,

ð20Þ

Ti hi, tð Þ + δi
∂Ti y, tð Þ

∂y y=hi

��
= Ti+1 hi, tð Þ − δi

∂Ti+1 y, tð Þ
∂y

����
y=hi

, qi hi, tð Þ

= qi+1 hi, tð Þ, i ∈ I1n−1,

ð21Þ

where γ0 = To/q0h′ and To is the characteristic scale.

2.1. Generalized Constitutive Mathematical Model. Consider
the following generalized constitutive mathematical rela-
tions:
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τi + λiD
αi
t τi = bi

∂ui
∂y

, αi ∈ 0, 1ð �, i ∈ I1n, ð22Þ

qi = −γ0kiD
1−βi
t

∂Ti

∂y

� �
, βi ∈ 0, 1�, i ∈ I1n

�
, ð23Þ

where the Caputo derivative Dσ
t is defined as

Dσ
t F y, tð Þ = 1

Γ 1 − σð Þ
ðt
0

t − ρð Þ−σ ∂F y, ρð Þ
∂ρ

dρ, 0 ≤ σ < 1:

ð24Þ

For the special case = 1,D1
t Fðy, tÞ = ∂Fðy, tÞ/∂t. It is sig-

nificant to note that the fractional models (22) and (23) have
the following equivalent formulae as

τi y, tð Þ = bi
λi
tαi−1Eαi ,αi −

tαi

λi

� �� 	
∗
∂ui y, tð Þ

∂y

=
ðt
0

bi
λi

t − τð Þαi−1Eαi ,αi −
t − τð Þαi
λi

� �
∂ui y, τð Þ

∂y
dτ, i ∈ I1n,

ð25Þ

qi y, tð Þ = tβi−1

Γ βið Þ ∗
∂2Ti y, tð Þ
∂t∂y

=
ðt
0

t − τð Þβi−1

Γ βið Þ
∂2Ti y, τð Þ
∂τ∂y

dτ, i ∈ I1n:
ð26Þ

The relations (25) and (26) depict that the histories of the
thermal and the velocity gradients impact the time-variation
of heat flux and the shear stress, separately. Moreover, it has
been seen from the above relations that the nonlocality kernel
of the heat flux observes the power-law tβi−1/ΓðβiÞ, while the
nonlocality kernel for the shear stress is the function ðbi/λiÞ
tαi−1Eαi ,αið−tαi /λiÞ, Eαi ,αið:Þ being the Mittag-Leffler function.
In this study, we consider the pressure gradient in the flow
direction as a known function, namely

−
∂p
∂x

= P tð Þ, ð27Þ

where PðtÞ is a peice-wise continuous function on ½0,∞Þ.

3. Solution of the Problem

We have applied the finite sine-Fourier transform coupled
with the Laplace transform, to obtain explicit solutions of
Equations (13), (15), (22), and (23) with conditions
(17)–(20). We apply the Laplace transform to Equations
(13), (15), and (18)–(23) along with the initial condition
(17); we have

ais�ui y, sð Þ = ∂�τi y, sð Þ
∂y

+ �P sð Þ, i ∈ I1n, ð28Þ

�τi y, sð Þ = bi
1 + λisαi

∂�ui y, sð Þ
∂y

, i ∈ I1n, ð29Þ

ν1γ0ρicips�Ti y, sð Þ = −
∂�qi y, sð Þ

∂y
, i ∈ I1n, ð30Þ

�qi = −γ0kis
1−βi

∂�Ti y, sð Þ
∂y

, i ∈ I1n, ð31Þ

�u1 0, sð Þ − l0
∂�u1 y, sð Þ

∂y

����
y=0

= �f 1 sð Þ,

�un 1, sð Þ + ln
∂�un y, sð Þ

∂y

����
y=1

= �f 2 sð Þ,
ð32Þ

�T1 0, sð Þ − δ0
∂�T1 y, sð Þ

∂y

����
y=0

= �g1 sð Þ,

�Tn 1, sð Þ + δn
∂�Tn y, sð Þ

∂y

����
y=1

= �g2 sð Þ,
ð33Þ

�ui hi, sð Þ + li
∂�ui y, sð Þ

∂y y=hi = �ui+1 hi, sð Þ − li
∂�ui+1 y, sð Þ

∂y

���� ����
y=hi

,

ð34Þ
�τi hi, sð Þ = �τi+1 hi, sð Þ, i = 1, 2,⋯, n − 1, ð35Þ

�Ti hi, sð Þ + δi
∂�Ti y, sð Þ

∂y y=hi = �Ti+1 hi, sð Þ − δi
∂�Ti+1 y, sð Þ

∂y

���� ����
y=hi

,

ð36Þ
�qi hi, sð Þ = �qi+1 hi, sð Þ, i = 1, 2,⋯, n − 1: ð37Þ

3.1. Analytical Solutions for Velocity and Shear Stress. Com-
bining Equations (28) and (29), we can write

ais 1 + λis
αið Þ�ui y, sð Þ = 1 + λis

αið Þ�P sð Þ + bi
∂2�ui y, sð Þ

∂y2
, i ∈ I1n,

ð38Þ

where �φðy, sÞ = Ð∞0 φðy, tÞ exp ð−stÞdt represents the Laplace
transform of the function φðy, tÞ. In case of nonhomogeneous
Robin boundary and fluid-fluid interface conditions (32) and
(34), the finite Fourier sine-cosine transform of the function
�uiðy, sÞ, i ∈ I1n, can be defined with the help of the Fourier series
theory and the Sturm-Liouville theory as [39, 40].

b�ui η ið Þ
m , s

� �
=

1
hi − hi−1

ðhi
hi−1

�ui y, sð ÞΦ ið Þ
m yð Þdy, ð39Þ

where ΦðiÞ
m ðyÞ = sin ðηðiÞm ðy − hi−1/hi − hi−1ÞÞ + ðli−1/hi − hi−1Þ

ηðiÞm cos ðηðiÞm ðy − hi−1/hi − hi−1ÞÞ and ηðiÞm are the positive roots

of the transcendental equation tan ηðiÞm = ðhi − hi−1Þðli−1 + liÞ
ηðiÞm /li−1liηðiÞm

2 − ðhi − hi−1Þ2. The inverse Fourier sine-cosine
transform of b�uiðηðiÞm , sÞ is defined by

�ui y, sð Þ = 〠
∞

m=1

b�ui η
ið Þ
m , s

� �
Jmi

Φ ið Þ
m yð Þ, ð40Þ
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where

Jmi =
1

hi − hi−1

ðhi
hi−1

Φ ið Þ
m

2
yð Þdy

=
l2i−1η

ið Þ
m

2
− hi − hi−1ð Þ2

4η ið Þ
m hi − hi−1ð Þ2

sin 2η ið Þ
m

� �

+
hi − hi−1ð Þ2 + li−1 hi − hi−1ð Þ + l2i−1η

ið Þ
m

2
− li−1 hi − hi−1ð Þ cos 2η ið Þ

m

� �
2 hi − hi−1ð Þ2

:

ð41Þ

By direct computations, using the robin boundary condi-
tion (32) and interface fluid-fluid condition (34), we can write

∂2b�ui

∂y2
η ið Þ
m , s

� �
=

η
ið Þ
m

hi − hi−1ð Þ2 cos η ið Þ
m

� ��
� hi − hi−1ð Þ2 + l2i−1η

ið Þ
m

2

li−1liη
ið Þ
m

2
− hi − hi−1ð Þ2

�wi hi, li, sð Þ

+ �vi hi−1, li−1, sð Þ
�

−
η

ið Þ
m

2

hi − hi−1ð Þ2
b�ui η ið Þ

m , s
� �

, i ∈ I1n,

ð42Þ

where we rename �viðhi−1, li−1, sÞ = �uiðhi−1, sÞ − li−1ð∂�uiðhi−1, s
Þ/∂yÞ, �wiðhi, li, sÞ = �uiðhi, sÞ + lið∂�uiðhi, sÞ/∂yÞ, i ∈ I1n−1,
�v0ðh0, l0, sÞ = �f 1ðsÞ, and �wnðhn, ln, sÞ = �f 2ðsÞ: With the appli-
cation of finite Fourier sine-cosine transform (39) to Equation
(38) corresponding to the robin boundary conditions (32) and
interface fluid-fluid conditions (34), and using Equation (42),
the transformed velocities take the form

b�ui η ið Þ
m , s

� �
=

hi − hi−1ð Þ2 1 + λis
αið Þ�P sð Þ

ai hi − hi−1ð Þ2s 1 + λisαið Þ + biη
ið Þ
m

2

+
biη

ið Þ
m

ai hi − hi−1ð Þ2s 1 + λisαið Þ + biη
ið Þ
m

2

× cos η ið Þ
m

� � hi − hi−1ð Þ2 + l2i−1η
ið Þ
m

2

li−1liη
ið Þ
m

2
− hi − hi−1ð Þ2

�wi hi, li, sð Þ
0@

+ �vi hi−1, li−1, sð ÞÞ, i ∈ I1n:
ð43Þ

To apply the inverse Fourier sine-cosine transform, we
rewrite Equation (44) in the following suitable form:

where

b�ui η ið Þ
m , s

� �
=
li−1η

ið Þ
m sin η

ið Þ
m

� �
+ hi − hi−1ð Þ 1 − cos η

ið Þ
m

� �� �
η

ið Þ
m hi − hi−1ð Þ

hi − hi−1 + lið Þ�vi hi−1, li−1, sð Þ + li−1 �wi hi, li, sð Þ
hi − hi−1ð Þ + li−1 + li

+
−li−1η

ið Þ
m − hi − hi−1 − li−1ð Þη ið Þ

m cos η
ið Þ
m

� �
+ hi − hi−1 + li−1η

ið Þ
m

2
� �

sin η
ið Þ
m

� �
hi − hi−1ð Þη ið Þ

m
2

�wi hi, li, sð Þ − �vi hi−1, li−1, sð Þð Þ hi − hi−1ð Þ
hi − hi−1ð Þ + li−1 + li

+
biη

ið Þ
m

ai hi − hi−1ð Þ2s 1 + λisαið Þ + biη
ið Þ
m

2 + C ið Þ
1m

0@ 1A�vi hi−1, li−1, sð Þ

+
biη

ið Þ
m cos η

ið Þ
m

� �
ai hi − hi−1ð Þ2s 1 + λisαið Þ + biη

ið Þ
m

2
hi − hi−1ð Þ2 + l2i−1η

ið Þ
m

2

li−1liη
ið Þ
m

2
− hi − hi−1ð Þ2

+ C ið Þ
2m

0@ 1A�wi hi, li, sð Þ

+
hi − hi−1ð Þ2 1 + λis

αið Þ�P sð Þ
ai hi − hi−1ð Þ2s 1 + λisαið Þ + biη

ið Þ
m

2 , i ∈ I1n,

ð44Þ

C ið Þ
1m = −

1
η

ið Þ
m

+
hi − hi−1ð Þ li−1 + lið Þη ið Þ

m cos η
ið Þ
m

� �
+ hi − hi−1ð Þ2 sin η

ið Þ
m

� �
− lili−1η

ið Þ
m

2
sin η

ið Þ
m

� �
hi − hi−1ð Þ hi − hi−1 + li−1 + lið Þη ið Þ

m
2 ,

C ið Þ
2m =

hi − hi−1ð Þ2η ið Þ
m cos η

ið Þ
m

� �
− hi − hi−1ð Þ2 + li−1 hi − hi−1 + li−1ð Þη ið Þ

m
2

� �
sin η

ið Þ
m

� �
hi − hi−1ð Þ hi − hi−1 + li−1 + lið Þη ið Þ

m
2 : ð45Þ

6 Advances in Mathematical Physics



Considering the auxiliary relations along with their Fou-
rier sine-cosine transformv

the inverse Fourier sine-cosine transform of Equation (46)
takes the form

�ui y, sð Þ = hi − hi−1 + lið Þ�vi hi−1, li−1, sð Þ + li−1 �wi hi, li, sð Þ
hi − hi−1ð Þ + li−1 + li

+
�wi hi, li, sð Þ − �vi hi−1, li−1, sð Þð Þ

hi − hi−1ð Þ + li−1 + li
y − hi−1ð Þ

+ 〠
∞

m=1

biη
ið Þ
m

ai hi − hi−1ð Þ2s 1 + λisαið Þ + biη
ið Þ
m

2 + C ið Þ
1m

0@ 1A
� Φ

ið Þ
m yð Þ�vi hi−1, li−1, sð Þ

Jmi
+ 〠

∞

m=1

�
biη

ið Þ
m cos η

ið Þ
m

� �
ai hi − hi−1ð Þ2s 1 + λisαið Þ + biη

ið Þ
m

2

0@
� hi − hi−1ð Þ2 + l2i−1η

ið Þ
m

2

li−1liη
ið Þ
m

2
− hi − hi−1ð Þ2

+ C ið Þ
2m

1AΦ
ið Þ
m yð Þ�wi hi, li, sð Þ

Jmi

+ 〠
∞

m=1

hi − hi−1ð Þ2 1 + λis
αið Þ

ai hi − hi−1ð Þ2s 1 + λisαið Þ + biη
ið Þ
m

2

0@ 1AΦ
ið Þ
m yð Þ�P sð Þ
Jmi

, i ∈ I1n:

ð50Þ

Now, from (29) and (50), we obtain

�τi y, sð Þ = �Ti,1 y, sð Þ�wi hi, li, sð Þ − �Ti,2 y, sð Þ�vi hi−1, li−1, sð Þ
+ �Ti,3 y, sð Þ�P sð Þ, i ∈ I1n,

ð51Þ

where

φ1i yð Þ = 1, y ∈ hi−1, hi½ �, bφ1i η ið Þ
m

� �
=
li−1η

ið Þ
m sin η

ið Þ
m

� �
+ hi − hi−1ð Þ 1 − cos η

ið Þ
m

� �� �
η

ið Þ
m hi − hi−1ð Þ

, ð46Þ

φ2i yð Þ = y − hi−1
hi − hi−1

, y ∈ hi−1, hi½ �, ð47Þ

bφ2i η ið Þ
m

� �
=
−li−1η

ið Þ
m − hi − hi−1 − li−1ð Þη ið Þ

m cos η
ið Þ
m

� �
+ hi − hi−1 + li−1η

ið Þ
m

2
� �

sin η
ið Þ
m

� �
hi − hi−1ð Þη ið Þ

m
2 , ð48Þ

m = 1, 2,⋯, i ∈ I1n, h0 = 0, hn = 1, ð49Þ

�Ti,1 y, sð Þ = bi
1 + λisαið Þ hi − hi−1 + li−1 + lið Þ +

bi
hi − hi−1ð Þ 1 + λisαið Þ 〠

∞

m=1
η ið Þ
m

�
biη

ið Þ
m cos η

ið Þ
m

� �
ai hi − hi−1ð Þ2s 1 + λisαið Þ + biη

ið Þ
m

2
hi − hi−1ð Þ2 + l2i−1η

ið Þ
m

2

li−1liη
ið Þ
m

2
− hi − hi−1ð Þ2

+ C ið Þ
2m

0@ 1A
×
cos η

ið Þ
m y − hi−1/hi − hi−1ð Þ

� �
− li−1/hi − hi−1ð Þη ið Þ

m sin η
ið Þ
m y − hi−1/hi − hi−1ð Þ

� �
Jmi

, �Ti,2 y, sð Þ

=
bi

1 + λisαið Þ hi − hi−1 + li−1 + lið Þ −
bi

hi − hi−1ð Þ 1 + λisαið Þ 〠
∞

m=1
η ið Þ
m

biη
ið Þ
m

ai hi − hi−1ð Þ2s 1 + λisαið Þ + biη
ið Þ
m

2 + C ið Þ
1m

0@ 1A
×
cos η

ið Þ
m y − hi−1/hi − hi−1ð Þ

� �
− li−1/hi − hi−1ð Þη ið Þ

m sin η
ið Þ
m y − hi−1/hi − hi−1ð Þ

� �
Jmi

, �Ti,3 y, sð Þ

= bi hi − hi−1ð Þ�P sð Þ 〠
∞

m=1

η
ið Þ
m cos η

ið Þ
m y − hi−1/hi − hi−1ð Þ

� �
− li−1/hi − hi−1ð Þη ið Þ

m sin η
ið Þ
m y − hi−1/hi − hi−1ð Þ

� �� �
Jmi ai hi − hi−1ð Þ2s 1 + λisαið Þ + biη

ið Þ
m

2
� � :

ð52Þ
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Using Equations (32) and (34) in Equation (51), we get
the following linear system (for detail, see “Appendix”):

�M sð Þ �W sð Þ = �N sð Þ, ð53Þ

where

�M sð Þ =

�Y1,1 −�Y1,2 0 0 ⋯ 0
�Y2,1 �Y2,2 −�Y2,3 0 ⋯ 0

0 �Y3,2 �Y3,3 −�Y3,4 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋱ ⋮

0 0 ⋯ �Yn−3,n−4 �Yn−3,n−3 −�Yn−3,n−2

0 0 ⋯ �Yn−2,n−3 �Yn−2,n−2 −�Yn−2,n−1

0 0 ⋯ 0 �Yn−1,n−2 �Yn−1,n−1

2666666666666664

3777777777777775
,

�W sð Þ =

�w1 h1, l1, sð Þ
�w2 h2, l2, sð Þ

⋮

�wn−1 hn−1, ln−1, sð Þ

2666664

3777775,

�N sð Þ =

�b1
�b2

⋮
�bn−1

2666664

3777775: ð54Þ

Finally, we obtain

�W sð Þ = �M−1 sð Þ�N sð Þ: ð55Þ

Now, �wiðhi, li, sÞ = �vi+1ðhi, li, sÞ,i ∈ Ið1Þn−1, are known func-
tions; therefore, the velocities �u1ðy, sÞ,⋯, �unðy, sÞ are known.
In order to obtain the inverse Laplace transforms of the func-
tions �uiðy, sÞ,i ∈ I1n, we consider the following auxiliary func-
tions:

�Hi0 m, sð Þ = 1

ai hi − hi−1ð Þ2s 1 + λisαið Þ + η
ið Þ
m

2

=
s−1

ai hi − hi−1ð Þ2λi sαi + λ−1i
� 


·
1

1 + η
ið Þ
m

2
s−1/ai hi − hi−1ð Þ2λi sαi + λ−1i

� 
� �
= 1
aiλi hi − hi−1ð Þ2

〠
∞

k=0
−1ð Þk

� η
ið Þ
m

2

ai hi − hi−1ð Þ2λi

0@ 1Ak

s−k−1

sαi + λ−1i
� 
k+1
" #

,

�Hi1 m, sð Þ = 1 + λis
αið Þ

hi − hi−1ð Þ2ais 1 + λisαið Þ + bi ϑ ið Þ
m

� �2
=

1
ai hi − hi−1ð Þ2 〠

∞

k=0
−1ð Þk η

ið Þ
m

2

hi − hi−1ð Þ2aiλi

0@ 1Ak

� s−k−1

sαi + λ−1i
� 
k
" #

,

�Hi4 m, sð Þ = 1

1 + λisαið Þ ai hi − hi−1ð Þ2s 1 + λisαið Þ + bi ϑ ið Þ
m

� �2� �
=

1
aiλ

2
i hi − hi−1ð Þ2 〠

∞

k=0
−1ð Þk

� η
ið Þ
m

2

ai hi − hi−1ð Þ2λi

0@ 1Ak

s−k−1

sαi + λ−1i
� 
k+2
" #

:

ð56Þ

Since the generalized G-Lorenzo-Hartley function is
defined by [41]

Gσ1,σ2,σ3 t, σð Þ =L−1 sσ2

sσ1 − σð Þσ3
� 	

= 〠
∞

k=0

Γ k + σ3ð Þσkt k+σ3ð Þσ1−σ2−1

k!Γ k + σ3ð Þσ1 − σ2ð ÞΓ σ3ð Þ ,

Re sð Þ > 0, Re σ1σ3 − σ2ð Þ > 0,
σ

sσ1

��� ��� < 1, ð57Þ

and for αi, βi > 0,

L−1 sαi−βi

sαi − d

� 	
= tβi−1Eαi ,βi

dtαið Þ, ð58Þ

where Eαi ,βi
ð:Þ is the Mittag-Leffler function [42]. The inverse

Laplace transform of �Hi0ðm, sÞ, �Hi1ðm, sÞ, and �Hi4ðm, sÞ takes
the form

Hi0 m, tð Þ = 1
aiλi hi − hi−1ð Þ2 〠

∞

k=0
−1ð Þk

� η
ið Þ
m

2

ai hi − hi−1ð Þ2λi

0@ 1Ak

Gαi ,−k−1,k+1 t,−λ−1i
� 
� �

,

ð59Þ
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Hi1 m, tð Þ = 1
hi − hi−1ð Þ2ai

〠
∞

k=0
−1ð Þk

η
ið Þ
m

� �2k
hi − hi−1ð Þ2aiλi

� 
k+1
� Gαi ,−k−1,k t,−λ−1i

� 
� �
,

ð60Þ

Hi4 m, tð Þ = 1
aiλ

2
i hi − hi−1ð Þ2

〠
∞

k=0
−1ð Þk

� η
ið Þ
m

2

hi − hi−1ð Þ2aiλi

0@ 1Ak

Gαi ,−k−1,k+2 t,−λ−1i
� 
� �

,

ð61Þ

where δðtÞ is the Dirac delta function. Using Equations (59),
(60), and (50), we obtain for velocities uiðy, tÞ,i ∈ I1n, with the
following expressions:

ui y, tð Þ = hi − hi−1 + lið Þ�vi hi−1, li−1, tð Þ + li−1 �wi hi, li, tð Þ
hi − hi−1ð Þ + li−1 + li

+
�wi hi, li, tð Þ − �vi hi−1, li−1, tð Þð Þ

hi − hi−1ð Þ + li−1 + li
y − hi−1ð Þ

+ 〠
∞

m=1
biη

ið Þ
m Hi0 m, tð Þ ∗ vi hi−1, li−1, tð Þ + C ið Þ

1mvi hi−1, li−1, tð Þ
� �

� Φ
ið Þ
m yð Þð
Jmi

+ 〠
∞

m=1

hi − hi−1ð Þ2 + l2i−1η
ið Þ
m

2
� �

biη
ið Þ
m cos η

ið Þ
m

� �
li−1liη

ið Þ
m

2
− hi − hi−1ð Þ2

Hi0 m, tð Þ

0BB@
∗wi hi, li, tð Þ + C ið Þ

2mwi hi, li, tð Þ
!
Φ

ið Þ
m yð Þ
Jmi

+ 〠
∞

m=1
hi − hi−1ð Þ2Hi1 m, tð Þ ∗ P tð Þ� 
 Φ ið Þ

m yð Þ
Jmi

, i ∈ I1n,

ð62Þ

where h1ðtÞ ∗ h2ðtÞ =
Ð t
0 h1ðt − τÞh2ðτÞdτ is the convolution

product of the functions h1ðtÞ and h2ðtÞ. The system of shear
stresses τiðy, tÞ, i ∈ I1n, can be determined by applying inverse
Laplace transform to Equation (51) and using Equations (59)
and (61).

τi y, tð Þ = Ti1 y, tð Þ ∗wi hi, li, tð Þ − Ti2 y, tð Þ
∗ vi hi−1, li−1, tð Þ + Ti3 y, tð Þ ∗ P tð Þ, ð63Þ

where

At the end of this section, we mention that, in the case
of a single fluid, there are interesting studies in the litera-
ture on the flow of Maxwell fluids with slip on the
channel walls. Thus, in the particular case α = 1, n = 1, Pð
tÞ = f2ðtÞ = 0, our results are equivalent with those

obtained in ([43], Equations (34) and (55)). Moreover
for the Newtonian case with n = 1, PðtÞ = 0, λ1 = 0, the
velocity profile given by Equation (62) is equivalent to
the solution obtained in [44], Equation (65) with φ = 0
and ðρβÞf = 0.

Ti,1 y, tð Þ = biλ
−1
i tαi−1Eαi ,αi −λ

−1
i tαi

� 

hi − hi−1 + li−1 + lið Þ +

bi
hi − hi−1ð Þ 〠

∞

m=1
η ið Þ
m

� biη
ið Þ
m cos η ið Þ

m

� � hi − hi−1ð Þ2 + l2i−1η
ið Þ
m

2

li−1liη
ið Þ
m

2
− hi − hi−1ð Þ2

Hi4 m, tð Þ + C ið Þ
2mλ

−1
i tαi−1Eαi ,αi −λ

−1
i tαi

� 
0@ 1A
�
cos η

ið Þ
m y − hi−1/hi − hi−1ð Þ

� �
− li−1/hi − hi−1ð Þη ið Þ

m sin η
ið Þ
m y − hi−1/hi − hi−1ð Þ

� �
Jmi

, �Ti,2 y, sð Þ

=
biλ

−1
i tαi−1Eαi ,αi −λ

−1
i tαi

� 

hi − hi−1 + li−1 + lið Þ −

bi
hi − hi−1ð Þ 〠

∞

m=1
η ið Þ
m biη

ið Þ
m Hi4 m, tð Þ + C ið Þ

1mλ
−1
i tαi−1Eαi ,αi −λ

−1
i tαi

� 
� �

�
cos η

ið Þ
m y − hi−1/hi − hi−1ð Þ

� �
− li−1/hi − hi−1ð Þη ið Þ

m sin η
ið Þ
m y − hi−1/hi − hi−1ð Þ

� �
Jmi

, �Ti,3 y, sð Þ

= bi 〠
∞

m=1
η ið Þ
m hi − hi−1ð ÞHi0 m, tð Þð Þ ×

cos η
ið Þ
m y − hi−1/hi − hi−1ð Þ

� �
− li−1/hi − hi−1ð Þη ið Þ

m sin η
ið Þ
m y − hi−1/hi − hi−1ð Þ

� �
Jmi

:

ð64Þ
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3.2. Solution for the Thermal Transport.Using Equations (30)
and (31), we can write the system of n-equation describing
the Laplace transformed temperature profile:

∂2�Ti

∂y2
=Qis

βi �Ti, i ∈ I1n, ð65Þ

whereQi = ðai/biÞPri: The general solution of Equation (65) is

�Ti y, sð Þ = Ci1 sð Þe−y
ffiffiffiffiffiffiffi
Qis

βi
p

+ Ci2 sð Þey
ffiffiffiffiffiffiffi
Qis

βi
p

, i ∈ I1n, ð66Þ

where the unknown parameters C11, C21,⋯, Cn1, C12, C22,
⋯, Cn2 are to be computed by using Equations (33) and (36)
and are given by the following linear system:

A sð ÞY sð Þ =B sð Þ, ð67Þ

where the AðsÞ matrix is

and the vectors YðsÞ and BðsÞ are

Y sð Þ =

C11

C21

⋮

Cn1

C12

C22

⋮

Cn2

2666666666666666664

3777777777777777775

,B sð Þ =

�g1 sð Þ
0

0

⋮

0

�gn sð Þ

2666666666664

3777777777775
1×2n

: ð69Þ

Here

a0 = 1 + δ0

ffiffiffiffiffiffiffiffiffiffiffi
Q1sβ1

q� �
, ai = 1 − δi

ffiffiffiffiffiffiffiffiffiffi
Qis

βi

q� �
e−hi

ffiffiffiffiffiffiffi
Qis

βi
p

,

c0 = 1 − δ0

ffiffiffiffiffiffiffiffiffiffiffi
Q1s

β1

q� �
, ci = 1 + δi

ffiffiffiffiffiffiffiffiffiffi
Qis

βi

q� �
ehi

ffiffiffiffiffiffiffi
Qis

βi
p

,

ci = 1 + δi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qi+1s

βi+1

q� �
e−hi

ffiffiffiffiffiffiffiffiffiffiffiffi
Qi+1s

βi+1
p

, di = 1 − δi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qi+1s

βi+1

q� �
ehi

ffiffiffiffiffiffiffiffiffiffiffiffi
Qi+1s

βi+1
p

,

pi = li

ffiffiffiffiffiffiffiffiffiffi
Qis

βi

q
e−hi

ffiffiffiffiffiffiffi
Qis

βi
p

, ri = li

ffiffiffiffiffiffiffiffiffiffi
Qis

βi

q
ehi

ffiffiffiffiffiffiffi
Qis

βi
p

, li =
ki
ki+1

,

qi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qi+1s

βi+1

q
e−hi

ffiffiffiffiffiffiffiffiffiffiffiffi
Qi+1s

βi+1
p

, si =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qi+1s

βi+1

q
ehi

ffiffiffiffiffiffiffiffiffiffiffiffi
Qi+1s

βi+1
p

, i ∈ I1n−1,

qn = 1 − δn

ffiffiffiffiffiffiffiffiffiffiffi
Qns

βn

q� �
e−

ffiffiffiffiffiffiffiffiffi
Qns

βn
p

, sn = 1 + δn

ffiffiffiffiffiffiffiffiffiffiffi
Qns

βn

q� �
e
ffiffiffiffiffiffiffiffiffi
Qns

βn
p

:

ð70Þ

We incorporate the following notations to describe the
linear system (67) in an appropriate format:

M =

a0 0 0 ⋯ 0

a1 −c1 0 ⋯ 0

0 a2 −c2 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮

0 0 ⋯ an−1 −cn−1

0BBBBBBBB@

1CCCCCCCCA
n×n

; i:e:

M = Mij

� 

i,j∈I0n−1

,

M0j = a0δ0,j, j ∈ I0n−1,

Mij = aiδi,j+1 − biδi+1,j+1,

i ∈ I1n−1, j ∈ I
0
n−1,

N =

c0 0 0 ⋯ 0

c1 −d1 0 ⋯ 0

0 c2 −d2 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮

0 0 ⋯ cn−1 −dn−1

0BBBBBBBB@

1CCCCCCCCA
n×n

; i:e:

N = Nij

� 

i,j∈I0n−1

,

N0j = c0δ0,j, j ∈ I0n−1,

Nij = ciδi,j+1 − diδi+1,j+1,

i ∈ I1n−1, j ∈ I
0
n−1,

A sð Þ =

a0 0 0 ⋯ 0

a1 −c1 0 ⋯ 0

0 a2 −c2 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮

0 0 ⋯ an−1 −cn−1

c0 0 0 ⋯ 0

c1 −d1 0 ⋯ 0

0 c2 −d2 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮

0 0 ⋯ cn−1 −dn−1
−p1 q1 0 ⋯ 0

0 −p2 q2 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮

0 0 ⋯ −pn−1 qn−1

0 0 ⋯ 0 qn

r1 −s1 0 ⋯ 0

0 r2 −s2 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮

0 0 ⋯ rn−1 −sn−1
0 0 ⋯ 0 sn

2666666666666666666666664

3777777777777777777777775

, ð68Þ
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Q =

0 −p2 q2 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮

0 0 ⋯ −pn−1 qn−1

0 0 ⋯ 0 qn

0BBBBB@

1CCCCCA
n×n

; i:e:

Q = Qij

� 

i,j∈I0n−1

,

Qij = −pi+1δi+1,j+1 + qi+1δi+2,j+1,

i ∈ I0n−2, j ∈ I
0
n−1,

Q n−1ð Þj = qnδn−1,j, j ∈ I0n−1,

R =

r1 −s1 0 ⋯ 0

0 r2 −s2 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮

0 0 ⋯ rn−1 −sn−1
0 0 ⋯ 0 sn

0BBBBBBBB@

1CCCCCCCCA
n×n

; i:e:

R = Rij

� 

i, j∈I0n−1

,

Rij = ri+1δi+1,j+1 − si+1δi+2, j+1,

i ∈ I0n−2, j ∈ I
0
n−1,

R n−1ð Þj = snδn−1,j, j ∈ I0n−1,

C1 =

�g1 sð Þ
0

⋮

0

0BBBBB@

1CCCCCA
n×1

, C2 =

0

0

⋮

0

�g2 sð Þ

0BBBBBBBB@

1CCCCCCCCA
n×1

, A =

C11

C21

⋮

Cn1

0BBBBB@

1CCCCCA
n×1

, B =

C12

C22

⋮

Cn2

0BBBBB@

1CCCCCA
n×1

,

ð71Þ

where δij is the Kronecker tensor. The linear system (67) is
equivalent to

MA +NB = C1,

QA + RB = C2:

(
ð72Þ

MatricesM,N ,Q, R are invertible and triangular. We can
rewrite Equation (72) as

A = S−1 N−1C1 − R−1C2
� 


,

B = R−1C2 − R−1QS−1 N−1C1 − R−1C2
� 


:
, ð73Þ

where we suppose that S =N−1M − R−1Q is invertible. An
easy computation shows that

R0 = R−1C2 =

�g2 sð Þs1s2 ⋯ sn−1
r1r2 ⋯ rn−1sn

�g2 sð Þs2 ⋯ sn−1
r2 ⋯ rn−1sn

⋮
�g2 sð Þsn−1
rn−1sn

�g2 sð Þ
sn

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
,

C0 ≔N−1C1 − R−1C2 =

�g1 sð Þ
a0

−
�g2 sð Þs1s2 ⋯ sn−1
r1r2 ⋯ rn−1sn

�g1 sð Þb1
a0a1

−
�g2 sð Þs2 ⋯ sn−1
r2 ⋯ rn−1sn

�g1 sð Þb1b2
a0a1a2

−
�g2 sð Þs3 ⋯ sn−1
r3 ⋯ rn−1sn

⋮
�g1 sð Þb1b2 ⋯ bn−2
a0a1a2 ⋯ an−2

−
�g2 sð Þsn−1
rn−1sn

�g1 sð Þb1b2 ⋯ bn−1
a0a1a2 ⋯ an−1

−
�g2 sð Þ
sn

0BBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCA

,

ð74Þ

where

N−1 =

1
a0

0 0 ⋯ 0

c1
a0a1

−c1 0 ⋯ 0

c1c2
a0a1a2

−
c1c2
a2

−c2 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮
c1c2 ⋯ cn−1

a0a1a2 ⋯ an−1
−
c1c2 ⋯ cn−1
a2 ⋯ an−1

⋯ −
cn−2cn−1
an−1

−cn−1

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
n×n

,

ð75Þ

that is

N−1 = nij
� 


i,j∈I0n−1
,

n0j =
1
a0

δ0,j, j ∈ I0n−1, ni0 =
Yi
ℓ=1

cℓ
a0aℓ

, i ∈ I1n−1,

nij = −
Yi
m=1

cm
am

Yj−1
ℓ=0

aℓ+1
cℓ

〠
n−1

k=0
δi,j+k, i, j ∈ I1n−1,

R−1 =

1
r1

s1
r1r2

s1s2
r1r2r3

⋯
s1s2 ⋯ sn−2
r1r2r3 ⋯ rn−1

s1s2 ⋯ sn−1
r1r2r3 ⋯ rn−1sn

0
1
r2

s2
r2r3

⋯
s2 ⋯ sn−2
r2r3 ⋯ rn−1

s2 ⋯ sn−1
r2r3 ⋯ rn−1sn

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 0
1
sn

0BBBBBBBBBB@

1CCCCCCCCCCA
n×n

,

ð76Þ
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Figure 2: Temperature profiles Tiðy, tÞ, i = 1, 2, 3 versus y for fractional multilayer Maxwell fluid at t = 0:002,β2 = 0:6, β3 = 0:8, and different
values of β1.
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Figure 3: Temperature profiles Tiðy, tÞ, i = 1, 2, 3 versus y for fractional multilayer Maxwell fluid at t = 0:002,β1 = 0:2, β3 = 0:8, and different
values of β2.
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that is

R−1 = ρij

� �
i,j∈I0n−1

,

ρij = 〠
n−1

k=0

Yi
m=0

rm
sm

Yj
ℓ=0

sℓ
rℓ+1

 !
δi=k,j, r0

= s0 = rn = 1, i, j ∈ I0n−1:

ð77Þ

Now, the matrix S = ðSijÞi,j∈I0n−1 is defined by the elements

Sij = 〠
n−1

k=0
nikMkj − ρikQkj

� 

: ð78Þ

This reduces the system (73) to

A = S−1C0,

B = R0 − R−1QS−1C0:

(
ð79Þ

Now, we know the auxiliary functions Cj1, Cj2, j ∈ I1n;
from the linear system (79), the analytical expressions for

the solution of temperature profiles Tiðy, tÞ can be
obtained from Equation (66), by using the inverse Laplace
transform as

Ti y, tð Þ = 1
2πι

ðσ+i∞
σ−i∞

est Ci1 sð Þe−y
ffiffiffiffiffiffiffi
Qis

βi
p�

+ Ci2 sð Þey
ffiffiffiffiffiffiffi
Qis

βi
p �

ds, i ∈ I1n:
ð80Þ

Since the auxiliary functions Cj1, Cj2, j ∈ I1n, involved in
Equation (79) are intricate, we therefore have used the fol-
lowing numerical Talbot’s algorithms [45, 46] for the com-
putation of the inverse Laplace transform.

Consider the function gðy, tÞ has the Laplace transform
�Gðy, sÞ. The Talbot algorithm [45] approximates the function
gðy, tÞ as

g y, tð Þ ≅ r
M

exp rtð Þ
2

�G y, rð Þ
�

+ 〠
M−1

k=1
Re exp tz εkð Þð Þ�G y, z εkð Þð Þ 1 + iζ εkð Þð Þ� �)

,

ð81Þ
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Figure 4: Temperature profiles Tiðy, tÞ, i = 1, 2, 3 versus y for fractional multilayer Maxwell fluid at t = 0:002,β1 = 0:2, β2 = 0:4, and different
values of β3.
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where

r =
2M
5t

, z εð Þ = rε cot ε + ið Þ, ε ∈ −π, πð Þ,

ζ εð Þ = ε + ε cot ε − 1ð Þ cot ε, εk =
kπ
M

:

ð82Þ

The function gðy, tÞ can be approximated by another
method, the improved Talbot algorithm [46].

g y, tð Þ ≅ 1
t
〠
M

k=1
exp tz1 σkð Þð Þ�G y, z1 σkð Þð Þ ν + iζ1 σkð Þð Þ,

ð83Þ

where

z1 εð Þ = M
t

νiε + με cot αεð Þ − ξ½ �, ε ∈ −π, π½ �,

ζ1 εð Þ = αμε + μ αε cot αεð Þ − 1ð Þ cot αεð Þ, σk =
2k − 1ð Þπ

M
− π:

ð84Þ

Here, α,M, ν, μ, ξ are variables the user must define.

4. Numerical Results and Discussions

The unsteady, laminar flow with thermal conductivity of the
simultaneous n-layer fractional immiscible Maxwell fluids in
a rectangular channel has been examined. The motion of
these fluids is produced by the time-based pressure gradient
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Figure 6: Temperature profiles Tiðy, tÞ, i = 1, 2, 3 for small values of the time t (β1 = 0:4, β2 = 0:6, andβ3 = 0:8).
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in the flow direction and by the displacement of the channel
boundaries with the time-based fluid-fluid interfacial
conditions.

In this problem, the generalization puts into consider-
ation the fractional constitutive equation of the Maxwell
fluids based on the Caputo time-fractional derivative; there-
fore, the velocity gradient histories influence the fluid behav-
ior. Such type of flow is so-called the flow with memory.

On the solid boundaries, the Robin boundary conditions
are taken into account, whereas the velocity and shear stress
are assumed continuous at the fluid-fluid interface y = d0.

Semianalytical results of the velocities, shear stresses, and
temperature profiles are determined with the help of the
Laplace transformation and the Talbot algorithms used for
the numerical inverse Laplace transforms. Moreover, an ana-
lytical solution for the flow is recovered by using the Laplace
transform in conjunction with the finite sine-Fourier
transform.

The findings obtained are generic; therefore, several spe-
cial cases can be considered. Multilayer flows of ordinary/-
fractional Maxwell fluids can be analyzed as special cases by
allowing certain fractional parameters to be equal to one.

With the help of the Mathcad software, numerical results
have been illustrated for the obtained solutions of fluid veloc-
ities and temperatures. These results are shown in Figures 2–
14. For graphical illustration of the fluid velocities, we have
used the material parameters

ρ1 = 1000, μ1 = 0:05,G1 = 1:2, cp1 = 0:25, k1 = 2:5, l1 = 0:1, σ0 = 0:05,

ρ2 = 1300, μ2 = 0:2,G2 = 2:4, cp2 = 0:27, k2 = 2:7, l2 = 0:15, σ1 = 0:1,

ρ3 = 1500, μ3 = 0:6,G3 = 5:0, cp3 = 0:29, k3 = 2:9, l3 = 0:2, σ2 = 0:15, σ3 = 0:2:

ð85Þ

To analyze the temperature profiles of the three-layer
fluids with h0 = 0, h1 = 0:3, h2 = 0:7, h3 = 1, we take the spe-
cial instance when the functions g1ðtÞ, g2ðtÞ appearing in
the Robin boundary conditions are constant, i.e., g1ðtÞ = 0:6
HðtÞ, g2ðtÞ = 1:2HðtÞ, where HðtÞ is the Heaviside function.
It is shown in Figure 2 that the variance of the fractional
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Figure 8: Variation of the kernels tβi /ΓðβiÞ with the fractional
parameters βi, i = 1, 2, 3.
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Figure 9: Velocity profiles uiðy, tÞ, i = 1, 2, 3 versus y for fractional
multilayer Maxwell fluid at α1 = 0:2,α2 = 0:4,α3 = 0:8,λ1 = 0:021,
λ2 = 0:042,λ3 = 0:06, and different values of time t.
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temperature variable β1 of the fluid located in the first layer
has a noticeable effect on the thermal profile in the first two
layers; however, the effect on the temperature from the top-
most layer is minor. This has been caused by the decrease
in thermal profile in the first two layers with the increase in
fractional variable β1. It is revealed in Figure 2 that the vari-
ance of the fractional temperature variable β2 of the fluid
located in the second layer has a noticeable effect on the ther-
mal profile in the last two layers; however, the effect on the
temperature from the first layer is negligible. This has been
caused by the decrease in thermal profile in the last two layers
with the increase in fractional variable β1. It is exposed in
Figure 4 that the variance of the fractional temperature vari-
able β3 of the fluid located in the third layer has a noticeable
effect on the thermal profile in the first and the last layers;
however, the effect on the temperature from the middle layer
is minor. This has been caused by the decrease in thermal
profile in the first and the last layers with the increase in frac-
tional variable β3.

It is recognized by Equation (26) that the heat flux mem-
ory kernel is the relation hβi

ðtÞ = tβi−1/ΓðβiÞ whose plot is
shown in Figure 8. It is described in Figure 8 that, for βi ≥
0:2 and t = 0:002, the kernel hβi

ðtÞ, i = 1, 2, 3, declines with
βi; therefore, the temperature gradient distribution relation
declines (memory impacts are softer). Time-evolution of
the thermal layers, in various channel locations and for dif-
fering values of the temperature fractional variables, is shown
in Figure 5. As shown in Figure 5, the thermal profile as a
function of the fractional variables 5 has different character-
istics for low, versus high, time values. This attitude reflects
prior studies shown in Figures 2–4 and also with the progres-
sion of the heat memory kernel, hβi

ðtÞ, i = 1, 2, 3. We have to
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Figure 11: Velocity profiles uiðy, tÞ, i = 1, 2, 3 versus y for fractional
multilayer Maxwell fluid at t = 0:19,λ1 = 0:021,λ2 = 0:042,λ3 = 0:06,
and different values of fractional parameters α2 = α3.
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mention that the temperatures of all layers vary for small
time fluctuations, but after a low time valuation for t (t = 1
in examined scenarios), the temperatures are just about
unchanged (see Figures 6 and 7).

In order to examine the three layers, fluid velocities with
h0 = 0, h1 = 0:2, h2 = 0:6, h3 = 1, we considered the particular
case when the functions in the slip boundary conditions are
constant, i.e., f1ðtÞ = 0:5HðtÞ, f2ðtÞ = 0:8HðtÞ, where HðtÞ is
the Heaviside function and the considered pressure gradient
is PðtÞ = sin ðtÞ. Figure 9 illustrates the time effect on the
velocity profile uiðy, tÞ, i = 1, 2, 3: The velocity profile is
observed to increase with the increase in time. Figures 10–
12 are plotted to study the influence of the velocity fractional
parameters αi on the velocity fields. It is observed that the
velocity profile is increasing with the increase in the frac-
tional parameters αi1 = αi2 and for fixed αi3,i1, i2, i3 = 1, 2, 3:
The fractional variables have braking impacts. The first two

layers’ flows are accelerated; however, the last layer’s fluid is
slowed down.

In Figures 13 and 14, the profiles of velocity uiðy, tÞ, i =
1,2,3, for different values of the time t, are presented. It is
observed that, for t ≥ 40, the profiles of velocity are
unchanged; therefore, the velocity is given by the permanent
solution. It can be observed from Figures 6 and 13 that at a
very short time, the profiles for velocities and temperatures
are similar to the initial conditions, that is, zero everywhere.

5. Conclusions

Time-dependent simultaneous n-layer fluid flow in a rectan-
gular channel was examined through heat exchange of Max-
well immiscible fluids with generic constitutive equations for
the shear stress and heat flux.
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The Caputo time-fractional derivative defines the generic
constitutive relations; thus, the behavior of the fluid is deter-
mined by the histories of the temperature and velocity
gradient.

We have used the finite Fourier and Laplace transform
coupled with numerical Laplace inversions for the analytical
and semianalytical results for the velocity, temperature, and
shear stress profiles with the assumption that for the adjacent
layers, the interfacial heat fluxes and shear stresses are equal
and in the presence of the interface Robin-type interfacial
conditions.

The results of this study attained are of a general nature;
however, many specific situations can be produced. Multi-
layer flows of ordinary/fractional Maxwell fluids can be ana-
lyzed as special cases by allowing certain fractional
parameters to be equal to one.

With the help of the Mathcad software, numerical results
have been illustrated for the obtained solutions of fluid veloc-
ities and temperatures.

For small and, respectively, large values of time t, the
fluid flow and the heat transfer differ. Such specific character-
istics are due to the differences in time and fractional param-
eters of the thermal/velocity kernels, so the memory
influences have a tremendous impact on the fluids.

Appendix

Using the boundary conditions (32) and the interface condi-
tions (34) in Equation. (63), we obtained the following alge-
braic system:

�Y1,1 �w1 h1, l1, sð Þ − �Y1,2 �w2 h2, l2, sð Þ = �b1, ðA:1Þ

�Yi,i−1 �wi−1 hi−1, li−1, sð Þ + �Yi,i �wi hi, li, sð Þ
− �Yi,i+1 �wi+1 hi+1, li+1, sð Þ = �bi, i ∈ I

2ð Þ
n−2,

ðA:2Þ

�Yn−1,n−2 �wn−2 hn−2, ln−2, sð Þ + �Yn−1,n−1 �wn−1 hn−1, ln−1, sð Þ = �bn−1,
ðA:3Þ

where

�Y1,1 = �T1,1 h1, sð Þ + �T2,2 h1, sð Þ, �Y1,2

= �T2,1 h1, sð Þ, �Yi,i−1 = −�Ti,2 hi, sð Þ,

�Yi,i = �Ti,1 hi, sð Þ + �Ti+1,2 hi, sð Þ, �Yi,i+1

= −�Ti+1,1 hi, sð Þ, i ∈ I 2ð Þ
n−1,

�Yn−1,n = �Tn,1 hn−1, sð Þ�f 2 sð Þ,

�bj = �T j+1,3 hj, s
� 


− �T j,3 hj, s
� 
� 


�P sð Þ
+ δj,n−1�Yn−1,n + δj,1�T1,2 h1, sð Þ�f 1 sð Þ, j ∈ I 1ð Þ

n−1:

ðA:4Þ

δj,n−1 is the Kronecker delta. The system (A.1) can be
written in the following equivalent form:

�M sð Þ �W sð Þ = �N sð Þ: ðA:5Þ
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