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In this paper, we classified the paracontact metric ðκ, μÞ-manifold satisfying theMiao-Tam critical equation with κ > −1. We proved
that it is locally isometric to the product of a flat ðn + 1Þ-dimensional manifold and an n-dimensional manifold of negative constant
curvature −4.

1. Introduction

Inspired by the positive mass theorem and the variational
characterization of Einstein metrics on a closed manifold,
with an aim to find a proper concept of metrics that would
sit between constant scalar curvature metrics and Einstein
metrics, in [1], Miao and Tam studied the variational proper-
ties of the volume functional on the space of constant scalar
curvature metrics with a prescribed boundary metric. Specif-
ically, they derived the following sufficient and necessary
condition for a metric to be a critical point:

Theorem 1 (Theorem 5 in [1]). LetΩ be a compact n -dimen-
sional Riemannian manifold with smooth boundary Σ, γ be a
given metric on Σ, andMK

γ be the space of metrics onΩ which
have constant scalar curvature K and have induced metric on
Σ given by γ. Let g ∈MK

γ be a smooth metric such that the first
Dirichlet eigenvalue of ðn − 1ÞΔg + K is positive. Then, g is a

critical point of the volume functional in MK
γ if and only if

there is a smooth function λ on Ω such that λ = 0 on Σ and

− Δgλ
� �

g + ∇2
gλ − λRic gð Þ = g, ð1Þ

where Δg and ∇2
g are the Laplacian and Hessian operators

with respect to g, and Ric(g) is the Ricci curvature of g.

For brevity, we call such critical metric as Miao-Tam
critical metric and refer to equation (1) as the Miao-Tam
equation. A fundamental property of a Miao-Tam critical
metric is that its scalar curvature is a constant (see Theorem
7 in [1]). Some explicit examples of Miao-Tam critical
metrics can be found in [1, 2], including not only the stan-
dard metrics on geodesic balls in space forms but the spatial
Schwarzschild metrics and AdS-Schwarzschild metrics
restricted to certain domains containing their horizon and
bounded by two spherically symmetric spheres. In [2], the
authors classified all Einstein and conformally flat Miao-
Tam critical metrics. In fact, they proved that any connected,
compact, Einstein manifold with smooth boundary satisfying
Miao-Tam critical condition is isometric to a geodesic ball in
a simply connected space form. And then several generaliza-
tions of this rigidity result were found by different authors,
replacing the Einstein assumption by a weaker condition
such as harmonic Weyl tensor [3], parallel Ricci tensor [4],
or cyclic parallel Ricci tensor [5]. For Some other generaliza-
tions or rigidity results, we can refer to [6–10], etc.

Recently, some geometricians focus on the study of
Miao-Tam equation within the framework of contact metric
manifolds. In [11], the authors proved that a complete
K-contact metric satisfying the Miao-Tam critical condition
is isometric to a unit sphere S2n+1. Furthermore, they studied
ðk, μÞ-contact metrics satisfying the Miao-Tam equation.
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Moreover, the Miao-Tam equation within the framework of
Kenmotsu and almost Kenmotsu manifolds was studied in
[12], and it was proved that a Kenmotsu metric satisfying
the Miao-Tam equation is Einstein. In addition, in [13], the
authors studied the critical point equation on K-paracon-
tact manifolds; especially, they proved that any K-paracon-
tact manifolds satisfying the Miao-Tam equation must be
Einstein. We also note that some geometric structures such
as Ricci soliton were studied within the framework of para-
contact metric ðκ, μÞ-manifold (see [14]). In this direction,
it is natural to study paracontact metric ðκ, μÞ-manifold sat-
isfying the Miao-Tam equation. In this paper, we will prove
the following main result:

Theorem 2. LetM2n+1ðφ, ξ, η, gÞ be a paracontact metric ðκ, μÞ
-manifold of dimensional ð2n + 1Þ with κ > −1. If ðg, λÞ is a
nonconstant solution of the Miao-Tam equation, then
M2n+1 is locally flat in dimension 3, and in higher dimensions
ðn > 1Þ, it is locally isometric to the product of a flat ðn + 1Þ
-dimensional manifold and an n-dimensional manifold of
negative constant curvature equal to −4.

2. Preliminaries

In this section, we recall some basic definitions and facts on
paracontact metric manifolds which we will use later. For
more details and some examples, we refer to [15–26].

A ð2n + 1Þ-dimensional smooth manifoldM2n+1 is said to
have an almost paracontact structure ðφ, ξ, ηÞ, if it admits a
ð1, 1Þ-tensor field φ, a vector field ξ, and a 1-form η satisfying
the following conditions:

(i) ηðξÞ = 1, φ2 = id − η ⊗ ξ

(ii) The tensor field φ induces an almost paracomplex
structure on each fiber of D = Ker ðηÞ, i.e., the eigen-
distributions D+ and D− of φ corresponding to the
eigenvalues 1 and −1, respectively, have same dimen-
sion n

From the definition, it is easy to see that φξ = 0, η ∘ φ = 0,
and the endomorphism φ have rank 2n. An almost paracon-
tact structure is said to be normal if and only if the tensor
field Nφ ≔ ½φ, φ� − 2dη ⊗ ξ vanishes identically. If an almost
paracontact manifold admits a pseudo-Riemannian metric
g such that

g φX, φYð Þ = −g X, Yð Þ + η Xð Þη Yð Þ, ð2Þ

for all X, Y ∈ ΓðTMÞ, then we say thatM has an almost para-
contact metric structure, and g is called compatible metric. It
follows that η = gð·, ξÞ and gð·, φ · Þ = −gðφ · , · Þ. Notice that
any such a pseudo-Riemannian metric is necessarily of signa-
ture ðn + 1, nÞ.

If in addition dηðX, YÞ = gðX, φYÞ for all vector fieldsX, Y
onM, then the manifoldM2n+1ðφ, ξ, η, gÞ is said to be a para-
contact metric manifold. In this case, η becomes a contact
form, i.e., η ∧ ðdηÞn ≠ 0, with ξ its Reeb vector field. In a para-
contact metric manifold, one defines two self-adjoint opera-

tors h and l by h = 1/2Lξφ and l = Rð·, ξÞξ, where Lξ is the
Lie derivative along ξ, and R is the curvature tensor of g. It
is known in [25] that the two operators h and l satisfy

Trh = 0, hξ = 0, lξ = 0, hφ = −φh: ð3Þ

And there also holds

∇Xξ = −φX + φhX, ð4Þ

∇ξh = φh2 − φ − φl, ð5Þ

where ∇ is the Levi-Civita connection of the pseudo-
Riemannian manifold ðM, gÞ. Moreover, h = 0 if and only if
ξ is a Killing vector field, and in this case, the paracontact
metric manifold M is said to be a K -paracontact manifold.
A normal paracontact metric manifold is said to be a paraSa-
sakian manifold.

The study of nullity conditions on paracontact geometry
is the most interesting topics in paracontact geometry. Moti-
vated by the relationship between contact metric and para-
contact geometry, in [18],. Cappelletti Montano et al.
introduced the following.

Definition 3. A paracontact metric manifoldM2n+1ðφ, ξ, η, gÞ
is said to be a paracontact metric ðκ, μÞ -manifold, if its
curvature tensor R satisfies

R X, Yð Þξ = κ η Yð ÞX − η Xð ÞY½ � + μ η Yð ÞhX − η Xð ÞhY½ �, ð6Þ

for all tangent vector fields X, Y on M, where κ, μ are real
constants.

On a paracontact metric ðκ, μÞ-manifold M2n+1ðφ, η, ξ,
gÞðn ≥ 1Þ, the following formulas are valid [18]:

h2 = 1 + κð Þφ2, ð7Þ

Qξ = 2nκξ, ð8Þ

where Q is the Ricci operator associated with the Ricci tensor
Ric.

Paracontact metric ðκ, μÞ-spaces satisfy (7) but this con-
dition does not give any type of restriction over the value of
κ, unlike in contact metric geometry, because the metric of
a paracontact metric manifold is not positive definite.
However, The geometric behavior of the paracontact metric
ðκ, μÞ-manifold is different according κ < −1, κ = 1 and κ >
−1. In particular, for the case κ < −1 and κ > −1, ðκ, μÞ-nul-
lity condition (7) determines the whole curvature tensor field
completely. The case κ = −1 is equivalent to h2 = 0 but not to
h = 0, which is different from contact ðκ, μÞ-space. Indeed,
there are examples of paracontact metric ðκ, μÞ-spaces with
h2 = 0 but h=0, as was first shown in [18, 27, 28]. In this
paper, we consider the paracontact metric ðκ, μÞ-manifolds
with the condition κ > −1.
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3. The Proof of Theorem 2

Before giving the proof of Theorem 2, we introduce some
important lemmas which will be used later. First of all, we
recall a basic fact about paracontact metric ðκ, μÞ-manifold.

Lemma 4 (Corollary 4.14 in [18]). In any ð2n + 1Þ -dimen-
sional paracontact metric ðκ, μÞ-manifold M2n+1ðφ, ξ, η, gÞ
such that κ > −1, the Ricci operator Q of M is given by

QX = 2 1 − nð Þ + nμ½ �X + 2 n − 1ð Þ + μ½ �hX
+ 2 n − 1ð Þ + n 2κ − μð Þ½ �η Xð Þξ, ð9Þ

for any vector field X. In particular, ðM, gÞ is η-Einstein if and
only if μ = 2ð1 − nÞ, Einstein if and only if κ = μ = 0 and n = 1
(in this case, the manifold is Ricci-flat). Further, the scalar
curvature of M is 2nð2ð1 − nÞ + κ + nμÞ.

In the following, we consider paracontact metric ðκ, μÞ
-manifold satisfying the Miao-Tam equation.

Lemma 5. Let ðg, λÞ be a nonconstant solution of the Miao-
Tam equation on the k-dimensional semi-Riemannian mani-
fold Mk with scalar curvature S. Then, the curvature tensor R
can be expressed as

R X, Yð ÞDλ = Xλð ÞQY − Yλð ÞQX + λ ∇XQð ÞY
− λ ∇YQð ÞX + Xfð ÞY − Y fð ÞX, ð10Þ

for any vector field X, Y on M, where f = −ðλS + 1Þ/ðk − 1Þ.

Proof. Tracing (1), we obtain

Δgλ = −
λS + k
k − 1

: ð11Þ

Then, the Miao-Tam equation (1) can be exhibited as

∇XDλ = λQX + f X, ð12Þ

for any vector field X on M, where f = −ðλS + 1Þ/ðk − 1Þ.
Taking the covariant derivative of (12) along an arbitrary
vector field Y on M, we obtain

∇Y ∇XDλð Þ = Yλð ÞQX + λ ∇YQð ÞX + λQ ∇YXð Þ
+ Y fð ÞX + f∇YX:

ð13Þ

Similarly, we have

∇X ∇YDλð Þ = Xλð ÞQY + λ ∇XQð ÞY + λQ ∇XYð Þ
+ Xfð ÞY + f∇XY ,

ð14Þ

for any vector field X, Y onM. Comparing the preceding two
equations and using (12) in the well-known expression of the
curvature tensor RðX, YÞ = ½∇X , ∇Y � − ∇½X,Y �, we obtain the
result.

Lemma 6. LetM2n+1ðφ, ξ, η, gÞ be a paracontact metric ðκ, μÞ
-manifold of dimensional ð2n + 1Þwith κ > −1, and ðg, λÞ be a
nonconstant solution of the Miao-Tam equation on M2n+1.
Then, we have

μ n + κ + 1ð Þ = 2κ: ð15Þ

Proof. Firstly, taking covariant derivative of (8) along any
vector field X, and using (4), we can obtain

∇XQð Þξ =Q φX − φhXð Þ − 2nκ φX − φhXð Þ: ð16Þ

Taking the inner product of (10) with ξ and using (8) and
(16), we have

g R X, Yð ÞDλ, ξð Þ = 2nκ Xλð Þη Yð Þ − Yλð Þη Xð Þ½ �
+ λg Q φX − φhXð Þ, Yð Þ
− λg Q φY − φhYð Þ, Xð Þ + 4λnκg φY , Xð Þ
+ Xfð Þη Yð Þ − Y fð Þη Xð Þ,

ð17Þ

where f = −ðλS + 1Þ/ð2nÞ (noting that the dimension ofM is
2n + 1).

It follows from (6) that RðφX, φYÞξ = 0. Then, replacing
X by φX and Y by φY in (17), respectively, we obtain

λ Qφ + φQ + φQh + hQφ − 4nκφ½ �X = 0: ð18Þ

Since λ is nonconstant on M, it is easy to see that

Qφ + φQ + φQh + hQφ − 4nκφð ÞX = 0: ð19Þ

Replacing X by φX in (9), we have

QφX = 2 1 − nð Þ + nμ½ �φX + 2 n − 1ð Þ + μ½ �hφX: ð20Þ

Then, the action of h on the (20) gives

hQφX = 2 1 − nð Þ + nμ½ �hφX + 1 + κð Þ 2 n − 1ð Þ + μ½ �φX,
ð21Þ

where we have used (7).
Operating (9) by φ, we have

φQX = 2 1 − nð Þ + nμ½ �φX + 2 n − 1ð Þ + μ½ �φhX: ð22Þ

Replacing X by hX in (22) and using (7) again, we get

φQhX = 2 1 − nð Þ + nμ½ �φhX + 1 + κð Þ 2 n − 1ð Þ + μ½ �φX:
ð23Þ

Substituting equations (20)-(23) into (19) yields

μ n + κ + 1ð Þ = 2κ, ð24Þ

which completes the proof of Lemma 6.
Next, we will give the complete proof of Theorem 2.
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Proof. Firstly, taking X = ξ in (17) gives

g R ξ, Yð Þξ,Dλð Þ = g κ η Yð Þξ − Y½ � − μhY ,Dλð Þ
= κ ξλð Þη Yð Þ − κYλ − μ hYð Þλ: ð25Þ

Putting X = ξ in (6) and comparing with the forgoing
equation, we obtain

κDλ + μhDλ − 2nκ ξλð Þξ −Dλð Þ − κ ξλð Þ + ξfð Þð Þξ +Df = 0:
ð26Þ

Noting that the scalar curvature S is a constant, it follows
from f = −ðλS + 1Þ/ð2nÞ that

2nDf = −SDλ: ð27Þ

Then, we can obtain from (26) and (27) that

2nκDλ + 2nμhDλ − 4n2κ ξλð Þξ −Dλð Þ
− 2n κ ξλð Þ + ξfð Þð Þξ − SDλ = 0:

ð28Þ

On the one hand, taking Y = ξ in (6), since hξ = 0, it
follows that

R X, ξð Þξ = κ X − η Xð Þξ½ � + μ hX − η Xð Þhξ½ � = κφ2X + μhX,
ð29Þ

which gives

l = κφ2 + μh: ð30Þ

Substituting (7) and (30) in (5), we get

∇ξh = −μφh = μhφ: ð31Þ

On the other hand, we obtain from (12) and (8) that

∇ξDλ = 2nκλ + fð Þξ: ð32Þ

Next, taking covariant derivative of (28) along ξ and
making use of (31) and (32), we have

2nκ + 4n2κ − S
� �

2nκλ + fð Þξ + 2nμ2hφDλ
− 4n2κξ ξλð Þξ − 2nκξ ξλð Þξ − 2nξ ξfð Þξ = 0:

ð33Þ

Operating this equation by φ shows

2nμ2hDλ = 0: ð34Þ

By the action of h in (34), it follows from (7) that

μ2 κ + 1ð Þφ2Dλ = 0: ð35Þ

Since we assume that κ > −1, we divide it into two cases:
Case (i): μ = 0; case (ii): φ2Dλ = 0:

If case (i) occurs, it follows from Lemma 6 that κ = 0.
Hence, the definition of paracontact metric ðκ, μÞ-manifold
gives that RðX, YÞξ = 0 for any vector field X,Y . From Theo-
rem 3.3 of [26], M2n+1 is locally flat in dimension 3, and in
higher dimensions (n > 1), it is locally isometric to the prod-
uct of a flat ðn + 1Þ-dimensional manifold and an n-dimen-
sional manifold of negative constant curvature −4.

If case (ii) occurs, then φ2Dλ =Dλ − ðξλÞξ = 0, i.e.,
Dλ = ðξλÞξ. Differentiating this along an arbitrary vector
field X together with (4) implies that

∇XDλ = X ξλð Þξ − ξλð Þ φX − φhXð Þ: ð36Þ

It follows from (12) that gð∇XDλ, YÞ = gð∇YDλ, XÞ, and
then the foregoing equation shows that

X ξλð Þη Yð Þ − Y ξλð Þη Xð Þ − ξλð Þdη X, Yð Þ = 0: ð37Þ

Replacing X by φX, Y by φY , and noting that dη is
nonzero for any paracontact metric manifolds, it follows that
ξλ = 0. Hence, Dλ = 0, λ, is a constant, which gives a
contradiction.

This completes the proof of Theorem 2.
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