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In order to study the detailed dynamics and associated nonperturbative features of QCD, a dual version of the color gauge theory
based on a topologically viable homogeneous fibre bundle approach has been analysed taking into account its magnetic symmetry
structure. In the dynamically broken phase of magnetic symmetry, the associated flux tube structure on a S2 sphere in the
magnetically condensed state of the dual QCD vacuum has been analyzed for the profiles of the color electric field using flux
quantization and stability conditions. The color electric field has its intimate association with the vector mode of the
magnetically condensed QCD vacuum, and such field configurations have been analyzed to show that the color electric flux gets
localized towards the poles for a large sphere case while it gets uniformly distributed for the small sphere case in the infrared
sector of QCD. The critical flux tube densities have been computed for various couplings and are shown to be in agreement with
that for lead-ion central collisions in the near infrared sector of QCD. The possible annihilation/unification of flux tubes under
some typical flux tube density and temperature conditions in the magnetic symmetry broken phase of QCD has also been
analyzed and shown to play an important role in the process of QGP formation. The thermal variation of the profiles of the
color electic field is further investigated which indicates the survival of flux tubes even in the thermal domain that leads the
possibility of the formation of some exotic states like QGP in the intermediate regime during the quark-hadron phase transition.

1. Introduction

It is widely believed that the quantum chromodynamics as a
non-Abelian theory of gauge fields can be very well used for
the fundamental description of strong interactions [1, 2]
between quarks and gluons especially in its high energy
sector. Apart from this, it is also known to exhibit many
important nonperturbative features, like confinement, chiral
symmetry breaking, and mass spectrum of the physical state
of hadrons as far as its low energy sector [3–6] is concerned.
The color confinement in QCD is then naturally one of the
most challenging issues, and it is directly linked with the
physical spectrum of the theory. In the low energy sector of
QCD, there have been many conjectures proposed for the
mechanism of color confinement. In this context, Nambu
[7] and others [8, 9] have argued that the monopole conden-

sation leads the dual Meissner effect that could provide a way
for the color confinement in QCD in a manner similar to the
ordinary superconductor where magnetic flux confinement
occurs due to the Meissner effect. To ensure the color con-
finement through the dual Meissner effect [5, 10, 11], how-
ever, one needs color monopoles as the most essential
degrees of freedom. The appearence of color monopoles in
QCD was proposed by ‘t Hooft [12] based on the Abelian
gauge fixing that reduces SU(N) gauge theory to Uð1ÞNc−1

with color monopoles as a topological excitations of QCD
vacuum. However, the mechanism of monopole condensa-
tion in QCD vacuum remains far from clear. The chromo-
electric flux between static quarks is then squeezed into
string or tube-like vortex structures in superconducting
medium, and such flux tube representation of hadrons leads
to a lineraly rising potential between pairs of static quarks at
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zero temperature, characterizing the color confinement
which, in turn, is strongly supported by the recent lattice
QCD simulation studies [13–18]. Thus, the apparent domi-
nance of color monopole condensation seems to provide a
viable explanation of color confinement and related features
of the infrared sector of QCD. However, inspite of the great
success of lattice calculation, it is tempting to develop a for-
mulation based on first principle of QCD, which may provide
us with a clearer understanding of the physical picture of dual
QCD vacuum and associated confinement mechanism and
allows us to perform some analytical calculation also. An
analytical effective theory of nonperturbative QCD is, there-
fore, highly desirable which may incorporate the topological
aspects, in addition to various glueballs and their interac-
tions, which are the most practical degrees of freedom for
the study of the QCD phase transition. In this direction, a
topologically effective magnetic symmetry based dual gauge
formulation [19–24] might prove a parallel to explain the
mysterious confining behaviour and associated features of
quarks inside the hadronic jails. Furthermore, in recent years,
the collective behavior of color isocharges at a finite temper-
ature and density has also attracted a great interest in the
theoretical as well as experimental investigations of QCD
phase diagram [25]. In this way, the dual QCD formulation
is expected to provide the relevant understanding of various
nonperturbative aspects of QCD, the QCD phase transition
and the possible formation of an intermediary state like
quark-gluon plasma (QGP) [26–32] or any other exotic states
under the extreme conditions of density and temperature
[33–35] which might also be relevant to uncover the many
hidden aspects of the primordial structure of universe. In
the present study, the mechanism of color confinement,
associated confined field profiles, and the QCD phase transi-
tion are studied by investigating the flux tube structure asso-
ciated with dual QCD formulation based on topologically
viable magnetic symmetry approach and analysing on ener-
getic grounds. The typical dual QCD parameters of quark-
hadron phase transition have been evaluated using energy
balance conditions and analysed numerically. The study is
further extended to investigate the profiles of color electric
field at different hadronic scales using energy minimization
and stabilty conditions. The critical flux tube densities have
been computed and analyzed in view of the QGP formation
in heavy-ion collision events. The field profiles have further
been investigated for better understanding of the QCD phase
transition under varying thermal conditions.

2. Magnetic Symmetry Structure and Confining
Features of Dual QCD

In order to analyze the typical nonperturbative features of the
color gauge theory, let us briefly review the dual formulation
of QCD [19–24, 36–40] in terms of the magnetic symmetry
and the associated topological structure of dual QCD vac-
uum. It is well-known that the non-Abelian theory of gauge
fields can be viewed [19–24, 38–40] as the Einstein theory
of gravitation in a higher-dimensional space which unifies
the four dimensional space-time with n-dimensional internal
space and allows the introduction of some additional internal

isometries. In this connection, the magnetic symmetry may
be introduced as a set of self-consistent Killing vector fields
of the internal space which, while keeping the full gauge
degrees of freedom intact, restricts and reduces some of the
dynamical degrees of freedom of the theory. For the case of
quark color symmetry, it, in turn, may be shown to establish
a dual dynamics between the color isocharges and the
topological charges of the underlying gauge group. For the
simplest choice of the gauge group G ≡ SUð2Þ with its little
group H ≡Uð1Þ, the gauge covariant magnetic symmetry
condition may be expressed [19–24] in the following form,

Dμm̂ = 0⇒ ∂μ + gWμ ×
� �

m̂ = 0, ð1Þ

where m̂ is a topological field that belongs to the adjoint rep-
resentation of the gauge group G and Wμ is the associated
gauge potential of the underlying gauge group G. The condi-
tion (1) thus implies that the magnetic symmetry imposes a
strong constraint on the metric as well as connection and
may, therefore, be regarded as the symmetry of the potentials.
The monopoles, therefore, emerge as the topological objects
associated with the elements of the second homotopic group
Π2ðG/HÞ. The typical gauge potential satisfying the condi-
tion (1) is parametrised as

Wμ = Aμm̂ − g−1 m̂ × ∂μm̂
� �

, ð2Þ

where m̂:Wμ = Aμ is the color electric potential unrestricted
by magnetic symmetry, while the second term is completely
determined by magnetic symmetry and is topological in
origin. Thus, the virtue of the magnetic symmetry is that it
can be used to describe the topological structure of gauge
symmetry and the isolated singularities of m̂ may then be
viewed as defining the homotopy of the mapping Π2ðS2Þ
on m̂ : S2R ⟶ S2 = SUð2Þ/Uð1Þ which describes the non-
Abelian monopoles. IndeedWμ with vanishing Abelian com-
ponent (Aμ = 0) and m̂ = r̂ describes precisely the Wu-Yang
monopole. The imposition of magnetic symmetry on the
gauge group thus brings the topological structure into the
dynamics explicitly. The associated field strength corre-
sponding to the potential (2) is then given by

Gμν =Wν,μ −Wμ,ν + gWμ ×Wν ≡ Fμν + B dð Þ
μν

� �
m̂, ð3Þ

where Fμν = Aν,μ − Aμ,ν and BðdÞ
μν = −g−1m̂:ð∂μm̂ × ∂νm̂Þ =

Bν,μ − Bμ,ν. The second part (Bμ), fixed completely by m̂, is
thus identified as the magnetic potential associated with the
topological monopoles and the fields thus appear in a
completely dual symmetric way. Although, the group SU(2)
is examined here as a simplest possible example, this whole
formulation can be established for an arbitrary gauge group
(including SU(3) case). However, in all cases, the general
structure of the formulation which includes the existence of
the dual structure, gauge-independent separation of mag-
netic degrees of freedom, the existence of different phases,
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and the magnetic confinement of the colored flux all remain
identical and intact.

However, in order to explain the dynamics of the result-
ing dual QCD vacuum and its implications on confinement
mechanism, let us start with the SU(2) chromodynamic
Lagrangian with a quark doublet source ψðxÞ, as given by

L = −
1
4G

2
μν + �ψ xð ÞiγμDμψ xð Þ −m0�ψ xð Þψ xð Þ: ð4Þ

In addition, in order to avoid the problems due to the
point like structure and the singular behavior of the potential
associated with monopoles, we use the dual magnetic poten-
tial BðdÞ

μ coupled to a complex scalar field ϕðxÞ. Taking these
considerations into account, the modified form of the dual
QCD Lagrangian (4) in quenched approximation may be
expressed as

L dð Þ
m = −

1
4B

2
μν + ∂μ + i

4π
g
B dð Þ
μ

� �
ϕ

����
����
2
−V ϕ∗ϕð Þ, ð5Þ

with Vðϕ∗ϕÞ as a proper effective potential which is fixed
by the requirements of the ultraviolet finiteness and infra-
red instability of the Lagrangian as given by Coleman and
Weinberg [41] by using the single loop expansion technique as

V ϕ∗ϕð Þ = 24π2

g4
ϕ40 + ϕ∗ϕð Þ2 2 ln ϕ∗ϕ

ϕ20
− 1

	 
� �
: ð6Þ

The effective potential is reliable in the far infrared region
where coupling becomes very intense (αs ⟶ 1) and confine-
ment is strongly enforced. Since, in the present case, we are
also interested to investigate phase transition in dual QCD
vacuum, the use of an effective potential reliable in relatively
weak coupling near-infrared regime is naturally desired and,
therefore, the appropriate choice for inducing the dynamical
breaking of magnetic symmetry is the quartic potential of
the following form

Vpt ϕ
∗ϕð Þ = 3λα−2s ϕ∗ϕ − ϕ20

� �2
: ð7Þ

In order to analyze the nature of magnetically condensed
vacuum and associated flux tube structure, let us investigate
the field equations led by the Lagrangian (5) in the following
form

∂μ + i4πg−1B dð Þ
μ

� �2
ϕ + 6λα−2s ϕ∗ϕ − ϕ20

� �
ϕ = 0, ð8Þ

∂νBμν + i4πg−1 ϕ∗∂μϕ − ϕ∂μϕ
∗� �

− 8πα−1s B dð Þ
μ ϕϕ∗ = 0: ð9Þ

The unusual features of dual QCD vacuum responsible
for its nonperturbative behaviour may become more trans-
parent if we start with the Neilsen and Olesen [42] interpre-
tation of vortex-like solutions. It leads to the possibility of

the existence of the monopole pairs inside the superconduct-
ing vacuum in the form of thin flux tubes that may be
responsible for the confinement of any colored fluxes. Under
cylindrical symmetry ðρ, φ, zÞ and the field ansatz given by

B dð Þ
φ xð Þ = B ρð Þ, B dð Þ

0 = B dð Þ
ρ = B dð Þ

z = 0,
ϕ xð Þ = exp inφð Þχ ρð Þ n = 0, ±1, ±2, −−ð Þ,

ð10Þ

the field equations (8) and (9) are transformed to the follow-
ing form

1
ρ

d
dρ

ρ
dχ
dρ

� �
−

"
n
ρ
+ 4πα−1s
� �1/2

B ρð Þ
� �2

− 6λα−2s χ2 − ϕ20
� �#

χ ρð Þ = 0,
ð11Þ

d
dρ

ρ−1
d
dρ

ρB ρð Þð Þ
� �

+ 16πα−1s
� �1/2

� n
ρ
−
4π
g
B ρð Þ

� �
χ2 ρð Þ = 0:

ð12Þ

Further, with these considerations, the form of the color
electric field in the z-direction is given by

Em ρð Þ = −
1
ρ

d
dρ

ρB ρð Þð Þ: ð13Þ

For a more convenient representation, we use the follow-
ing dimensionless parameter

r = 2
ffiffiffiffiffi
3λ

p
α−1s ϕ0ρ, F rð Þ = 4πα−1s

� �1/2
ρB ρð Þ,H rð Þ = ϕ−10 χ ρð Þ,

ð14Þ

so that the field equations (11) and (12) (with λ = 1) are
reduced to a more simpler form as

H″ + 1
r
H ′ − 1

r2
n + Fð Þ2 + 1

2H H2 − 1
� �

= 0, ð15Þ

F″ − 1
r
F ′ + α n − Fð ÞH2 = 0, ð16Þ

where α = 2παs/3λ and the prime stands for the derivative
with respect to r. Using the asymptotic boundary conditions
given by F ⟶ −n, H⟶ 1 as r⟶∞ along with equation
(14), the asymptotic solution for the function F may be
obtained in the following form

F ρð Þ = −n + Cρ1/2 exp −mBρð Þ, ð17Þ

where C = 2πBð3 ffiffiffi
2

p
λg−3ϕ0Þ

1/2
and mB = ð8πα−1s Þ1/2ϕ0 is the

mass of the magnetic glueballs which appears as vector
mode of the magnetically condensed QCD vacuum. Since,
the function FðρÞ is associated with the color electric field
given by equation (13) through gauge potential BðρÞ, it
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indicates the emergence of the dual Meissner effect leading
to the confinement of the color isocharges in the magneti-
cally condensed dual QCD vacuum.

3. Critical Parameters of Phase Transition in
Dual QCD Vacuum

The formation of color electric-flux tubes and the confine-
ment of color charges can be visualized more effectively on
the energetic grounds by evaluating the energy per unit
length of the flux tube configuration governed by the field
equations (15) and (16) and the Lagrangian (5), which is
obtained in the following form

k = 2πϕ20
ð∞
0
rdr

6λ
g2

F ′
� �2

r2
+ n + Fð Þ2

r2
H2

2
64

+ H ′
� �2

+ H2 − 1
� �2

4

3
75,

ð18Þ

which in view of equation (14) reduces to

k = 2π
ð∞
0
ρdρ

"
n2g2

32π2
1
ρ

dF
dρ

� �2
+ n2

ρ2
F2 ρð Þχ2 ρð Þ

+ ∂χ
∂ρ

� �2
+ 48π2

g4
χ2 ρð Þ − ϕ20
� �2#

:

ð19Þ

It, in turn, plays an important role in the phase structure
of QCD vacuum, if we take the multi-flux tube system on a S2

-sphere with periodically distributed flux tubes and intoduce
a new variables R on S2-sphere and express it as ρ = R sin θ.
As a result, a number of flux tubes considered here inside a
hadronic sphere of radius R pass through the two poles of
the hadronic sphere. Under such prescription, the flux tube
solution governed by equations (11) and (12) corresponds
to the case of large R limit ðR⟶∞Þ such that R≫ ρ and
θ⟶ 0. With these considerations, the finite energy expres-
sion given by the above equation (19) may be reexpressed as

k = εC + εD + ε0, εC = kCR
2, εD = kDR

−2, ε0 = k0, ð20Þ

where the functions kC , kD, and k0 are given by

kC =
6π
α2s

ðπ
0

χ2 θð Þ − ϕ20
� �2

sinθdθ, ð21Þ

kD = n2αs
4

ðπ
0

1
sin θ

∂F
∂θ

� �2
dθ, ð22Þ

k0 = 2π
ðπ
0

n2F2 θð Þχ2 θð Þ
sin θ

+ sin θ
∂χ
∂θ

� �2
" #

dθ: ð23Þ

The energy expression (20) provides a straightforward
description of the behavior of QCD vacuum at different

energy scales. At large hadronic distances, the first term (εC)
in equation (20) dominates which increases at increasing
hadronic distances and gets minimized when the monopole
field picks up its non-zero vacuum expectation value which
incidently acts as an order parameter to indicate the onset
of the dynamical breaking of magnetic symmetry. The asso-
ciated magnetic condensation of QCD vacuum then forces
the color electric field to localize in the form of the thin flux
tubes extending from θ = 0 to θ = π and the QCD vacuum
is ultimately pushed to the confining phase. Further, the
energy expression (19) has its own implications for the eval-
uation of critical parameters of phase transition and their
numerical computation then leads to a deep significance for
the validity of field decomposition formulation of dual
QCD. For the computation of such critical factors, we pro-
ceed by evaluating the functions associated with the expres-
sion (20) in terms of basic free parameters of the theory
(viz., αs and mB) in the following way

kC =
6π
α2s

ðπ
0

χ2 θð Þ − ϕ20
� �2 sin θdθ⇒ kC =

3m4
B

16π , ð24Þ

which shows the vector mode mass of the magnetically con-
densed vacuum plays a crucial role in the confining phase of
the QCD vacuum. On the other hand, the component of
energy dominant over relatively short hadronic distances
(εD), expressed in terms of the function kD given by equation
(22), may also be evaluated in terms of free parameters of the
theory in the form as given below:

kD = πR4
ðπ
0
E2
m θð Þ sin θdθ, ð25Þ

where

Em θð Þ = ng

4πR2 sin θ

∂F
∂θ

: ð26Þ

Using equations (25) and (26) alongwith the flux quanti-
zation condition given byð

ρEm ρð Þdρ = ng
4π ð27Þ

then leads to

kD = n2g2

8π = 1
2 n

2αs: ð28Þ

The contributions, in terms of the energy functions kC
and kD, may be used to compute the critical parameters of
phase transition from magnetically dominated phase to elec-
trically dominated one. For this purpose, let us evaluate the
ratio of εD and εC which is obtained as

εD
εC

= η
1
R4

� �
, η = kD

kC
= 8πn2αs

3m4
B

: ð29Þ
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For the confinement-deconfinement phase transition, we
have ðεD/εCÞ = 1 and R = Rc which leads to the critical radius
of phase transition in the following way

Rc =
8
3πn

2αs

� �1/4
m−1

B : ð30Þ

The corresponding critical density of the flux tubes (dc)
inside the hadronic sphere is given by

dc =
1

2πR2
c

= 32
3 π3n2αs

� �−1/2
m2

B: ð31Þ

These parameters are extremely important in exploring
the underlying mechanism and nature of QCD phase transi-
tion. The equations (30) and (31) exhibit that the critical
radius and critical density of phase transition are clearly
expressible in terms of free parameters of the QCD vacuum.
In view of the running nature of QCD coupling constant, we
can estimate these critical factors associated with the QCD
vacuum in its infrared sector using the numerical estimations
of glueball masses. For instance, for the optimal value of (αs)
as αs ≡ 0:12 with the glueball masses mB = 2:102GeV and
mϕ = 4:205GeV, equations (30) and (31) lead to,

Rc = 0:094 fm,
dc = 18:003 fm−2:

ð32Þ

The deconfinement phase transition in the magnetically
condensed QCD vacuum therefore appears around the
abovementioned critical values for a typical coupling of
αs = 0:12 in the near infrared sector of QCD. In this case,
for Rc ≡ 0:094 fm, the flux tube density acquire its critical
value of 18.003 f m−2 and the first part of the energy expres-
sion (20) dominates which demonstrates the confinement
of color particles in the magnetically rich QCD vaccum.
However, below Rc = 0:094 fm, the quarks and gluons appear
as free states and the system stands near the boundary of the
perturbative phase where the second part of the expression
(20) becomes dominant leading to the deconfinement of
color isocharges. The flux tube density in this sector increases
sharply and with sufficiently dense flux tube system, the flux
tube annihilation may takes place which then leads to the
generation of dynamical quarks and gluons. The gluon self-
interactions are then expected to play a major role in the
thermalization of QCD system and create an intermediary
state of quark-gluon plasma (QGP). As a result of such flux
tube melting in the high momentum transfer sector of
QCD vacuum, the system is expected to evolve with an inter-
mediary QGP phase. In addition, in the deep infrared sector
of QCD with higher couplings, (αs), e.g., 0.24, 0.48, and 0.96,
a considerable enhancement in the critical radius (0.152 fm,
0.226 fm, and 0.356 fm) is observed which leads to a formida-
ble depletion in critical density (7.22, 3.10, and 1.24 fm-2,
respectively) of flux tubes in QCD vacuum. As shown by
color electric field profiles, the color electric field given by
equation (26) obtained for the asymptotic solution (large R)

leads to uniform field when R decreases to approach its
critical value Rc where the flux tube density acquires its
critical value dc around which a number of flux tubes are
expected to get melted. These critical flux tube densities
may be compared to those produced in case of central
heavy-ion collisions for the creation of QGP. The flux tube
densities for such collisions [43] for the case of one flux tube
per nucleon-nucleon hard collision, is given by

dc =
9A2/3

4πR2
0
, ð33Þ

where A is the mass number of heavy ions and R0 is nucleus
radius parameter (1.2 fm). For the case of Pb-Pb central col-
lisions (A = 208), it leads to a value of 17.5 fm-2, which is in
very good agreement with that given by equation (31) of
the present dual QCD model and indicates the vital role
played by the flux tube number density and associated mono-
pole condensate in QGP phase transition in QCD.

4. Confined Field Configurations in Dual
QCD Vacuum

In order to further discuss the phase structure of QCD
vacuum in terms of the critical parameters, let us extend
our study to the profiles of the color electric field in the
full infrared sector of dual QCD. Using the prescription
for the color electric field and potential as given in the
previous section, the total electric flux penetrating the area
(S) surrounded by a closed loop around the upper sphere
of radius R is given by

ϕ =
ð
S
Em∙dS ≡

þ
B dð Þ∙dl = −2π

ð∞
0
ρEm ρð Þdρ

= −2πR2
ðπ/2
0

Em θð Þ sin θdθ:

ð34Þ

Using the flux quantization condition along with the
substitution of the variable, cos θ = p, it yields

ðπ/2
0

Em θð Þ sin θdθ =
ð1
0
Em pð Þdp = ng

4πR2 ≡N: ð35Þ

This along with equation (20) may be used to evaluate
the flux tube energy component εD in the following form

εD = πR2
ð1
0

Em pð Þ −Nf g2dp +N2
� �

: ð36Þ

The energy minimization condition then leads to

Em pð Þ =N = ng

4πR2 , ð37Þ

so that the color electric field is distributed uniformly in
the deconfinement region where εD dominates. The critical
value of such color electric field at the boundary of phase
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transition from the deconfined phase to the confined phase
may then be obtained by using R = Rc, in the following form

Ec
m = ng

4πR2
c

= 1
4π

ffiffiffi
3
2

r
m2

B, ð38Þ

which leads to its numerical value as Ec
mð f m−2Þ = 23:16, 11.03,

5.81, 3.80, and 2.16 at strong couplings αs = 0:048, 0.12, 0.24,
0.48, and 0.96, respectively, in the full infrared sector of
QCD. The variation of such critical color electric field at the
phase transition boundary, as depicted in Figure 1, shows a
large reduction in the color electric flux spread out in deep
infrared sector on one hand and a considerable enhancement
in its value on the other, in the transitional region where a
number of flux tubes are expected to lead a homogeneous
QGP as a result of their annihilation.

Furthermore, the general form of color-electric field may
be evaluated by using equation (13) along with the asymp-
totic solution (17) and is given as

Em ρð Þ = ngC
8πρ3/2 1 − 2mBρð Þ exp −mBρð Þ: ð39Þ

For the case of multi-flux tube system on the S2-sphere,
the flux tubes are periodically distributed over the sphere of
radius R and the associated color electric field passing verti-
cally on the surface of sphere is obtained as,

Em θð Þ = ~Em exp −RmB sin θð Þ, ~Em

= nCα1/2s

4π1/2R3/2sin3/2θ
1 − 2RmB sin θð Þ

ð40Þ

The profile of such color electric field as a function of the
polar angle θ for different values of radius (R) at different αs
in the infrared sector of QCD has been presented by a 2-d
graphics given by Figure 2. It clearly shows that, in the infra-
red sector of QCD, for a large sphere enclosing the flux tubes,
the color electric flux gets localized or spreaded around the
poles (θ = 0 and π) while its gets uniformly distributed for
the small sphere case and acquires a constant value at the
critical radius Rc as given by equation (30). Similar results
can be drawn from the 3-d graphics of Figure 3 for the color
electric field as a function of the polar angle θ and radius R for
different values of coupling constant αs. In these graphics
with the increase in radius of sphere in the infrared sector
of QCD, it demonstrate the reduction and drifting of maxima
of color electric flux towards the higher sphere radii and con-
sequently a reduction in flux tube density in the far infrared
sector of QCD. In the near-infrared sector, however, the
increase in flux tube density may lead to the annihilation of
the neighbouring flux tubes and a large homogeneous QGP
formation in the central region is expected.

5. Thermal Effects on Field Configurations and
Associated Critical Parameters

It has been argued that the multi-flux tube structure of dual
QCD leads to a viable explanation for the low-energy confin-

ing features of QCD and may further be used for exploring
the phase structure of QCD under some unusual conditions
like those of high temperatures and high densities. The
behavior of QCD at finite temperature is, in fact, expected
to play a vital role in understanding the dynamics of the
QCD phase transition including QGP phase of nuclear
matter [22]. Hence, in view of these facts, starting from the
Lagrangian (5), let us use the partition functional approach
along with the meanfield treatment for the QCD monopole
field to evaluate the thermal contributions to the effective
potential in the dual QCD. The partition functional, for the
present dual QCD in the thermal equilibrium at a constant
temperature T , may be given by an Eucledian path integral
over a slab of infinite spatial extent and β (≡T−1) temporal
extent, as,

Z J½ � =
ð
D ϕ½ �D B dð Þ

μ

h i
exp −S dð Þ

� �
, ð41Þ

where SðdÞ is the dual QCD action and is given by

S dð Þ = −i
ð
d4x L

mð Þ
d − J ϕj j2

� �
, ð42Þ

whereLðmÞ
d is given by equation (5) and for the phase transi-

tion study in dual QCD vacuum, the effective potential reli-
able in relatively weak coupling in near infrared regime is
naturally desired as given in the form of equation (7). Under
the thermal evolution of the QCD system, there are marked
fluctuations in the monopole field and the effective potential
at finite temperatures then corresponds to the thermody-
namical potential which leads to the vital informations for
the QCD phase transition. The thermal evolution of the
QCD system as investigated [22] by taking into account the
Dolan and Jackiw approach [44] using high temperature
expansion for the effective potential ultimately leads to,

V eff ϕ, Tð Þ = 3λα−2s ϕ2 − ϕ20
� �2 − 7

90π
2T4 + 4παs + λ

2α2s

� �
T2ϕ2:

ð43Þ
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Figure 1: (color online) Variartion of critical color electric field
EmðcriticalÞ with mB.
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Its minimization, in turn, leads to the thermally evolving
vector glueball masses as

m Tð Þ
B = 8πα−1s

� �1/2
ϕ0 1 − T

Tc

� �2
" #1/2

, ð44Þ

where, the critical temperature of phase transition as obtained
by vanishing coefficient of terms quadratic in ϕ in effective
potential (equation (43)) is given as (for λ = 1),

Tc = 2ϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4παs + 1

s
, ð45Þ

which for different values of the couplings (i.e., for 0.12,
0.24, 0.48, and 0.96) leads to the critical temperatures as
0.318GeV, 0.272GeV, 0.220GeV, and 0.172GeV, respec-
tively. With such potential, the case λ = 1, in fact, corresponds
very nearly to that given by one-loop potential as it reproduces

the same ratio for the twomass scales (scalar and vectormodes
of the magnetically condensed vacuum). In addition, for λ = 1,
these mass scales become nearly identical to those for the one-
loop potential in the near infrared sector (αs ≪ 1) of QCD
where αs is given by the running coupling constant fixed by
the renormalization group equation. However, though the λ
is a free parameter, these mass scales start diverging for higher
values of λ. Further, the thermal response of dual QCD ana-
lysed using the mean field approach shows that the abovemen-
tioned confinement mechanism remains intact in the low
temperature regime which is true for all gauge groups includ-
ing SU(3). However, with the increase in temperature, there is
a reduction in the monopole condensate along with the resto-
ration of magnetic symmetry and the QCD system passes
through a weakly bound phase of QGP before transiting to a
completely deconfined phase. The reduction in magnetic con-
densate for the case of SU(3) is larger due to increase in the
number of degrees of freedom in comparison to SU(2) case.
Here, it is then imperative that the critical temperatures for
the case of SU(3) group must be considerably smaller than
those obtained using SU(2) for all QCD phase transitions.
With these considerations for the thermal evolution of the
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QCD system, the color electric field as given by equation (40)
evolves at finite temperature in the following form

Em θ, Tð Þ = ~Em Tð Þ exp −Rm Tð Þ
B sin θ

� �
ð46Þ

where

~Em Tð Þ = nCT 4παsð Þ1/2
8πR3/2sin3/2θ

1 − 2Rm Tð Þ
B sin θ

h i
, ð47Þ

with CT = 2Bð ffiffiffiffiffi
18

p
λπÞ1/2α−5/2s ðmðTÞ

B Þ1/2. The critical value of
such color electric field around phase transition boundary
may also be obtained using equation (38) in the following form

Ec
m Tð Þ = Ec

m 1 − T
Tc

� �2
" #

: ð48Þ

In addition, the associated critical radius of phase transi-
tion and the critical flux tube density inside the hadronic
sphere under high temperature in thermal QCD reduce to
the following form

Rc Tð Þ = Rc 1 − T2

T2
c

� �−1/2
,

dc Tð Þ = dc 1 − T2

T2
c

� �
,

ð49Þ

which show a large reduction in critical color electric field and
the flux tube density in the phase transition region around
critical temperature point and transition of the system to
deconfined phase of large critical radii. The typical thermal
profiles of color electric field as given by equation (46) have
been depicted in Figure 4 and 5 for different couplings in
infrared sector of QCD. A considerable reduction in the field
at increasing temperatures has been demonstrated by both
2-d and 3-d graphics. At temperatures, T ≥ Tc, the field tends
to get distributed uniformally around the centre of the sphere
while it gets localized around the two poles (θ = 0 and π) and
drops down with its minimum around θ = π/2. In any case,
the system maintains perfect reflection symmetry around
θ = π/2 plane. For the physically accessible intermediate
coupling infrared sector (αs = 0:48), the phase transition is
expected around 0.220GeV around which the flux tube
density approaches to its minimum value and the magnetic
condensate is evaporated into thermal monopoles.
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6. Summary and Conclusions

In view of the fact that the topological degrees of freedom
of non-Abelian gauge theories play a crucial role in under-
standing the various nonperturbative features as well as the
underlying phase structure of QCD vacuum, the magnetic
symmetry-based dual version of QCD has been utilized
which is shown to lead to a dual dynamics between color iso-

charges and topological charges imparting the dual super-
conducting properties to QCD on dynamical breaking of
magnetic symmetry and confining any color isocharge pres-
ent. Although, the group SU(2) is examined in the present
paper as the simplest possible example, the whole formula-
tion can be established for an arbitrary gauge group (includ-
ing SU(3) case). However, in all cases, the general structure of
the formulation which includes the existence of dual
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structure, gauge-independent separation of magnetic degrees
of freedom, the existence of different phases, and the mag-
netic confinement of colored flux all remain identical and
intact. Further, for the group with rank > 1 (e.g., 2 for
SU(3)) one can findmonopole solution by identifying the rel-
evant homotopy group, e.g., Π2ðSUð3Þ/Uð1Þ ⊗U ′ð1ÞÞ for
the SU(3) group where U(1) and U ′ð1Þ are two Abelian sub-
groups generated by λ3 and λ8, respectively. However, the
true symmetry of the solutions remains λ3 like always as it
automatically generates λ8-like symmetry choosing its suit-

able symmetry product. The resulting monopole solutions
obtained by choosing a proper magnetic symmetry exhibit-
ing abovementioned full homotopy class of mapping (Π2)
may easily be used to establish the duality that exists in
QCD which allows us to obtain the monopole condensation
for QCD vacuum leading to color confinement in the same
way as has been done with the present gauge group SU(2).
A stable monopole condensation in SU(2) case has been
achieved after integrating out all the dynamical degrees of
freedom of non-Abelian gauge potential and identifying the
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non-Abelian topologyΠ2ðS2Þ in a purely gauge-independent
way, and then, the same may easily be extended to realistic
SU(3) case in an identical way. Hence, to address the basic
issues of monopole dominance, topological structure, and
implications for color confinement, the SU(2) case has been
considered for the sake of simplicity keeping in mind that
the essential features of SU(2) QCD remain the same in
SU(3) QCD also. A unique periodically distributed flux tube
structure has been shown to emerge in magnetically con-
densed QCD vacuum which has been analysed on a S2-
sphere to compute the critical parameters of phase transition
using energy-balance condition for the energy components
given by equations (20)-(28). The higher value of critical flux
tube density around phase transition region in near infrared
sector is shown to drive the system through QGP phase also.
Further, the color electric flux quantization and the energy
minimization conditions have been shown to lead to a uni-
formally distributed color electric field given by equation
(37) with its critical value as given by equation (38) in the
deconfinment region which immediately drops to more than
ninety percent in the far-infrared sector of QCD. Using the
asymptotic solutions for the dual potential, the analytic
expression of the color-electric field has been derived as
equation (40) and the profiles of color electric field at differ-
ent hadronic scales and different values of coupling constant
are depicted as 2-d and 3-d graphics of Figures 2 and 3,
respectively. It clearly demonstrates the localization of the
color electric field around poles at large distance scales which
goes homogeneous below the corresponding critical radius
and confined in the central region that leads to the possibility
of a homogeneous QGP formation due to increased flux tube
density before transiting to completely deconfined phase in
the color screening region. The formation of this new kind
of phase is expected as a result of the flux tube annihilation
because of the increased flux tube density in the central
region and, therefore, the flux tube density in dual QCD nat-
urally plays a key role in creation of QGP in its infrared sec-
tor. It is important to note that, in the present scenario, below
the critical radius, the flux tube density does not completely
vanish in the color screening regime which, in turn, strongly
supports the formation of an intermediate phase before tran-
siting to the completely deconfined region. In the near infra-
red region physically relevant for the phase transition, the
critical flux-tube density has been shown to be in agreement
with that computed for Pb-Pb central heavy-ion collisions
and demonstrates the feasibility of multi-flux tube formula-
tion of dual QCD in the study of phase structure of QCD.
Further, the distribution of color electric field at or few sepa-
ration below the critical radius still indicates the survival of
color flux tubes which points out the stability of QCD vac-
uum as well as the strongly interacting [30, 31] behavior of
such intermediary phase in QCD.

Furthermore, since the thermal effects are extremely
important and play a dominant role in phase transition as
well as QGP formation process, the thermal evolution of
color electric field has also been investigated for different
hadronic scales which leads to the weakening of confining
force with temperature and is expected to trigger the flux tube
melting before transiting to pure asymptotically free phase of

hadronic matter. Further, the thermal response of dual QCD
analysed using the mean field approach shows that the
abovementioned confinement mechanism remains intact in
the low temperature regime which is true for all gauge groups
including SU(3). However, with the increase in temperature,
there is a reduction in the monopole condensate along with
the restoration of magnetic symmetry and the QCD system
passes through a weakly bound phase of QGP before transit-
ing to a completely deconfined phase. The reduction in mag-
netic condensate for the case of SU(3) is larger due to the
increase in the number of degrees of freedom in comparison
to the SU(2) case. It is then imperative that the critical tem-
peratures for the case of the SU(3) group must be consider-
ably smaller than those obtained using SU(2) for all QCD
phase transitions. Preliminary analysis for the SU(3) case
suggests a reduction in critical temperatures by a factor of
about 28 percent and is thus expected to be around
158MeV for the intermediate range of strong coupling
(αs = 0:48) which is very near to that suggested by lattice
QCD. Hence, the results with the present dual QCD analysis
appear to be quite realistic when extended to the full SU(3)
QCD case. The detailed analysis in this direction is in prog-
ress. In the thermal environment, as the temperature is
increased and approached to its critical value, the amplitude
of the field in the interior of flux tube gets supressed but still
supports the survival of flux tubes upto some extent beyond
the critical temperature in QCD vacuum which characterizes
the intermediatory and weakly interacting clusters of colored
particles. On relatively higher temperature scales, it resem-
bles with the evaporation of flux tubes and subsequently the
transition of system into completely deconfined state. Such
thermalization process with quarks and gluons and possibil-
ity of QGP formation then becomes quite similar to that of
the heavy-ion collisions where several interacting flux tubes
are expected to overlap in the central region and lead to the
similar kind of changes in the shape of the flux tube as a result
of their annihilation or unification and pushes the system
into either the QGP phase or passes through the crossover.
In addition, it is also important to extend the present thermal
dynamics of QCD to the case of finite baryon density also for
a detailed analysis of phase structure of QCD. This is, in fact,
the part of a separate study and will be undertaken in our
forthcoming communication. However, it is worth mention-
ing that such analysis may be performed using the tools of the
relativistic statistical field theory where various thermody-
namical quantities may be derived using the partitian func-
tion approach. In this connection, various models play an
important role to discuss the QCD phase transition in view
of the fact that the non-perturbative confinement is basically
accounted by the bag constant. The bag constant when com-
puted for the case of non-vanishing baryon chemical poten-
tials shows an overall increase in its value and has important
implications on QCD phase transition [45, 46]. The tempera-
ture and chemical potential dependence of the bag constant, in
fact, show the thermal and baryon density influences of non-
perturbative effects in QCD. Such increase in bag constant
then necessarily leads to the increase in the flux tube density
in the magnetically condensed QCD vacuum. For the case of
small chemical potentials (low baryon densities), the low
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density profiles of flux tube is expected to push the QCD vac-
uum in type-II superconductor phase. On the other hand, for
the case of the large chemical potentials, it may lead to the
fusion of the multi-flux tube structure leading to an intermedi-
ate QGP phase transition before transiting to the completely
deconfined phase. A complementary behaviour of QCD sys-
tem at high temperature or high baryon chemical potential is
therefore expected in a natural way.
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