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In this paper, we solve a generalized Klein-Gordon oscillator in the cosmic string space-time with a scalar potential of Cornell-type
within the Kaluza-Klein theory and obtain the relativistic energy eigenvalues and eigenfunctions. We extend this analysis by
replacing the Cornell-type with Coulomb-type potential in the magnetic cosmic string space-time and analyze a relativistic

analogue of the Aharonov-Bohm effect for bound states.

1. Introduction

A unified formulation of Einstein’s theory of gravitation and
theory of electromagnetism in four-dimensional space-time
was first proposed by Kaluza [1] by assuming a pure gravita-
tional theory in five-dimensional space-time. The so-called
cylinder condition was later explained by Klein when the
extra dimension was compactified on a circle S' with a
microscopic radius [2], where the spatial dimension becomes
five-dimensional. The idea behind introducing additional
space-time dimensions has found application in quantum
field theory, for instance, in string theory [3]. There are
studies on Kaluza-Klein theory with torsion [4, 5], in the
Grassmannian context [6-8], in Kahler fields [9], in the pres-
ence of fermions [10-12], and in the Lorentz-symmetry
violation (LSV) [13-15]. Also, there are investigations in
space-times with a topological defect in the context of
Kaluza-Klein theory, for example, the magnetic cosmic string
[16] (see also [17]), and magnetic chiral cosmic string [18] in
five-dimensions.

Aharonov-Bohm effect [19-21] is a quantum mechanical
phenomena that has been investigated in several branches of
physics, such as in, graphene [22], Newtonian theory [23],
bound states of massive fermions [24], scattering of dislo-
cated wave-fronts [25], torsion effect on a relativistic
position-dependent mass system [26, 27], and nonminimal
Lorentz-violating coupling [28]. In addition, Aharonov-

Bohm effect has been investigated in the context of Kaluza-
Klein theory by several authors [18, 29-34], and the geomet-
ric quantum phase in graphene [35]. It is well-known in con-
densed matter [36-40] and in the relativistic quantum
systems [41, 42] that when there exists dependence of the
energy eigenvalues on geometric quantum phase [21], then,
persistent current arises in the systems. The studies of persis-
tent currents have explored systems that deal with the Berry
phase [43, 44], the Aharonov-Anandan quantum phase [45,
46], and the Aharonov-Casher geometric quantum phase
[47-50]. Investigation of magnetization and persistent cur-
rents of mass-less Dirac Fermions confined in a quantum
dot in a graphene layer with topological defects was studied
in [51].

Klein-Gordon oscillator theory [52, 53] was inspired by
the Dirac oscillator [54]. This oscillator field is used to study
the spectral distribution of energy eigenvalues and eigenfunc-
tions in 1 — d version of Minkowski space-times [55]. Klein-
Gordon oscillator was studied by several authors, such as in
the cosmic string space-time with external fields [56], with
Coulomb-type potential by two ways: (i) modifying the mass
term m — m + S(r) [57], and (ii) via the minimal coupling
[58] in addition to a linear scalar potential, in the back-
ground space-time generated by a cosmic string [59], in
the Godel-type space-times under the influence of gravita-
tional fields produced by topological defects [60], in the
Som-Raychaudhuri space-time with a disclination parameter
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[61], in noncommutative (NC) phase space [62], in (1 +2)
-dimensional Glirses space-time background [63], and in
(1 +2)-dimensional Giirses space-time background subject
to a Coulomb-type potential [64]. The relativistic quantum
effects on oscillator field with a linear confining potential
were investigated in [65].

We consider a generalization of the oscillator as
described in Refs. [34, 64] for the Klein-Gordon. This gener-
alization is introduced through a generalized momentum
operator where the radial coordinate r is replaced by a gen-
eral function f(r). To author’s best knowledge, such a new
coupling was first introduced by Bakke et al. in Ref. [41]
and led to a generalization of the Tan-Inkson model of a
two-dimensional quantum ring for systems whose energy
levels depend on the coupling’s control parameters. Based
on this, a generalized Dirac oscillator in the cosmic string
space-time was studied by Deng et al. in Ref. [66] where the
four-momentum p, is replaced with its alternative p, + mw
Bf .(x,)- In theliterature, f,(x,,) has chosen similar to poten-
tials encountered in quantum mechanics (Cornell-type,
exponential-type, singular, Morse-type, Yukawa-like etc.). A
generalized Dirac oscillator in (2 + 1)-dimensional world
was studied in [67]. Very recently, the generalized K-G oscil-
lator in the cosmic string space-time in [68] and noninertial
effects on a generalized DKP oscillator in the cosmic string
space-time in [69] were studied.

The relativistic quantum dynamics of a scalar particle of
mass m with a scalar potential S(r) [70, 71] is described by
the following Klein-Gordon equation:

1 v
5 V982 ~ (e 92 ¥ =0 (1)
with g is the determinant of metric tensor with g its
inverse. To couple Klein-Gordon field with oscillator [52,

53], following change in the momentum operator is consid-
ered as in [56, 72]:

p—p +imor, (2)

where w is the oscillatory frequency of the particle and 7 = r 7
where r being distance from the particle to the string. To
generalized the Klein-Gordon oscillator, we adopted the
idea considered in Refs. [34, 64, 66, 68, 69] by replacing
r— f(r) as

X, = (0,£(r),0,0,0). 3)

So we can write p — p +imwf(r)7 and we have
PP — (p+imwf(r)7)(p—imwf(r) 7). Therefore, the
generalized Klein-Gordon oscillator equation:

1

N (9, + mwX,){y/=g 9" (3, - mwX,)} - (m+9)*|¥ =0,

(4)

where X, is given by Eq. (3).
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Various potentials have been used to investigate the
bound state solutions to the relativistic wave-equations.
Among them, much attention has given on Coulomb-type
potential. This kind of potential has widely used to study var-
ious physical phenomena, such as in, the propagation of
gravitational waves [73], the confinement of quark models
[74], molecular models [75], position-dependent mass sys-
tems [76-78], and relativistic quantum mechanics [57-59].
The Coulomb-type potential is given by

S(ry="Te. (5)

r

where 7, is the Coulombic confining parameter.

Another potential that we are interested here is the
Cornell-type potential. The Cornell potential, which consists
of a linear potential plus a Coulomb potential, is a particular
case of the quark-antiquark interaction, one more harmonic
type term [79]. The Coulomb potential is responsible by the
interaction at small distances, and the linear potential leads
to the confinement. Recently, the Cornell potential has been
studied in the ground state of three quarks [80]. However,
this type of potential is worked on spherical symmetry; in
cylindrical symmetry, which is our case, this type of potential
is known as Cornell-type potential [60]. This type of interac-
tion has been studied in [60, 65, 70, 81]. Given this, let us
consider this type of potential

S(ry=n 7+, (6)

where 7, 7, are the confining potential parameters.

The aim of the present work is to analyze a relativistic
analogue of the Aharonov-Bohm effect for bound states
[19-21] for a relativistic scalar particle with potential in the
context of Kaluza-Klein theory. First, we study a relativistic
scalar particle by solving the generalized Klein-Gordon oscil-
lator with a Cornell-type potential in the five-dimensional
cosmic string space-time. Secondly, by using the Kaluza-
Klein theory [1-3], a magnetic flux through the line-
element of the cosmic string space-time is introduced and
thus wrote the generalized Klein-Gordon oscillator in the
five-dimensional space-time. In the later case, a Coulomb-
type potential by modifying the mass term m — m + S(r)
is introduced which was not studied earlier. Then, we show
that the relativistic bound states solutions can be achieved,
where the relativistic energy eigenvalues depend on the geo-
metric quantum phase [21]. Due to this dependence of the
relativistic energy eigenvalue on the geometric quantum
phase, we calculate the persistent currents [36, 37] that arise
in the relativistic system.

This paper comprises as follows: In section 2, we study a
generalized Klein-Gordon oscillator in the cosmic string
background within the Kaluza-Klein theory with a Cornell-
type scalar potential; in section 3, a generalized Klein-
Gordon oscillator in the magnetic cosmic string in the
Kaluza-Klein theory subject to a Coulomb-type scalar poten-
tial and obtain the energy eigenvalues and eigenfunctions,
and the conclusion one in section 4.



Advances in High Energy Physics

2. Generalized Klein-Gordon Oscillator in
Cosmic String Space-Time with a Cornell-
Type Potential in Kaluza-Klein Theory

The purpose of this section is to study the Klein-Gordon
equation in cosmic string space-time with the use of
Kaluza-Klein theory with interactions. The first study of the
topological defects within the Kaluza-Klein theory was car-
ried out in [16]. The metric corresponding to this geometry
can be written as,

ds® = —dt* + dr* + o r* d¢?* + dZ* + dx?, (7)

where t is the time coordinate, x is the coordinate associated
with the fifth additional dimension, and (r, ¢, z) are cylindri-
cal coordinates. These coordinates assume the ranges —co <
(t,z) <00, 0<r<o00, 0<p<2m, 0<x<2ma, where a is
the radius of the compact dimension x. The a parameter
characterizing the cosmic string, and in terms of mass density
u given by a=1-4p [82]. The cosmology and gravitation
impose limits to the range of the a parameter which is
restricted to o < 1 [82].

By considering the line element (7) into the Eq. (4), we
obtain the following differential equation:

5t (qomer0) (r 5 -morso)

1 o 0? 2
a2r2W+ﬁ+w—(M+S(f)) W(t,r,¢,2,x)=0
?? ? 10 ) f() 2 2

{_a—tﬁ—arﬁ?a"”“’(f WT)_’” eI

1 ¥

_ 2
Py a—¢2+a—22+W (m+S(r))

¥(t,r, ¢, z,x)=0.

(8)

Since the metric is independent of f, ¢, z,x. One can
choose the following ansatz for the function ¥

lP(t, r, ¢) 2z x) — ei(—Et+lq§+kz+qx) w(,,)’ (9)

where E is the total energy, [=0,+1,+2.., and k,q are
constants.

Substituting the above ansatz into the Eq. (8), we get the
following equation for y(r):

% +% % N Y # -mw (f'(r)+f(7r)>
()~ (m+ sm)z] y(r)=0.
(10)

We choose the function f(r) a Cornell-type given by [34,
64, 66, 69]

a,b>0. (11)

f(ry=ar+ l;,

Substituting the function (11) and Cornell potential (6)
into the Eq. (9), we obtain the following equation:

& 1d P 2my,
lﬁ+;a+/\—92r2—r—2——r -2mn, r|y(r)=0,

(12)
where

A=E -k - -m*-2mwa-2m*w*ab-2n,1,

Q=\/m2w?a?+n?,

ZZ
j=\/¥ +m? @’ b+l

(13)

Transforming p = v/Qr into the Eq. (12), we get

& 1d F oo
7+77+C— 2———7—6 :0> 14
ldpz Sap TP T, O ) (14)
where
A
(=2,
2m
7= \/5’76, (15)
2mny
0= 93/2L'

Let us impose that y(p) — 0 when p— 0 and p —
00. Suppose the possible solution to the Eq. (14) is

y(p)=p e VIEOP H(p). (16)

Substituting the solution Eq. (16) into the Eq. (14), we
obtain

H" (p) + E —0—2p] H'(p) + [-g +@} H(p)=0, (17)
where
p=1+2j,
®=C+9£—2(1+J'), (18)

B=n+ 3 (1+2))
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FIGURE l: n=l=k=M=gq=a=b=n5,=1,a=0.5, 0=0.5.

Eq. (17) is the biconfluent Heun’s differential equation
[26, 27, 29-34, 58-61, 64, 65, 70, 83-87], and H(p) is the
Heun polynomials.

The above Eq. (17) can be solved by the Frobenius
method. We consider the power series solution around the
origin [88]

Hp)=Yap (19)

Substituting the above power series solution into the
Eq. (17), we obtain the following recurrence relation for
the coefficients:

1
%”:(n+ZXn+2+2ﬁ[{

B+O0(n+1)}c,, —(@-2n)c,].
(20)

And the various coefficients are

C1=<g_g) 50»52=4(171+j)[(ﬁ+9)‘:1_®co]~ (21)

The quantum theory requires that the wave function ¥
must be normalized. The bound state solutions y/(p) can
be obtained because there is no divergence of the wave
function at p— 0 and p — 0o. Since we have written
the function H(p) as a power series expansion around
the origin in Eq. (19). Thereby, bound state solutions
can be achieved by imposing that the power series expan-
sion (19) becomes a polynomial of degree n. Through the
recurrence relation (20), we can see that the power series
expansion (19) becomes a polynomial of degree n by
imposing two conditions [26, 27, 29-34, 58-61, 64, 65,
70, 83-85]:

(n=1,2,), 6,y =0 (22)
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By analyzing the condition ® =2n, we get the expres-
sion of the energy eigenvalues E, ;:

/\+92 2(1+j)= 2 =P+ g +m?
— + — - j)=2n=E =k +q +m +20Q

Q 4
P 2., .2
2,2
. n+1+\/2+mwb+nc>

+2mrotab+2mowa+2n - —=

(23)

We plot graphs of the above energy eigenvalues w. r. t. dif-
ferent parameters. In Figure 1, the energy eigenvalues E,
against the parameter #,. In Figure 2, the energy eigenvalues
E| , against the parameter #;. In Figure 3, the energy eigen-
values E| , against the parameter M. In Figure 4, the energy
eigenvalues E,, against the parameter w. In Figure 5, the
energy eigenvalues E, ; against the parameter Q.

Now, we impose an additional condition ¢,,; =0 to find
the individual energy levels and corresponding wave functions
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one by one as done in [89, 90]. As an example, for n=1, we
have ® =2 and ¢, = 0 which implies

n 9) 2 93 ’72 2

2
- 7= - o
a ﬁ+0c0:<1+zj 2) TB+0 M 2142y M

1+j 6? N
—119<1+2j> Q1,l_§(3+21)—0

(24)

a constraint on the parameter Q, ;. The relation given in
Eq. (24) gives the possible values of the parameter O, ; that
permit us to construct first degree polynomial to H(x) for
n = 1. Note that its values changes for each quantum number
n and I, so we have labeled Q — Q) Besides, since this
parameter is determined by the frequency; hence, the fre-
quency w, ; is so adjusted that the Eq. (24) can be satisfied,
where we have simplified our notation by labeling:

1
oV F -nt. (25)

W=

It is noteworthy that a third-degree algebraic Eq. (24)
has at least one real solution, and it is exactly this solution
that gives us the allowed values of the frequency for the low-
est state of the system, which we do not write because its
expression is very long. We can note, from Eq. (24), that
the possible values of the frequency depend on the quantum
numbers and the potential parameter. In addition, for each
relativistic energy level, we have a different relation of the
magnetic field associated to the Cornell-type potential and
quantum numbers of the system {J, n}. For this reason, we
have labeled the parameters 2 and w in Egs. (24) and (25).

Therefore, the ground state energy level and correspond-
ing wave-function for n =1 are given by

lZ
E} =K +q+m*+20, <2+\/¥ +m2w2b2+;13>

m
+2m’wiab+2mw a+2n 1, - #,
Q5
Y =p Flaten o, B e—(l/z)(z ml’],//Qi/Iz-*-p) p (CO +e P)>
(26)
where
¢ = 2mn, _mn c
17 A2 0
Q) (1 +2 \/(lzlcxz) +m?wl b+ 11%) Qy
(27)

Then, by substituting the real solution of Eq. (25) into
the Egs. (26)-(27), it is possible to obtain the allowed values
of the relativistic energy for the radial mode n =1 of a posi-
tion dependent mass system. We can see that the lowest
energy state defined by the real solution of the algebraic
equation given in Eq. (25) plus the expression given in Eq.
(26) is defined by the radial mode # = 1, instead of n = 0. This
effect arises due to the presence of the Cornell-type potential
in the system.

For o« —1, the relativistic energy eigenvalue (24)
becomes

Eﬁ)l=k2+q2+m2+29(n+1+\/12+m2w2b2+71§)

+2m*wtab+2mwa+ 2y - —t

(28)

Eq. (28) is the relativistic energy eigenvalue of scalar par-
ticles via the generalized Klein-Gordon oscillator subject to a
Cornell-type potential in the Minkowski space-time in the
Kaluza-Klein theory.

We discuss bellow a very special case of the above relativ-
istic system.



Case A. Considering #, =0, that is, only Coulomb-type
potential S(r) =#_/r.

We want to investigate the effect of Coulomb-type poten-
tial on a scalar particle in the background of cosmic string
space-time in the Kaluza-Klein theory. In that case, the radial
wave-equation Eq. (12) becomes

& 1d 2 2 2, o 2my
W+;5+/\O—m war -G —— £l y(r)=0,
(29)
where
A=E -k -g*-m*-2mwa-2m*w*ab (30)

Transforming p = \/mw ar into the Eq. (29), we get

& 1d A , 7
dp* pdp mwa p

Suppose the possible solution to Eq. (31) is

y(p)=p E ) H(p). (32)

Substituting the solution Eq. (32) into the Eq. (31), we
obtain

1+2j
P

H'(p)+ |
(33)

where 17=2m#n_/\/mwa. Eq. (33) is the Heun’s differential
equation [26, 27, 29-34, 58-61, 64, 65, 70, 83-87] with
H(p) is the Heun polynomial.

Substituting the power series solution Eq. (19) into the
Eq. (33), we obtain the following recurrence relation for coef-
ficients

= Gy a2y |1 s ~20+ 0216
(34)

The power series solution becomes a polynomial of
degree n provided [26, 27, 29-34, 58-61, 64, 65, 70, 83-85]

A
O —2(1+j)=2n (n=1,2,-)c,y; =0.

mawa (35)

Using the first condition, one will get the following
energy eigenvalues of the relativistic system:
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ZZ
En,lzi{k2+q2+m2+2mwa<n+2+\/m)
12
+2m2w2ab} .

(36)

The ground state energy levels and corresponding wave-
function for n =1 are given by

l2
El)lzi{k2+q2+m2+2mwl)la (3+\/$ +m2w2b2+;1§>

1/2
v2m? wzab} (p)

= pVIEEETE ¢ (F2) (¢ ¢, ),

(37)
where
¢ = 2mmn,
/M@ a (1 +2 \/(lz/ocz) +m?wl b’ + rﬁ)
12
- - ()
1+2 \/(lzlaz) +m?w} b+
2mun;
Cor Wy =

a (1 +2 \/(lz/(xz) +m?w} b+ 113)
a constraint on the frequency parameter wy .

Case B. We consider another case corresponds to a — 0,
b—0 and 7, =0, that is, a scalar quantum particle in
the cosmic string background subject to a Coulomb-type
scalar potential within the Kaluza-Klein theory. In that
case, from Eq. (12) we obtain the following equation:

2mu,

w”(r)+%w’(r)+li—f—z— ; ]w(r>=0- (39)

Eq. (39) can be written as

Y'Y () (6P Er-8)y() =0, (10)

where

'El =—i=—(E2—k2—q2—m2),
52:_2m}/’c’
2 I

_ 2
E3_.] g—'—rlc'

(41)
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Comparing the Eq (40) with Eq. (1) in the Appendix,
we get

a; =1,
a, =0,
a; =0,
a, =0,
a; =0,
as =&,
a; =&, (42)
ag =&,
ag =8,

oy =2 \/?>
QApp = \/g>
“13:_\/a~

The energy eigenvalues using Eqs. (41)-(42) into the
Eq. (8) in the Appendix is given by

B L
E,=+m |1- c e L
(n +1/(Pla2) +12 + 1/2) meem
(43)

where n=0,1,2,.. is the quantum number associated with
the radial modes, I=0,+1,£2,. are the quantum number
associated with the angular momentum operator, k and g
are arbitrary constants. Eq. (43) corresponds to the relativ-
istic energy eigenvalues of a free-scalar particle subject to a
Coulomb-type scalar potential in the background of cos-
mic string within the Kaluza-Klein theory.
The corresponding radial wave-function is given by

Yu(r) =N e 1)) () (a4)

’ 44
2 /2 — Pla ?

— |N| rl/Z\/l lec it (r/2) LS v Elatn ) (T)

Here, |N| is the normalization constant and

(V (Bro2)em) . .
L, (r) is the generalized Laguerre polynomial.
For @ — 1, the relativistic energy eigenvalues Eq. (43)

becomes

2 k2 2
1- e +— + 2 (g5

n+ /P +n Tomom
n:+1/2

Eq. (45) corresponds to the relativistic energy eigen-
value of a scalar particle subject to a Coulomb-type scalar
potential in the Minkowski space-time within the Kaluza-
Klein theory.

3. Generalized Klein-Gordon Oscillator in the
Magnetic Cosmic String with a Coulomb-
Type Potential in Kaluza-Klein Theory

Let us consider the quantum dynamics of a particle moving
in the magnetic cosmic string background. In the Kaluza-
Klein theory [1, 2, 18], the corresponding metrics with
Aharonov-Bohm magnetic flux @ passing along the symme-
try axis of the string assumes the following form

1) 2
ds* = —di® + dr* + o® r* d¢? + d2* + <dx t o d¢>> (46)

with cylindrical coordinates are used. The quantum dynam-
ics is described by the Eq. (4) with the following change in
the inverse matrix tensor g,

-1 0 0 0 0
0 1 0 0 0
1 D
g = 00 o2 12 oneer |- (47)
0 0 0 1 0
0 o . @
2mo?r? 47m% a2 r?

By considering the line element (46) into the Eq. (4), we
obtain the following differential equation:

2
l—a3+a§+%a,+L <a¢-%ax) F P+

a?r?
-mw (f'(r) + f(rr)) —-m? @ f*(r) - (m +S(r))2} ¥ =0.
(48)
Since the space-time is independent of ¢, ¢,z x,

substituting the ansatz (9) into the Eq. (48), we get the fol-
lowing equation:

v+ Ly o)+ [EZ—kZ—qZ— o

- m’ @ f2(r) = (m+ S(f))zl y(r)=0,
(49)

where the effective angular quantum number

1 qD
-1 (1-29). 0
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Substituting the function (11) into the Eq. (49) and

using Coulomb-type potential (5), the radial wave-equation
becomes

5 +——+/\0—m2w2a2r2——2
dr r dr r r

y(r)=0,
(51)

ld_z 1d X 2my,

A =E -k -q-m*-2mwa-2m*w’ab,

- \/(l—q(D/Z ) (52)

2 202 4 2
p +m°w’ b+

Transforming p = \/mw ar into the Eq. (51), we get

& 1d ) , X
— - — - -2 =0, (53
[dp2+pdp+mwa P v(p) (53)

where #=2mn //mwa.
Suppose the possible solution to Eq. (53) is

y(p)=p e (") H(p) (54)

Substituting the solution Eq. (54) into the Eq. (53), we
obtain

H'(p)+ [F2X —2p) 1)+ |1

Eq. (55) is the second-order Heun’s differential equation
(26, 27, 29-34, 58-61, 64, 65, 70, 83-87] with H(p) is the
Heun polynomial.
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Substituting the power series solution Eq. (19) into the
Eq. (55), we obtain the following recurrence relation for the
coefficients:

1 ) Ao
2T 2y (n+2+2y) [”C"+1_{W _Z_ZX_Z"}C”]’
(56)

The power series becomes a polynomial of degree n by
imposing the following conditions [26, 27, 29-34, 58-61,
64, 65, 70, 83-85]

=0 Ao

-2-2x=2n
mwa X

(n=1,2,)  (57)

n+l

By analyzing the second condition, we get the following
energy eigenvalues E,, :

E =+ +m’+2mwa

nl —
_ 2
: <n+2+\/(lq®2/2ﬂ) +m2w2b2+115> (58)

[0

+2m*w?ab.

Eq. (58) is the energy eigenvalues of a generalized Klein-
Gordon oscillator in the magnetic cosmic string with a
Coulomb-type scalar potential in the Kaluza-Klein theory.
Observed that the relativistic energy eigenvalues Eq. (58)
depend on the Aharonov-Bohm geometric quantum phase
[21]. Thus, we have that E, (@ + @) = E, )z, (D) where @,
=+(27/q) T with T =0, 1, 2... This dependence of the relativ-
istic energy eigenvalue on the geometric quantum phase @
gives rise to a relativistic analogue of the Aharonov-Bohm
effect for bound states [18-21, 26, 29].

We plot graphs of the above energy eigenvalues w. r. t.
different parameters. In Figure 6, the energy eigenvalues
E|, against the parameter #,. In Figure 7, the energy eigen-
values E| | against the parameter M. In Figure 8, the energy
eigenvalues E,; against the parameter w. In Figure 9, the
energy eigenvalues E| | against the parameter ®.

The ground state energy levels and corresponding wave-
function for n =1 are given by

Eil:k2+q2+m2+2mw1)la

-q®27)?
: 3+\/w +m? W b+’
* (59)

+2m2w§lab,

(I-q@/27)* /a2 +m? W} | b+

vu(p)=p e "2) (¢ + ¢, p),
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where

2mmn,

Jmwa(l1+2.,/((1-q@2nr)*e?) + m*w? b* + 12
s ( ) 1, c
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€=

= 2 Co-
1+2 \/((l— qO27)1a2) + m2 wl b + i
Wy = 2m e
" a (1 +2 \/((l - q@27)*la2) + m? W} b + 113)
(60)

a constraint on the physical parameter w, .

Eq. (59) is the ground states energy eigenvalues and corre-
sponding eigenfunctions of a generalized Klein-Gordon oscil-
lator in the presence of Coulomb-type scalar potential in a
magnetic cosmic string space-time in the Kaluza-Klein theory.

I e e L e e e e e LN o e o e s s s
0 5 10 15 20 25 30

o]

FiGure 9:n=l=k=gq=a=b=y,=M=1,a=0.50=0.5
For @« — 1, the energy eigenvalues (58) becomes

E =P +m+ @ +2mwa

10)) 2
n+2+\/<l—3—ﬂ> +m? w? b* + (61)

+2m*w?ab.

Eq. (61) is the relativistic energy eigenvalue of the gener-
alized Klein-Gordon oscillator field with a Coulomb-type
scalar potential with a magnetic flux in the Kaluza-Klein the-
ory. Observed that the relativistic energy eigenvalue Eq. (61)
depend on the geometric quantum phase [21]. Thus, we have
that E, (@ + @) =E, ;. (P) where ®,==+(2m/q)T with
7=0,1,2... This dependence of the relativistic energy eigen-
value on the geometric quantum phase gives rise to an
analogous effect to the Aharonov-Bohm effect for bound
states [18-21, 26, 29].

Case A. We discuss below a special case corresponds to b
— 0, a — 0, that is, a scalar quantum particle in a mag-
netic cosmic string background subject to a Coulomb-type
scalar potential in the Kaluza-Klein theory. In that case, from
Eq. (51), we obtain the following equation:

~2

Lyl + [X-X— -

r r2 r

V() + ] vin=0, (62)

where

. -q®2m)?
A:Ez—kz—qz—mz,)?o:\/i(l q‘xz/ al +1;. (63)

The above Eq. (62) can be written as

V)W) (BB -8 V() =0, (64
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where
51 = _l
Ez = —2m;76) (65)
53 = 5(3

Following the similar technique as done earlier, we get
the following energy eigenvalues E, ;:

2 2 2
E, =tm |1- e 2+k—2+q—2,
? m m
(n + \/(1/a2) (I-q@r2m)?*+n?+ 1/2)
(66)

where n=0,1,2,.. is the quantum number associated with
radial modes, [=0,+1,+2,.--- are the quantum number
associated with the angular momentum, k and g are con-
stants. Eq. (66) corresponds to the relativistic energy levels
for a free-scalar particle subject to Coulomb-type scalar
potential in the background of magnetic cosmic string in a
Kaluza-Klein theory.
The radial wave-function is given by

Yr) = N2 02 1) )
a2 - )2 /a2 )+ %
— |N| rl/Z,«/((l—q@/Zn) Jof )+r]{ e (r/2)LS ((=q@r2m)2/a2 )1 ) (r)

(67)
Here, |N| is the normalization constant, and
— 2 2
Li, (Farm M)H]f)(r) is the generalized Laguerre
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For @ — 1, the energy eigenvalues (66) becomes

2 2 2

Enl=im 1- il 2+k_+q_’

’ m?2  m?
(n+ (1-q@i2m)* + Kk + 1/2)

(68)

which is similar to the energy eigenvalue obtained in [30] (see
Eq. (12) in [30]). Thus, we can see that the cosmic string «
modify the relativistic energy eigenvalue (66) in comparison
to those results obtained in [30].

Observe that the relativistic energy eigenvalues Eq. (66)
depend on the cosmic string parameter «, the magnetic
quantum flux @, and potential parameter 7. We can see that
E,(®+D) =E, ;. (P) where ®y=+(2m/g) T with 7=0,
1, ... This dependence of the relativistic energy eigenvalues
on the geometric quantum phase gives rise to a relativistic
analogue of the Aharonov-Bohm effect for bound states
[18-21, 26, 29].

3.1. Persistent Currents of the Relativistic System. By follow-
ing [36-38], the expression for the total persistent currents
is given by
I= ZIn,l’ (69)
n,l

where

oE,,
[,=——"

70
n,l oD ( )

is called the Byers-Yang relation (36).
Therefore, the persistent current that arises in this relativ-

, (71)

polynomial. istic system using Eq. (58) is given by
OE,, _ mwa (0 x/0D)
Inl == - =+
’ 0P
\/k2 +q* + m? + 2m2w?ab + 2mwa (n +2+ \/((l - q@27)’(a?) + mw2b® + 17?)
where Similarly, for the relativistic system discussed in Case A
in this section, this current using Eq. (66) is given by

ox q(l-q®/2m)

L= . (72

50 (72)

202 \/((l —q 2 7)[a2) + m? w2 b + 1

I,=%

mqn? (1-q®/2m)

n,l

X

27 a2 (n +1/2+ \/((l —q@27)*/0?) + 113)3 \/((l— q@R2m)*/02) +1?

1 (73)

\/1 - (:73/ (n + \/(1/a2) (I-q@2m) +1? + 1/2) 2) + (K /m2) + (q*/m?)
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For o« — 1, the persistent currents expression given by
Eq. (73) reduces to the result obtained in Ref. [30]. Thus,
we can see that the presence of the cosmic string parameter
modifies the persistent currents Eq. (73) in comparison to
those results in Ref. [30].

By introducing a magnetic flux through the line element
of the cosmic string space-time in five dimensions, we see
that the relativistic energy eigenvalue Eq. (58) depend on
the geometric quantum phase [21] which gives rise to a rel-
ativistic analogue of the Aharonov-Bohm effect for bound
states [18-21, 26, 29]. Moreover, this dependence of the rel-
ativistic energy eigenvalues on the geometric quantum
phase has yielded persistent currents in this relativistic
quantum system.

4. Conclusions

In Ref. [30], the Aharonov-Bohm effects for bound states of a
relativistic scalar particle by solving the Klein-Gordon equa-
tion subject to a Coulomb-type potential in the Minkowski
space-time within the Kaluza-Klein theory were studied.
They obtained the relativistic bound states solutions and cal-
culated the persistent currents. In Ref. [16], it is shown that
the cosmic string space-time and the magnetic cosmic string
space-time can have analogue in five dimensions. In Ref.
[18], quantum mechanics of a scalar particle in the back-
ground of a chiral cosmic string using the Kaluza-Klein the-
ory was studied. They have shown that the wave functions,
the phase shifts, and scattering amplitudes associated with
the particle depend on the global features of those space-
times. This dependence represents the gravitational ana-
logues of the well-known Aharonov-Bohm effect. In addi-
tion, they discussed the Landau levels in the presence of a
cosmic string within the framework of Kaluza-Klein theory.
In Ref. [31], the Klein-Gordon oscillator on the curved back-
ground within the Kaluza-Klein theory was studied. The
problem of the interaction between particles coupled har-
monically with topological defects in the Kaluza-Klein theory
was studied. They considered a series of topological defects
and then treated the Klein-Gordon oscillator coupled to this
background, and obtained the energy eigenvalue and corre-
sponding eigenfunctions in these cases. They have shown
that the energy eigenvalue depends on the global parameters
characterizing these space-times. In Ref. [32], a scalar particle
with position-dependent mass subject to a uniform magnetic
field and a quantum magnetic flux, both coming from the
background which is governed by the Kaluza-Klein theory,
were investigated. They inserted a Cornell-type scalar poten-
tial into this relativistic systems and determined the relativis-
tic energy eigenvalue of the system in this background of
extra dimension. They analyzed particular cases of this sys-
tem, and a quantum effect was observed: the dependence of
the magnetic field on the quantum numbers of the solutions.
In Ref. [34], the relativistic quantum dynamics of a scalar
particle subject to linear potential on the curved background
within the Kaluza-Klein theory was studied. We have solved
the generalized Klein-Gordon oscillator in the cosmic string
and magnetic cosmic string space-time with a linear potential
within the Kaluza-Klein theory. We have shown that the
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energy eigenvalues obtained there depend on the global
parameters characterizing these space-times and the gravita-
tional analogue to the Aharonov-Bohm effect for bound
states [18-21, 26, 29] of a scalar particle was analyzed.

In this work, we have investigated the relativistic quan-
tum dynamics of a scalar particle interacting with gravita-
tional fields produced by topological defects via the Klein-
Gordon oscillator of the Klein-Gordon equation in the pres-
ence of cosmic string and magnetic cosmic string within the
Kaluza-Klein theory with scalar potential. We have deter-
mined the manner in which the nontrivial topology due to
the topological defects and a quantum magnetic flux modifies
the energy spectrum and wave-functions of a scalar particle.
We then have studied the quantum dynamics of a scalar par-
ticle interacting with fields by introducing a magnetic flux
through the line element of a cosmic string space-time using
the five-dimensional version of the general relativity. The
quantum dynamics in the usual as well as magnetic cosmic
string cases allow us to obtain the energy eigenvalues and
corresponding wave-functions that depend on the external
parameters characterize the background space-time, a result
known by a gravitational analogue of the well studied
Aharonov-Bohm effect.

In section 2, we have chosen a Cornell-type function
f(r)=ar+(b/r) and Cornell-type potential S(r)=#, r+
(n./r) into the relativistic systems. We have solved the gen-
eralized Klein-Gordon oscillator in the cosmic string back-
ground within the Kaluza-Klein theory and obtained the
energy eigenvalues Eq. (23). We have plotted graphs of
the energy eigenvalues Eq. (23) w. r. t. different parameters
by Figures 1-5. By imposing the additional recurrence con-
dition ¢,,; =0 on the relativistic eigenvalue problem, for
example n =1, we have obtained the ground state energy
levels and wave-functions by Egs. (26)-(27). We have dis-
cussed a special case corresponds to 77, — 0 and obtained
the relativistic energy eigenvalues Eq. (36) of a generalized
Klein-Gordon oscillator in the cosmic string space-time
within the Kaluza-Klein theory. We have also obtained the
relativistic energy eigenvalues Eq. (43) of a free-scalar parti-
cle by solving the Klein-Gordon equation with a Coulomb-
type scalar potential in the background of cosmic string
space-time in the Kaluza-Klein theory.

In section 3, we have studied the relativistic quantum
dynamics of a scalar particle in the background of magnetic
cosmic string in the Kaluza-Klein theory with a scalar poten-
tial. By choosing the same function f(r)=ar+ (b/r) and a
Coulomb-type scalar potential S(r) =#_/r, we have solved
the radial wave-equation in the considered system and
obtained the bound states energy eigenvalues Eq. (58). We
have plotted graphs of the energy eigenvalues Eq. (58) w. r.
t. different parameters by Figures 6-9. Subsequently, the
ground state energy levels Eq. (59) and corresponding
wave-functions Eq. (60) for the radial mode n =1 by impos-
ing the additional condition c,,, = 0 on the eigenvalue prob-
lem is obtained. Furthermore, a special case corresponds to
a—0, b— 0 is discussed and obtained the relativistic
energy eigenvalues Eq. (66) of a scalar particle by solving
the Klein-Gordon equation with a Coulomb-type scalar
potential in the magnetic cosmic string space-time in the
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Kaluza-Klein theory. For « — 1, we have seen that the
energy eigenvalues Eq. (66) reduces to the result obtained
in Ref. [30]. As there is an effective angular momentum
quantum number, | — I = (1/a) (I- q®@/27); thus, the
relativistic energy eigenvalues Eqs. (58) and (66) depend on
the geometric quantum phase [21]. Hence, we have that E,
(®+ D)) =E, 11, (D) where Oy = +(27/q) T with 7=0, 1, 2, ..
This dependence of the relativistic energy eigenvalues on
the geometric quantum phase gives rise to a relativistic ana-
logue of the Aharonov-Bohm effect for bound states [19-
21, 29]. Finally, we have obtained the persistent currents by
Egs. (71)-(73) for this relativistic quantum system because
of the dependence of the relativistic energy eigenvalues on
the geometric quantum phase.

So in this paper, we have shown some results which are in
addition to those results obtained in Refs. [18, 29-34] pre-
sents many interesting effects.

Appendix

A. Brief Review of the Nikiforov-Uvarov
(NU) Method

The Nikiforov-Uvarov method is helpful in order to find
eigenvalues and eigenfunctions of the Schrodinger like equa-
tion, as well as other second-order differential equations of
physical interest. According to this method, the eigenfunc-
tions of a second-order differential equation [94]

(_51 s? "'525_53)

2 (1-ays)?

d*y(s) + (4, — &y 5) dy(s)
ds? s(l—ays) ds

are given by

W(S) =% (1 — oy S)’“lz*(”‘u/"‘s) Pﬁl‘"lo_ly(“n/“a)_“lo_l) (1 -2 oy 5).

(A.2)
And that the energy eigenvalues equation
an—2n+1)as+ (2n+1) (/o +a;\/ag) (A3)

+n(n—1)a;+a, +2a; a5 +2 /o5 0tg = 0.

The parameters o, ---, a;; are obtained from the six

parameters «;, -+, a3 and &, -+, &; as follows:

1

ay==(1-a;),

i= 5 (1-a)
(@, 2a)

as == (a, -2 a3),

575 (& 3

ag =0z +&,

o, =2a, 0, —&,,

g :(xi +&,,
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Ay = Qg + 03 0y + 05 O,
Hyp = &) + 2y +2\/ag,
ay =0 =205 + 2 (ag +ay /o),
0y =0y + /0,
a3 = o5 = (Vg + a3 \/ag).
(A4)
A special case where a; =0, as in our case, we find

lim P(am—l,((xul(x3)—(x10—1) (1 -2 o S) — LZm‘l (0611 S),

n
a;—0

(i) (A.5)
i _ —ap—(@3/as) — %38
}:Lno(l ) e
Therefore, the wave-function from (2) becomes
y(s) =s"z et LZ“”l (a18)s (A.6)

where L% (x) denotes the generalized Laguerre polynomial.
The energy eigenvalues equation reduces to

noy,—2n+1)as+(2n+1)/ag+a, +2/aga,=0.
(A7)

Noted that the simple Laguerre polynomial is the special
case a = 0 of the generalized Laguerre polynomial:

(A.8)
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