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Abstract

In this paper, we investigate the stability of the following general septic functional equation:

D sCi(-1)* (a4 (i 4)y) =0

=0

which is a generalization of many functional equations such as the additive functional equation, the quadratic
functional equation, the cubic functional equation, the quartic functional equation, the quintic functional
equation, and the sextic functional equation. The equation is analysed from the perspective of Hyers-Ulam-
Rassias stability.
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1 Introduction

It is well known that the study on the stability of functional equations began as an attempt to solve Ulam’s
question in [1] about the stability of the group homomorphisms. As a partial answer to this question, Hyers [2]
solved the stability of the Cauchy functional equation in the following year. Since then, many mathematicians
have generalized Hyers’ results by showing the stability of various kind of functional equations, see [3, 4, 5, 6, 7, 8].
Today the term "Hyers-Ulam-Rassias stability’ refers to the generalization introduced by Rassias [8].

Throughout this paper, V, X, and Y are a real vector space, a real normed space, and a real Banach space,
respectively. For a mapping f from V to Y. We consider the functional equation

> kCi(—=1)* " f(w +iy) =0, (1.1)
=0

where, Observe that a solution mapping f : V' — Y of (1.1) is a ”"generalized polynomial mapping of degree at
most k-1" in the sense of J. Baker in [9]. So the functional equation (1.1) is called a Jensen, a general quadratic,
a general cubic, a general quartic, a general quintic, a general sextic, and a general septic functional equation,
for k = 2,3,4,5,6,7,8, respectively. Also each solution mapping of (1.1), for k = 2,3,4,5,6,7,8, is called as a
Jensen, a general quadratic, a general cubic, a general quartic, a general quintic, a general sextic, and a general
septic mapping, respectively.

Recall, the stability problems for the functional equation (1.1) were studied in many ways. In the case of
a Jensen functional equation, K.-W. Jun et al. [10] showed the stability result. The stability of a general
quadratic function equation was obtained by Y. H. Lee [11], Y. H. Lee et al. [12], and S. S. Jin et al. [13]. On
the other hand, the stability of a general cubic function equation was studied by Y. H. Lee [14, 15], S. M. Jun
et al. [16], and Y. H. Lee et al. [17, 18], and the stability of the general quartic function equation are discussed
in Y. H. Lee [20] and Y. H. Lee et al. [?, 18, 21, 22, 23]. Moreover, the stability of a general quintic functional
equation has been studied by S. S. Jin et al. [24], and the stability of the general sextic function equation has
been obtained by Y. H. Lee [25], I. S, Chang et al. [26], and J. Roh et al. [27].

In this article, we investigate the stability of the following general septic functional equation

Df(x,y) = sCi(=1)""f(z+ (i —4)y) = 0 (1.2)

i=0
in the sense of Hyers-Ulam-Rassias. Prior to this paper, in [28], I. S, Chang et al. used the method of Gavruta to
prove the stability of a general septic functional equation, i.e., if the function f : V — Y satisfies the inequality

IDf(z,y)l < ¢(z,y)

where a function ¢ : V2 — [0, 00) satisfies the condition
 ogn s (T Y
128 (—, —) ,
; 10} on’ g0 < 00

for all x,y € V, then there exists a unique general septic mapping F' near the function f. On the other hand,
in this paper, we use Theorem 2.2 to improve the stability result of the general septic functional equation.
Precisely, for a real number § > 0 and a non-negative real number p # 1,2,3,4,5,6,7, let f: X — Y satisfy

IDf (@, < 0ll=l” + llyll”)

for all z,y € X, then it is proved that there exists a unique septic mapping F, i.e., DF(z,y) = 0 for all z,y € X,
such that F(0) = 0 and

1f(z) = £(0) = F(2)|| < epf]l||”

for all x € X, where the constant ¢, depends only on p, see (2.14).
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2 Stability of a General Septic Functional Equation

Definition 2.1. For a given mapping f : V — Y, we define the mappings Df : V2 — Y, f, fo, fo, T'f,
Af:V =Y as

8

Df(z,y) =Y sCi(=1)*"f(z + (i — 4)y),

i=0
f@) =1@) ~ 1), fola):= DI g gy o JOTED)
I'f(x) :=D fo(8z,2x) + 8D f,(6x, 2x) + 36D fo(4z, 2z) + 120D f, (2, 2x)
+ 160D fo(4x, ) + 1280D f,(3x, ) 4+ 4032D f, (2, z) + 5376 D fo(x, T),
Af(z) :=Dfe(4x,x) + 8D fe(3x,x) + 36D fe(2z,x) + 120D fe(z, z) + 123D fc(0, x)
forallz,y € V.
Theorem 2.2. For f:V — Y, let us define f1, f2, f3, fa, f5, fo, fr:V =Y as follows;

foly 1 1 1

fe(x) 1 1

@) ‘:ﬁ ;Eig 882 33222 1122882 > f(2) ::ﬁ fe(2x) 16 64 4,
fZ(Sx) 8% 32% 128° feldz) 16% 647

1 folz) 1 1 .

fe(z) 1

B =g | g FED 0 e | A@i=gp| 4 Ren e,
23 fZ(8x) 323 128° £ feldn) 647
1 1 fo(l') 1 1 1 f(l?)

N - R TRP N Ry ) |
2% 8 fZ(83:) 128° £ 16° fo(4w)

1 1 1 fo()

_ 112 8 32 fo(22)
=97l 22 8 322 Foan)
2% 8% 32%  f,(82)
for all x € V, where
1 1 1 1

1 1 1
M .= 222 52 ;222 1122882 and M’ := 42 162 642
2% 8% 323 1283 47167 64
Then
7
F(@) = folx) + felx) =D fi(x) (2.1)
i=1
forallz e V.

Proof. It can be noted that M # 0 and M’ # 0. The uniqueness of solution (stated in Cramer’s rule) implies
that the family {f1(z), fs(z), fs(z), f7(x)} is the only solution to the system of non-homogeneous linear equations

Ji(z) + f3(z) + fs(x) + fr(z) = fo(x)
2f1(x) + 8f3(x) + 32f5(x) + 128 f7(x) = fo(2x)
2% f1(x) + 8% fa(w) + 32° f5(z) + 128 fr(x) = fo(4w)
2% f1(x) 4 8 f3(x) + 32° fs (x) + 128° f7(z) = fo(81)
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for all z € V. Similarly, we have fe(z) = fo(x) + fa(z) + fo(z) for all z € V. O
By laborious computation we can get the following equalities;
Ff(w) = fo(16x) — 170f,(8x) 4+ 5712 f,(4x) — 43520 f,(2x) + 65536 fo (),
Af(z) = fo(8z) — 84f.(4z) + 1344f.(2z) — 4096 f. (),
and
f) = 32768 folz) — 5376 foéég;; 168f,(47) — fo(87) 22)
hie) = 1024f.(z) — 8;)2]”5(290) + felda) (2.3)
b = - 8192f,(z) — 4416fo(127932)845 162/, (42) — fo(82) (2.4)
faw) = 26fe(@) ~ 62; J;%(zx) +fe(42) (2.5)
fs(@) = 2048 fo(x) — 1296fo(62;71)2—(&)— 138f,(4x) — ]‘(,(891:)7 (2.6)
) = B =B+ i) o)
Fla) = - S12le) = 336/u(2) 4 A2fol0e) — ofs) (2.8)
as well as
rs f ~0 r f. A ~e
z f5(2z) _ Tfo(w) z fe2x) _ Afe()
@) = 755~ = Satisa0’ Jol@) = =61~ = “TRaa0” (2.11)
z fr2z) _ Tfo(x)
Fr@) = 58~ = ~ 85794560 (2.12)
for all x € V.

Now, the stability of the general septic functional equation (1.2) is computed.

Theorem 2.3. Letp # 1,2,3,4,5,6,7 be a non-negative real number, and let 0 > 0. Suppose that f : X =Y
satisfies

IDf (@ y)ll < o(lzl” + lyll”) (2.13)
for all z,y € X, then there exists a unique mapping F such that F(0) =0, DF(x,y) =0 for all z,y € X, and
K'0||l=|” KO||||” K'0||=|” KO||||”
680 [2—2¢] " 720 |4 —2¢] T 17280 |8 — 2| ' 576 - (16 — 27|

K'0|=||” Ko6||” K'0||”
69120 - [32 —2¢| ' 2880 - [64 — 27| ' 1451520 - |27 — 128]

1(z) - Fa)ll <5

+

(2.14)

for all x € X, where K and K’ are constants given by K := (4” +8-37436-2P +408) and K' .= (87’ + 8- 67 +
196 - 47 + 1280 - 37 + 4317 - 27 + 16224).
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Proof. Notice that f(0) =0, Df(z,y) = Df(z,y), and
1D fo(z, ), 1D fe(z, w)ll < 6(|l2|” + [lyl”)
for all z,y € X, by (2.13). Then, together with the definitions of Ff and Af, we get

I fo(2)|| =||Dfo(8x,22) + 8D fo (62, 2x) + 36D fo(4z, 22) + 120D f, (2, 2)
+ 160D f,(4x, x) + 1280D f,(3z, z) + 4032D fo (2, x) 4+ 5376D fo(x, x)||
<(8"+2° +8-6° +8-2° +36 -4 + 36 - 27 +240 - 2° + 160 - 47
+ 160 + 1280 - 37 + 1280 + 4032 - 2 + 4032 + 10752) 0|z ||”

< K'6||z||”, (2.15)
A fe(z)|| =||Dfe(42, x) + 8D fe(3x, x) + 36D fe (22, ) + 120D fe(x,z) + 123D fe (0, z)||
< KO||z|? (2.16)

for all z € X. The theorem can be proved in seven steps in the following manner:

Step 1. For p # 1, there exists a mapping FV : X — Y satisfying F(l)(O) =0, DF(l)(:my) =0forall z,y € X,
and

’ P
@) = PO @I < Stz (217)
for all z € X.
(1) If 0 < p < 1, then it follows from (2.9) we obtain that
Az fEvmo)|| "*z’”:‘l fi2'z) A7)
on ontm - ] 21 9i+1
n+m-—1 7 i n+m-—1 / i
I'f,(2'x) K'02°P||z||P
—— || < _— 2.1
- ; 45360 - 2¢ || — Z 45360 - 2° (2.18)

for all z € X and n,m € NU{0}. So {%} is a Cauchy sequence for all x € X. Since Y is complete, it
converges and we can define a mapping F" : X = Y by
Wy i 51(277)
)= e =

for all x € X. Moreover, letting n = 0 and passing the limit m — oo in (2.18), the following inequality is
obtained

K'0||||”

1£1@) = FY@I < e -5

for all x € X, and, together with (2.2), it holds that
D 2"y)
IDFO ,9)] = lim "4f e B
n—oo ”L—}OO

5376D f, (2" 1z, 2"+ y) 168D f, (2" 2z, 2" 2y)
22680 - 27 22680 - 27

22680 - 27
Dfo 2n+3x 2n+3
22680 - 2m

) onp Co(nt1)p . o(n+2)p (”+3)P)M
lim (32768 2™ 4 5376 - 2 + 168 - 2 +2 292680 - 27

n—00

0

‘ 32768D f,(2"x, 2"y)

IN
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for all z,y € X.

(2) If p > 1, then it follows from (2.9) and (2.15) that

n+m—1
‘ 2nf1 (2—nx) _ 2n+mf1(2—n—m$)H _ 2 : (21fl(2—2x) _ 22+1f1 (2_1_1.%‘)) H
n+m—1 i41 5 —i—1 n+m—1 i ’
2], (27 1a) 2K'6)ja|)”
< — || < _— 2.19
- ; 45360 ‘ - Z 22680 - 20i+1)p ( )

for all z € X and n,m € NU{0}. So {2"f1(27"x)} is a Cauchy sequence for all z € X. Since Y is complete,
the sequence converges and we can define a mapping FO . X 5y by

FY(z):= lim 2"f1(27 "x)
n—o0

for all x € X. Moreover, letting n = 0 and passing the limit m — oo in (2.19), the following inequality is
obtained
K'0|lx||?

IA1@) = FY@I < a0 3

for all x € X, and, using (2.2), we have

(1) — lim 9"
IDF (2, y)|| = lim 2

7 o=n_ o—n o (]|32768D fo(27 2,27 "y)
<
Dfi(27"z,2 y)H < nler;o2 ( 55630
L[| 33760 o2 " 27 ) || NI168Dfo (272, 27 2y) || Do(27 P, 27 Hy)
22680 22680 22680
i - - - - 2"0([|=[I” + llyll”)
<1 2 .9~ NP .9 np+p 168 - 2 np+2p 9 np+3py < CUIZI" T YIl7)
< lim (32768 + 3376 + 168 + ) 22680
=0

for all z,y € X.

Step 2. For p # 2, there exists a mapping F® : X — Y satisfying F(2)(O) =0, DF(Q)(x,y) =0forall z,y € X,
and

C @y o Kole]?
I1F2@) = FR @ < 7014 5 (2.20)
for all z € X.
(1) If p < 2, then it follows from (2.9) and (2.16) that
R e ”*i’l f2(2'z) _ f(27 )
4n gn+m - — 4i 4i+1
n+m—1 I ; n+m—1 i
Afe(2'x) KO02°P||z|?
< —— | < _— .
- ; 2880 - 4% || — ; 2880 - 4¢ (2.21)

for all z € X and n,m € NU{0}. So {%} is a Cauchy sequence for all x € X. Since Y is complete, it

converges and we can define a mapping F®. x5y by

F(Q)(x) = lim f2(2nz)

n— oo 4n
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for all z € X. Moreover, letting n = 0 and passing the limit m — oo in (2.21), the following inequality is
obtained

7 KHHftll”
JalSores
for all z € X, and by (2.3) it holds that
||DF<2)(x,y)|| — lim HM‘
n—00 4n
. 1024Dfc(2"2,2"y)  80Df(2"x, 2" y) | Df(2" Pz, 2"T2y)
T nSoo 720 - 47 720 - 47 720 - 47
: o=l + llyll*)
<1 (1 24 . O"P 3 2(n+1)p 2("+2)P) A T I
< fim (10 +80 + 720 - 47
=0
for all z,y € X.
(2) If p > 2, then it follows from (2.9) and (2.16) that
~ ~ n+m_1 .~ . . ~ .
’ " (27 ") — 4”+mf2(2—"—mx)H - (41]‘2(2_’95) — 4T (27 ) H
n+m—1 i+1 A F —i—1 n+m 1
4THAS(2 x) 4 K0||x||”
= — 2880 Z 720 - 20+ 1)p (2.22)

for all z € X and n,m € NU{0}. So {4" fo(27"x)} is a Cauchy sequence for all z € X. Since Y is complete, it
converges and we can define a mapping F® : X — Y by

FP(z):= lim 4" f2(2 ")

n—oo

for all x € X. Moreover, letting n = 0 and passing the limit m — oo in (2.22), the following inequality is
obtained

K0||z”

172@) = FE @ < 3507

and

IDF® (z,y)| = lim 4"
n—oo

(272,27

1024Dfe(2 " 2,27 "y) 80D fe(27 " 'a, 27" y) N Dfe (272,271 F2y) H

= lim 4"
n—r o0

720 720 720

n P
< lim (1()24.2*np+80,2 nptp | o- np+2p) 4"0(|l=[I” + llyll*)
n=oo 720

=0

for all z,y € X.

Step 3. For p # 3, there exists a mapping F® : X — Y satisfying F® (0) =0, DF® (z,y) =0for all z,y € X,
and
K'0||z|”

I f3(@) = F@ (@) < 17280 - |8 — 27| (2.23)
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for all z € X.
(1) If p < 3, then it follows from (2.10) and (2.15) that

2 B TS (AR R
|26 - -z (55 -2T)

877. 8n+m —
n+m-—1 5 i n+m—1 ;i
I'fo(2'x) K'02?||z||?
< — | < _—_ 2.24
- ; 138240 - 8* || — ; 138240 - 8° ( )

for all x € X and n,m € NU {0}. Then {%} is a Cauchy sequence for all x € X. Since Y is complete, it

converges and we can define a mapping F® : X — Y by

F(S)(x) = lim fs(an)

n—oo 8n

for all x € X. Moreover, letting n = 0 and passing the limit m — oo in (2.24), the following inequality is
obtained
K'0|x||”

1f2(@) = FO@I < 0 — 29y

for all € X, and by (2.4) it holds that

. . |IDf3(2"z, 2™y) 8192D f,(2"x, 2"y)
DF® = lim || 222D :
| (@, )] = lim Jim. 17280 8"
4416D f, (2", 2nHy) 162D f, (2" 2z, 27T 2y) Df,(2" 3z, 2" 3y)
17280 - 87 17280 - 8» 17280 - 8»
: "+ lyl?)
< lim (8192277 44416207 162 20 2<"+3)1’) O«
s m + + * 17280 - 8"
=0
for all z,y € X.
(2) If p > 3, then it follows from (2.10) and (2.15) that
~ ~ n+7n71 .~ . . -~ .
‘ n (2—nx) _ 8n+mf3(2—n—mm)H _ Z (81f3(2—1$) _ 81+1f3(2—1—1x) H
n+m—1 it1 5 —i—1 n+m—1 i ’
8T (27" ) 8 K'0||||”
< S A T | 2.25
= ; 138240 = ; 17280 - 2(i+1)p (2.25)

for all z € X and n,m € NU{0}. So {8"f3(27"z)} is a Cauchy sequence for all z € X. Since Y is complete,
the sequence converges and we can define a mapping F® : X — Y by

F®(z) := lim 8" f3(27 "z)

n—oo

for all x € X. Moreover, letting n = 0 and passing the limit m — oo in (2.25), the following inequality is
obtained
K'0|||”

1Fs(@) = FO @ < 5o =)
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for all z € X, and by (2.4) it holds that

IDF® (@)l = tim 8" ||Dfs27"z,27"y)| = 1im 8n( 8192Dfo(2 2,2 y)H
n—oo oo

no 17280
L [|4416D o2 e 27 ) || 162D 0 (27 R 2T Ry) | || Do(27 0w 27 y)
17280 17280 17280
i - - - - 8"0(ll)” + llyll”)
<1 819227 "P 4 4416 - 27 "PFP 4 162 . 27T 4 g7 d3p) 2 AR TN
< Jlim ( * * * S )
=0

for all z,y € X.

Step 4. For p # 4, there exists a mapping F™® : X — Y satisfying F® (0) = 0, DF® (z,y) =0 for all z,y € X,
and

KO||]”

fa(x) — F@ <= 2.2
Ifate) - PO @) < el (2.26)
for all x € X.
(1) If p < 4, then it follows from (2.10) and (2.16) that
A2z )| ”g’:‘l fi2'z)  fa2a)
16™ 16ntm o = 16¢ 16:+1
n+m-—1 7 i n+m—1 i
A (') K02 ]
< < _ .
- ; 9216 - 16¢ || — ; 9216 - 16¢ (2.27)

for all x € X and n,m € NU{0}. So {%} is a Cauchy sequence for all x € X. Since Y is complete, it
converges and we can define a mapping FW. X 5y by

F(4)(1:) ;= lim M

for all x € X. Moreover, letting n = 0 and passing the limit m — oo in (2.27), the following inequality is
obtained
Ko||z|”

Hﬂ(m) — F(4)(JC)H < m

for all x € X, and by (2.5) it holds that

IDFD (z,y)] = 1im [ 2F22"2:2"Y) y>H
n—o0

16m
= lim H 256D f(2"%,2"y) | 68Df.(2" "'z, 2"t y) Dﬂ(z"“x,r“y)H

n—o0 576 - 16™ 576 - 16™ 576 - 16™

O(ll=l” + llyl”)
576 - 167

n—o00

< lim (256 9" 1 6g. (P | 2<"+2>p)
-0

for all z,y € X.
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(2) If p > 4, then it follows from (2.10) and (2.16) that

n+m—1
H16"f4(2 ) — 16" fy (27 mm)H -3 (161f4(2*1x) - 16”1f4(2*“1x)) ‘
n+m—1 i+1 < —i—1 n+m—1 i
167 AL (27 ) K016/ |l||?
< S ekt o] N .
i 9216 = 576 . 20+ Lp (2.28)

for all z € X and n,m € NU{0}. So {16"f1(2 "x)} is a Cauchy sequence for all z € X. Since Y is complete,
it converges and we can define a mapping F¥ : X = Y by

FW(z):= lim 16" f4(2 "z)

n— o0

for all x € X. Moreover, letting n = 0 and passing the limit m — oo in (2.28), the following inequality is
obtained

FO KOl
[fa(z) — FV(2)|| < 576(2° — 16)
for all x € X, and by (2.5) it holds that

IDF® (2,y)] = lim 16"
n— 00

D2 "z, 2‘”y)H

= lim 16"

n— oo

576 576 576

n P P
< lim (256 .97"P 4 gg .9 "PTP +2—np+2p) 16™6([|[” + [[y[1")
n—oo 576

=0

256D f(27"x,27"y) N 68Dfc (2 "'z, 27"y)  Dfe(27" P, 27" y) H

for all z,y € X.

Step 5. For p # 5, there exists a mapping F® : X — Y satisfying F(E’)(O) =0, DF(S)(Jc,y) =0forall z,y € X,
and

; K'0||x||”
- F® — 2.29
1) = FO@I < o010 =57 (229)
for all z,y € X.
(1) If p < 5, then it follows from (2.11) and (2.15) that
f@2te) )| n*i’l e 5000
327 R 320 321+1
< nfl The(2w) || "N K027 (2.30)
T = 2211840 - 32¢ || — ~ 2211840 - 32¢ '

for all x € X and n,m € NU {0}. Then {% is a Cauchy sequence for all x € X. Since Y is complete, it

converges and we can define a mapping F® : X — Y by

F®(z) := lim f5(2")
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for all z € X. Moreover, letting n = 0 and passing the limit m — oo in (2.30), the following inequality is
obtained

1) = FO@I < o008 555

for all z € X, and by (2.6) it holds that

IDF® (z,y)|| = lim
n— oo

Dfs(2"z,2"y) 2048D f, (2"x, 2"y)
32n A 69120 - 327

H1296Df,,(2”+1x,2"+1y)H H138Df0(2"+2x,2"+2 H HDf (23, 2n 3y H)

69120 - 32n 69120 - 327 69120 - 327

oCll=(1” + [lyl1*)

. onp o(n+Dp 2P 4 gt e
lim (2048 9"P 4 1296 - 2 +138-2 +2 69120 - 327

~ n—oo

=0
for all z,y € X.

(2) If p > 5, then it follows from (2.11) and (2.15) that

n+m—1
3 (3275(2*%) - 32”1]?5(2*1’13:))

i=n

|32 527"y — 827 a2 )| =

for all z € X and n,m € NU {0}. So {32"f5(2 "z)} is a Cauchy sequence for all z € X. Since Y is complete,
it converges and we can define a mapping F® . X 5y by

F®(z) := lim 32" f5(2 "x)

n—oo

n+m—1

<y

32°K'0)||x||P

327D f, (27 )
69120 - 20+1Dp

2211840

n+m—1
‘ < (2.31)

for all x € X. Moreover, letting n = 0 and passing the limit m — oo in (2.31), the following inequality is
obtained

Fo(z) — P __KOlz|”
1F5(@) = FO@) < a0 —3)

for all x € X, and, using (2.6), we have

IDF® (z,y)|| = lim 32" ‘2048Dfo(2_”$7 27 "y) H
n— oo

Df5(2_na:,2_"y)H < lim 32”(

n—s00 69120
N 1296 D f, (27" Hz, 27" 1y) N 138D f, (2722, 277 F2y) Df, (273, 27 F3y
69120 69120 69120
: - - - - 327(llz(1” + [lylI”)
< . np 3 np+p 3 np+2p np+3p
< lim (2048277 + 1296 - 2 +138-2 +2 ) 69120

=0

for all z,y € X.

Step 6. For p # 6, there exists a mapping F® : X — Y satisfying F(®(0) =0, DF® (z,y) =0 for all 2,y € X,
and
Ko|z|”

—— 2.32
||_2880~|64—2P| (2:32)

1 fo(x) = F© ()
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for all z,y € X.
(1) If p < 6, then it follows from (2.11) and (2.16) that

fo(2'z) _ fs(2"t ")

n#i—l <f6(2lx) f6 21+1 H

64r Gntm 2o\ ai 64T
n+m—1 s i n+m—1 i
A (') K276z
< —_— _ 2.
- ; 184320 - 64°¢ || — ; 184320 - 64° (2.33)

for all x € X and n,m € NU{0}. So {%} is a Cauchy sequence for all x € X. Since Y is complete, it

converges and we can define a mapping FO®. X 5y by

F(G)(m) = lim f6(2nx)

for all x € X. Moreover, letting n = 0 and passing the limit m — oo in (2.33), the following inequality is
obtained
KO|||”

Ifo@) ~ FO@I < gee60 59y

for all z € X, and by (2.7) it holds that

IDFO )] = tim P20
~ lim 64Dfc(2"x,2"y)  53T6Dfo(2" 'z, 2" y) 168D fo (2" Pz, 2"y
T oo 2880 - 647 2880 - 647 2880 - 647
: oll=l” + llyl”)
<1 (64 .onP 20 - 2("+1)P 2("+2)P) ANl L 120
s + + 2380 - 647
=0
for all z,y € X.
(2) If p > 6, then it follows from (2.11) and (2.16) that
5 n+m—1 o )
|64 fo(2 ") — 64m o2 )| = | S0 (64627 e) — 64 fo (27 ) ‘

n+m—1 n+m-—1

64 TIAf (27 M)
184320

64" K0||z||?
= Z 2880 - 2(-+0p

(2.34)

i=n

for all z € X and n,m € NU{0}. So {64"fs(2 "x)} is a Cauchy sequence for all z € X. Since Y is complete,
it converges and we can define a mapping F® : X = Y by

FO(z) := lim 64" fo(27"z)

n— o0

for all x € X. Moreover, letting n = 0 and passing the limit m — oo in (2.34), the following inequality is
obtained
Ko||z|”

I1ste) = FO @) < g0 a0
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for all z € X, and by (2.7) it holds that

IDF© (2,y)] = lim 64"
n— oo

Dfs(2 "z, 27"y)|

T 64" r —-n —n r3 —n+1 —n+1 3 —n+2 —n+2 H

= lim o [[64Df2 7, 27my) 20027 e 27 ) + D27 e 2T Yy)
. - - - 64"0(|||I” + llylI*)

< 1 4.9""P 20-2 np+p 2 np+2p

< [lim (6 +20 * ) 2830

-0

for all z,y € X.

Step 7. For p # 7, there exists a mapping F(7 : X — Y satisfying F(" (0) =0, DF™ (z,y) =0for all z,y € X,
and

4 P
Py — FO ()] < LSIEd
12(@) = F2 @ < 1551550 128 = 2] (2:35)
for all x € X.
(1) If p < 7, then it follows from (2.12) and (2.15) that
f2mx) M) ngfl f(2x)  f(27 )
128 128n+m || 1281 128i+1
D L A N P S (2.36)
= £~ ||185794560 - 128' || = £~ 185794560 - 128' :

for all z € X and n,m € NU{0}. So { 71<228nf) } becomes a Cauchy sequence for all z € X. Since Y is complete,

it converges, and hence we can define a mapping F’ DX Y by
Dy e 1y $72°0)
F(@) = lim —oew

for all x € X. Moreover, letting n = 0 and passing the limit m — oo in (2.36), the following inequality is
obtained
< KOl

= 1451520(128 — 27)

If7(z) = F7 ()

for all x € X, and, using (2.8), we have

Do) = tim |22y | 512DFe(2",2")
IDF @)l = Jim 1= el = fim, 65536 - 128"
336D fo(2" 2, 2" y) 42D fo(2" 2w, 2" 2y) | Dfo(2" w27 y)
65536 - 128™ 65536 - 1287 65536 - 128™
Oz l” + llyl”)

< lim (512 -2 4336 20" TIP g0 2P 2‘"*3”’)

T n—oo

65536 - 128™
=0

for all z,y € X.
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(2) If p > 7, then it follows from (2.12) and (2.15) that

n+m-—1
H128"f7(2_"1:) - 128"+mf7(2‘"‘mx)H - > (12877(2‘%:) - 128i+1f7(2_i_1x))H
n+m—1 i1l F i1 n+m—1 i 7!
12817 f, (2 1) 128'K"6)|||?
< _ = KOzl 2.37
= ;L 185794560 < ) Tmisa0 26 (2:37)

for all z € X and n,m € NU{0}. So {128" fz(27"x)} is a Cauchy sequence for all z € X. Since Y is complete,
it converges and we can define a mapping FO.X 5y by

FO(z) := lim 128" f7(27 ")

n—o0
for all x € X. Moreover, letting n = 0 and passing the limit m — oo in (2.37), the following inequality is

obtained

_ K'0||=||”
_ ™M <
1F2(@) = FO@ < im0 0r —128)

for all x € X, and, using (2.8), we have

—512Df, (27,27 y)
2835 - 512
B36Dfo(2 " w27 y) 42D (272w, 27 y) | Dfe(2 ", 27 y)

2835 - 512 2835 - 8 2835 - 512
128"0(|[=[|” + llyll”))

|DF (z,y)|| = lim 128"
n— o0

Df7(2*"x,2*”y)‘ = lim 128"
n— o0

< lim (512-27"P 433627 "PFP 4 42 27 PHIP 4 om IR

T n—oo 1451520
=0
for all z,y € X.
Now, using the functions FM, F® ... F . X Y of Stepl, Step 2, ..., and Step 7, respectively, we put

7

F(z):=> FY)

i=1

for all z € X. Since ||f(z) — F(z)|| < X0_, || fi(z) — FO(z)]|| for all z € X, together with (2.17), (2.20), (2.23),
(2.26), (2.29), (2.32), (2.35), the property (2.14) is obtained. It is obvious that

7
DF(z,y) =Y DFY(z,y) =0
=1

for all z,y € X. Finally, to prove the uniqueness of F, let G : X — Y be another mapping, which satisfies the
property (2.14), G(0) =0, and DG(z,y) =0 for all z,y € X. And let G1,G2, - ,G7 : X — Y be defined as in
Definition 2.1. Since DG, (z,y) = DGe(x,y) =0 for all z,y € X,

DGi(z,y) =0, i=1,2,---,7

for all z,y € X, Additionally, by (2.14) with the definitions of the odd function and the even function of
Definition 2.1, we get

Ife(@) = Ge(@), [Ife(2) = Ge(@)]| < NO|||” (2.38)
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for all x € X, where
K’ K K’ K
= + + +
226802 —27|  T720-]4—27|  17280-|8 —2P| = 576 |16 — 27|
K’ K K’

t 6912032 — 27] T 2880 |64 — 2¢| | 1451520 |27 — 128]°

It is notable that I'G(z) = AG(z) = 0 for all x € X by (2.9)-(2.12), it can be proved that G;(2z) = 2'G;(z),
i=1,2,---,7, for all x € X. Particularly, they hold that

Go(z) = 2°G (g) - —4"G, (2%) (2.39)
Gs3(2"x) = 2°G3(2" ') = - - - = 8"G3(x) (2.40)

for all x € X and n € N. Now, it can be noted that, in the case of 2 < p < 3, we have

i (5) - 60| - [ (5) -6 () | < % R(5)-a(2)]

n

80-4™ || ~ [ 2z ~ (4x 4z
D fe(z*n)‘ ( )H 720 (?)‘Ge(fn)H
4n
< . 9P P P
< (1024 + 80 2° +47) o N0,

and

f(2"0)  Gs(2'w)
8n 8n

L(TI) - Gs(x)|| = ‘
8n
< H8192(fo(2"x)—Go(2”a:)) +‘ 4416(fo (2" z) — GO(Q"“x))H
= 17280 - 8" 17280 - 8»
162(f, (2" 2x) — Go(2"2x) H H fo(2"F32) — Go(27F31)) H

17280 - 8" 17280 8n
2"P NO||z||P
172808™

+|
< (8192 +4416 - 27 + 162 - 2% + 23P>

for all z € X and all positive integers n. Taking the limit in the above inequalities as n — oo, we obtain

n—r oo n—o00

Golo) = lim 0o (2) = PP (), Gafa) = tim BET _ pog)

for all z € X. Also, in the same way, it can be shown that G;(z) = F (), i = 1,4,5,6,7, for all z € X.
Therefore, it can be shown that G(z) = F(z) for all x € X in the case of 2 < p < 3. Similarly, the uniqueness
of F' can be proved in other cases of p. O

3 Conclusion

In this work, we have investigated the stability of the following general septic functional equation

8

D(w7y) = Zsc’i(_l)giif(‘r + (7’ - 4)y) = 07

1=0

from the perspective of Hyers-Ulam-Rassias stability. Precisely, for a non-negative real number p # 1,2,3,4,5,6,7
and a real number 0 > 0, if the mapping f : X — Y satisfies

IDf (@, < 0l=l” + llyll”)
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for all z,y € X, then there exists a unique septic mapping F, i.e., DF(z,y) = 0 for all z,y € X, such that
F(0) =0 and

1f(x) = £(0) = F(z)[| < ep0|[|”
for all z € X, where the constant ¢, depends only on p. To prove it, we use the mappings fi, f2, f3, fa, f5, fs,
f7: X =Y which are defined in Theorem 2.2, such that

forv all x € X. And then, it is possible to construct the septic mappings FO F® 0 FO. X Y satisfying
F®(0) =0 and
I fi(@) = £:(0) = FO(@)|| < eip]]”,

for all z € X, where ¢ =1,2,--- ,7 and ¢;,, depends only on ¢ and p. Then, putting

F(z) = Z FO ()

for all z € X, we have shown that F is the unique solution of the general septic functional equation D(z,y) = 0
such that ||f(z) — f(0) — F(x)| < €,0]|z||” for all 2 € X, where €, := >1__ €ip-
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