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Abstract 

The anti-adipogenic and anti-obesity activity of chloroform fraction of Teph-
rosia purpurea (CFTp) on 3T3-L1 adipocytes and high fat diet (HFD)-fed obese 
rats was evaluated in this study. A substantial and dose dependent inhibition 
of α-glucosidase (81%) and lipase (75%) activities by CFTp was noticed. 
Treatment with CFTp (250 µg/mL) significantly inhibited 3T3-L1 adipocytes 
differentiation and lipid accumulation. A semi-quantitative RT-PCR analysis 
of 3T3-L1 cells revealed down regulation of mRNA expression of peroxisome 
proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS) and 
acetyl CoA carboxylase-2 (ACC-2), while glucose transporter type-4 (GLUT-4) 
expression was up-regulated in a dose dependent manner with CFTp. Fur-
ther, oral administration of CFTp (200 mg/kg.b.wt.) significantly reduced 
body weight gain, fat mass, blood glucose and leptin levels in high fat diet 
(HFD)-induced obese rats. Taken together, these findings demonstrate that 
CFTp possesses potent anti-obesity activities. 
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1. Introduction 

The prevalence of obesity and associated ailments reached epidemic proportions 
across the world in recent decades. Over weight-obesity plays a central role in 
metabolic syndrome (MetS) which includes in its cluster other disorders like di-
abetes mellitus, hypertension, dyslipidemia and cardiovascular diseases (CVDs). 
The World Health Organization report-2016 mentions that 1.9 billion adults are 
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overweight of which 650 million are obese in the world [1] [2]. A sea change in 
food habits, work culture, increased snaking frequency, reduced physical activity 
and sedentary life styles have been the prime causes for enhanced MetS cases 
world over, especially in developing countries. The situation of childhood obesi-
ty is more alarming than adults [3]. 

Although a few FDA approved drugs are available to treat obesity or diabetes, 
drugs that can target both diabetes and obesity are lacking. In fact, some of the 
anti-obesity drugs have been withdrawn from the market due to their side effects 
[4] [5] [6]. In view of the high demand for safe, effective anti-obesity and anti-
diabetic drugs and considering the side effects associated with existing synthetic 
drugs, there is a growing necessity to explore natural product based therapeutic 
alternatives. Targeting key carbohydrate and lipid metabolizing enzymes or mo-
lecules that reduce adipogenesis or/and insulin resistance have been considered 
as potential means to develop effective drugs to attenuate obesity or/and diabetes 
[7].  

Compounds that interfere in the transcriptional regulation of key genes asso-
ciated with lipid metabolism, insulin resistance and adipogenesis like peroxi-
some proliferator-activated receptor-γ, fatty acid synthase, acetyl CoA carbox-
ylase-2, glucose transporter type-4 etc., have been found to be useful in develop-
ing effective therapeutics [8] [9] [10] [11]. Adipokines like leptin and adiponec-
tin have been reported to play decisive roles in the regulation of obesity and in-
sulin resistance and hence could be targeted as therapeutic molecules [12]. Lep-
tin is produced from white adipose tissue and plays a negative feedback role in 
the regulation of energy expenditure through controlling specific neuronal 
groups of hypothalamus. In overweight/obese subjects a condition called leptin 
resistance occurs that leads to addicted food intake and eventually to more obes-
ity. The expression of adiponectin is inversely related to obesity and exerts its ac-
tion through modulating PPAR-γ and AMPK pathways [13]. 

Tephrosia purpurea (L.) Pers. is a perennial herb belonging to the family Fa-
baceae, distributed in Asian countries. It is commonly known as “Sarapunkha” 
in classical Ayurvedic texts and is traditionally used to treat cough, cold, cirrho-
sis, splenomegaly, abdominal swelling and also as an antidote in folklore medi-
cine. Previous studies have identified several active components including fla-
vonoids and other phytochemicals such as pongamol, semiglabrin, lanceolatins 
A and B, lupeol, rutin and β-sitosterol in T. purpurea extract [14]. Pharmacologi-
cal studies on T. purpurea extracts showed hepatoprotective, anti-inflammatory, 
anti-allergic, antioxidant and antimicrobial activity [15]. In the present work, we 
evaluated anti-adipogenic and anti-obesity activity of T. purpurea extract, CFTp 
in 3T3-L1 adipocytes and HFD-fed obese rat model. 

2. Materials and Methods 

2.1. Chemicals and Reagents 

Acarbose, orlistat, α-glucosidase (catalog no. G5003), pancreatic lipase (catalog 
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no. L3126), paranitrophenyl-glucopyranoside (p-NPG), p-nitro phenyl butyrate 
(p-NPB), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 
and Oil Red O (ORO) staining solution were procured from Sigma Aldrich. 
Nonidet P­40, morpholine propane sulphonic acid (MOPS), isopropyl alcohol, 
Insulin, Dulbecco’s modified Eagle’s medium (DMEM), fetal Bovine serum 
(FBS), 3­isobutyl­1­methyl­xanthine (IBMX), penicillin and streptomycin were 
procured from Thermo Scientifics. Other chemicals, solvents and reagents used 
were of Analytical Grade. 

2.2. Plant Material Collection and Fraction Preparation 

Fresh whole plants of T. purpurea were obtained from Chinthalapatteda area 
near Nagari and Tirupati, Andhra Pradesh, India. Their identity was authenti-
cated by a taxonomist (Voucher Specimen Accession Number-1259) and depo-
sited in the herbarium of Department of Botany, S.V. University, Tirupati. T. 
purpurea plants were shade dried, crushed to crude powder and extracted with 
chloroform following cold extraction method. The chloroform extract was then 
fractionated using hexane, ethyl acetate, chloroform and methanol based on 
their polarity in a column chromatography using silica gel as the column ma-
terial. All the filtrates were concentrated under reduced pressure in Heidolph 
rotary-evaporator. Based on phytochemical analysis, chloroform fraction of T. 
purpurea (CFTp) was used for further studies. 

2.3. DPPH Antioxidant Assay 

Briefly, a 0.3 mM solution of DPPH was prepared in methanol and 500 µL of this 
solution was added to 1 mL of CFTp at different concentrations (100 - 500 
µg/mL) [16]. These solutions were mixed and incubated in the dark for 30 min 
at room temperature. The absorbance was measured at 517 nm against a blank 
lacking scavenger. Vitamin C was used as a standard. The antioxidant or free 
radical inhibitory activity was calculated according to the following formula 

%inhibition = ((Ac – As)/Ac) × 100 

where, Ac—Absorbance of control, As—Absorbance of sample.  

2.4. Ferric-Reducing Antioxidant Power (FRAP) Assay 

A 2.5 mL aliquot of CFTp was mixed with 2.5 mL of 0.2 M phosphate buffer (pH 
6.6) and 2.5 mL of 1% potassium ferricyanide [17]. The mixture was incubated 
at 50˚C for 20 min, followed by addition of 2.5 mL of 10% trichloro acetic acid 
and centrifuged at 3000 rpm for 10 min. Then, 2.5 mL of the upper layer of the 
solution was mixed with 2.5 mL of distilled water and 0.5 mL of 0.1% ferric 
chloride, after 10 min, absorbance was measured at 700 nm. An increase in the 
absorbance of the reaction mixture indicated increased reducing power of CFTp. 
The experiment was carried out in triplicate, using vitamin C as a positive con-
trol. 
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2.5. Assay of α-Glucosidase Activity 

Briefly, 500 µL of CFTp and/or standard inhibitor (acarbose) at a concentrations 
of 100 - 500 µg/mL were incubated with 54 µL (1.0 U/mL) of α-glucosidase solu-
tion (in 100 mM phosphate buffer pH 6.8) and 446 µL of phosphate buffer for 15 
min at 37˚C [18]. To this, 250 µL of p-nitrophenyl D-glucoside solution (5 mM) 
in 100 mM phosphate buffer (pH 6.8) was added and incubated for 20 min at 
37˚C. Absorbance of liberated yellow colour p-nitrophenol was read at 405 nm 
using UV-visible spectrophotometer. All the readings were measured in tripli-
cate and the average was considered. The percentage of enzyme inhibition was 
calculated using the formula specified below and the inhibitory activity was ex-
pressed as percentage of the control without inhibitor 

%inhibition = ((Ac – As)/Ac) × 100 

where, Ac—Absorbance of control, As—Absorbance of sample.  

2.6. Assay of Pancreatic Lipase Activity 

Briefly, an enzyme-buffer was prepared by the addition of 30 µL of lipase solu-
tion (2.5 mg/mL) in 10 mM morpholine propane sulphonic acid (MOPS) and 1 
mM EDTA, (pH 6.8) to 850 µL of Tris buffer (100 mM Tris-HCl and 5 mM 
CaCl2, pH 7.0) [19]. Then 100 µL of CFTp (100 - 500 µg/mL) was mixed with 
880 µL of enzyme buffer and incubated for 15 min at 37˚C. To this, 20 µL sub-
strate solution (10 mM p-nitro phenyl butyrate in dimethyl formamide) was 
added and incubated for 15 min at 37˚C. The lipase activity was determined 
spectrophotometrically by measuring the hydrolysis of p-nitrophenyl butyrate to 
p-nitrophenol at 400 nm. All assays were carried out in triplicate and the calcu-
lation was done according to the following formula. Orlistat was used as stan-
dard drug. 

%inhibition = ((Ac – As)/Ac) × 100 

where, Ac—Absorbance of control, As—Absorbance of sample.  

2.7. Cell Viability by MTT Assay 

Pre-confluent pre-adipocytes (3T3-L1 cells, from NCCS Pune), 2500 cells/well or 
mature adipocytes 5000 cells/well were seeded in 96 well culture plates using DMEM 
medium supplemented with 10% FBS and 1% antibiotic and incubated at 37˚C with 
5% CO2 for 48 or 72 h [20]. Then, cells were treated with CFTp. After overnight in-
cubation, cytotoxicity/cell viability were determined by adding 10 µL of MTT 
[3-(4,5-dimethylthizol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tet
razolium salt] (0.5 mg/mL in PBS), incubated at 37˚C for 4 h. At the end of in-
cubation, culture media was discarded and the wells were washed with PBS. Lat-
er, 150 µL of dimethyl sulfoxide (DMSO) was added to all the wells, and incu-
bated for 30 min at room temperature with constant shaking. Absorbance was 
read at 540 nm using Microplate Reader and subsequently percentage (%) of cell 
viability will be calculated using following equation to determine the formazan 
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concentration, which is proportional to the number of live cells. 

%Inhibition of proliferation = %untreated cell viability (100)  
                         − %drug treated cell viability. 

2.8. Adipocyte Differentiation—Measurement of Cellular Lipid  
Contents by Oil Red O Staining 

3T3-L1 cells were cultured ingrowth media (GM) consisting of DMEM supple-
mented with 10% fetal Bovine serum (FBS) and 2mM glutamine. The cells were 
grown according to a well-established protocol described previously. Briefly, for 
differentiation, 3T3-1 cells were cultured in GM to full confluence. Two days af-
ter confluence (referred to as day 0), the cells were switched to differentiation 
media (DM) consisting of DMEM supplemented with 10% FBS, 10 mg/mL insu-
lin, 1 M dexamethasone and 0.5 mM IBMX (isobutylmethylxanthine) and cul-
tured for three days. Next, the cells were maintained in DM but containing only 
insulin (10 mg/mL) and the medium was changed every 2 - 3 days. The cells nor-
mally differentiate into mature adipocytes in a week. The 3T3-L1 preadipocytes 
were differentiated as described above in the presence of CFTp or vehicle (PBS). 

For Oil Red O staining, at the end of incubation period, cell monolayers were 
washed twice with PBS (pH 7.4) and, fixed in 10% buffered formalin solution in 
PBS for 1 h, washed twice with DW and then stained with 0.5% Oil Red O stain 
for 30 min at room temperature. Excess Oil Red O dye was washed with DW and 
photographs were taken in inverted microscope using digital camera system. In 
another set of experiment, the stained adipocytes were treated with 60% isopro-
panol (to extract intracellular Oil Red O stain) and the absorbance (Optical den-
sity, OD) was read at 520 nm [21]. 

%Adipogenesis was calculated as OD of treated cells/OD of untreated cells × 100. 

2.9. Lipolysis: Measurement of Glycerol Content 

Glycerol release was measured to assess the lipolytic effect from adipocytes and 
examined according to the Millipore kit procedure. Briefly, differentiated adi-
pocytes were incubated at 37˚C in 5% CO2 atmosphere with the CFTp in sterile 
Hank’s balanced salt solution containing 2% Bovine serum albumin (BSA). At 
the interval of 12 h and 24 h, the 10 µL supernatant from the 96 well plates were 
withdrawn and mixed with the 80 µL of glycerol assay reagent in a separate 96 
well plate. After incubation of 1 h, the absorbance of the solution was measured 
at 540 nm using a microplate reader [22]. The amount of glycerol released was 
calculated by the equation of glycerol standard curve. Nor epinephrine, querce-
tin and forskolin were used as positive standards. 

2.10. RT-PCR—mRNA Expression 

Total RNA was isolated from 3T3-L1 cells/adipose tissue by using tri-reagent 
(Sigma Aldrich, USA) according to manufacturer’s protocol and reverse tran-
scribed to obtain cDNA using DNA synthesis kit (Applied Bio Systems, Foster 
City, USA) [23]. Two nanograms of cDNA were used for semi-quantitative 
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RT-PCR. The PCR amplification was performed for 38 cycles using the follow-
ing cycling conditions: 30 sec of denaturation at 94˚C, 30 sec of annealing at 
59˚C and 1 min of extension at 72˚C, with the specific the primers. The primer 
sequences used for PCR analysis were as follows: 

PPAR-γ F: 5’-GACCGAGTGTGACGACAAG-3’;  
R: 5’-CGTGATTTCTCAGCCGCGT-3’ 
Glut4 F: 5’-AAAAGTGCCTGAAACCAGAG-3’;  
R: 5’-TCACCTCCTGCTCTAAAAGG-3’  
FAS F: 5’-ATGTGGTACGGAAGGTGGAG-3’;  
R: 5’-TGGCTACCTTCGTCTGTGTG-3’  
ACC2 F: 5’-ACCTTGTTGGGGAGAAGTGC-3’;  
R: 5’-AGGGCCAAGGTGTCATAAGC-3’  
β-Actin F: 5’-ACCTTCCAGCAGATGTGGAT-3’;  
R: 5’-AGAAGCACTTGCGGTGCACGA-3’. 

2.11. Animals and Diets 

Male WNIN rats and diets were obtained from National Institute of Nutrition 
(NIN), Hyderabad, India. After one-week quarantine period for safe health of 
experimental rats, they were fed with either normal diet or freshly prepared HFD 
(15 g/rat/day) for 16 weeks as mentioned in experimental design and water ad 
libitum and standard laboratory conditions (temperature: 22˚C ± 2˚C; humidity: 
40% - 60%) were maintained. Normal diet contained all the recommended ma-
cro and micronutrients (carbohydrate-56%, protein-18.5%, fat-8%, fiber-12% 
and adequate levels of minerals and vitamins). High fat diet contained starch-42%, 
casein-23%, lard oil-23%, cholesterol-2%. Cellulose-5%, mineral mixture 
(AIN-93G)-3.5%, vitamin mixture (AIN-93VX)-1%, L-cystine-0.3%, choline bi-
tartrate-0.2%. Rats initially weighing 180 - 200 g were randomly divided into six 
groups of six each (n = 6). To test the activity of CFTp, 100 or 200 mg/kg b.wt. of 
CFTp was suspended in 0.5% carboxy methyl cellulose (CMC), and orally admi-
nistered for 42 days from 10th week onwards using an intra-gastric tube. All ex-
perimental protocols were followed as per institutional animal ethical committee 
guidelines (No: 55/2012/(i)/a/CPCSEA/IAEC/SVU/MBJ, Dt: 08.07.2012). 

2.12. Experimental Design 

Group 1: Normal control (normal diet control) 
Group 2: High fat diet (HFD) control 
Group 3: HFD + orlistat 5 mg/kg b.wt. 
Group 4: HFD + CFTp 100 mg/kg b.wt. 
Group 5: HFD + CFTp 200 mg/kg b.wt. 

2.13. Measurement of Body Weight and Body Composition  
Parameters 

The body composition, body weight, fat percent of each rat was measured by 
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Total Body Electrical Conductivity (TOBEC) using small animal body composi-
tion analysis system (EM-SCAN, Model SA-3000 Multi detector, Springfield, 
USA). At the end of the experiment, blood was collected from overnight fasted 
animals under inhalation of anesthesia by heart puncture method; plasma was 
separated by centrifugation at 2500 rpm for 15 min. 

2.14. Estimation of Leptin and Adiponectin Levels 

Plasma leptin and adiponectin are important adipokines and their levels were 
measured in experimental rats by using enzyme-linked immunosorbent assay 
kits (Crystal Chem, Downers Grove, IL, USA), performed in duplicate, as per the 
manufacturer’s guidelines and were expressed in ng/mL. 

2.15. Oral Glucose Tolerance Test (OGTT) 

At the end of the experiment OGTT was performed [24]. After overnight fasting 
of experimental rats, glucose was administered orogastrically at a dose of 2.0 
g/kg b.wt. and blood samples were collected from supraorbital sinus at 0, 30, 60, 
90 and 120 min. Glucose levels were estimated at all intervals. 

2.16. Statistical Analysis 

Statistical analysis was performed using Turkey’s-HSD multiple range post hoc 
test p < 0.05 IBM SPSS version 23. Data were expressed as the mean ± standard 
deviation (SD).  

3. Results 

3.1. Antioxidant Activity of CFTp by DPPH and FRAP Assays 

The antioxidant capacity of the chloroform fraction of T. purpurea (CFTp) was 
measured by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing 
Antioxidant Power (FRAP) assays. In-vitro antioxidant activity of CFTp on 
DPPH free radicals had shown significant scavenging activity in a dose depen-
dent manner and its activity was close to vitamin C at 500 µg/mL of CFTp 
(Figure 1(A)). Similarly, the dose-dependent ferric reducing power of CFTp 
which was found to be about 75 % of Ascorbic acid, indicating its potential free 
radical scavenging activity (Figure 1(B)). 

3.2. Inhibitory Effect of CFTp on α-Glucosidase and Pancreatic  
Lipase Activities 

In the present study as shown in Figure 2(A) and Figure 2(B), a significant and 
dose-dependent inhibition of both α-glucosidase and pancreatic lipase was no-
ticed. At 500 µg/mL of CFTp, the maximum inhibition of 81% and 75% was ob-
served for α-glucosidase and pancreatic lipase respectively. 

3.3. Effect of CFTp on Cell Viability of 3T3-L1 Cells 

The cytotoxic effects of CFTp on the viability of 3T3-L1 cells was analysed at 48 
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Figure 1. Effect of CETp on free radicals scavenging activities. (A) In-vitro antioxidant activity of CFTp on DPPH free radicals. 
(B) Ferric reducing antioxidant power of CFTp. Data are presented as mean ± SD of triplicate. Bars with different superscript let-
ters are significantly different from one another (p < 0.05). 

 

 
Figure 2. Effect of CFTp on carbohydrate and lipid metabolizing enzymes by in-vitro studies. (A) α-glucosidase activity. (B) Pan-
creatic lipase activity. Data are presented as mean ± SD of triplicate. Bars with different superscript letters are significantly differ-
ent from one another (p < 0.05). 

h using MTT assay. No cytotoxic effect was observed up to a dose of 250 µg/mL 
of CFTp, but thereafter, about 10% - 15% of cell death was noticed (Figure 
3(A)). 

3.4. Effect of CFTp on Adipocyte Differentiation, Lipid Content and  
Glycerol Release in 3T3-L1 Cells 

The microscopic observation of Oil Red O stained 3T3-L1 cells indicates that, 
groups treated with CFTp shows decreasing number of adipocytes and reduced 
lipid accumulation in adipocytes (in a dose dependent manner) when compared 
to untreated cells (Figure 3(D)). In addition, measurement of absorbance of Oil 
Red O stain, extracted (using isopropanol) from lipid droplets of 3T3-L1 cells, 
indicates the extent of adipocytes differentiation. Our results showed that, CFTp 
(250 µg/mL) could considerably inhibit adipocyte differentiation when com-
pared to the untreated cells (Figure 3(B)). To understand the effect of CFTp on 
lipolysis of 3T3-L1 cells, glycerol release into the surrounding medium was esti-
mated spectrophotometrically. A significant increase in glycerol content was ob-
served in groups treated with CFTp when compared to untreated cells and the 
maximum lipolytic activity was noticed at a concentration of 250 µg/mL (Figure 
3(C)). 
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Figure 3. Effect of CFTp on 3T3-L1 adipocytes. (A) Percentage of cell viability shown at 48 h. (B) Relative lipid content in adipo-
cytes. (C) Glycerol content released into media. (D) Oil Red O stained pictures showing decreased adipocytes and lipid accumula-
tion (Magnification-20×). Data are presented as mean ± SD of triplicate. Bars with different superscript letters are significantly 
different from one another (p < 0.05). 
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3.5. Effect of CFTp on mRNA Expression of FAS, GLUT4, ACC-2 and  
PPAR-γ 

The mRNA expression of FAS, GLUT4, ACC-2 and PPAR-γ in 3T3-L1 cells in 
the presence and absence of CFTp (Figure 4). The expression of FAS, PPAR-γ 
and ACC-2 were down-regulated, while GLUT4 was up-regulated with increasing 
concentration of CFTp. Their expression was compared to that of house-keeping 
gene β-actin. 

3.6. Effect of CFTp on Body Composition and Body Weight of  
WNIN Rats 

Table 1 depicts change in body weight and body composition of experimental 
rats. Consumption of HFD for 16 weeks resulted in significant increase in body 
weights (458 ± 3.45 g) and total fat levels (53.245 ± 2.75 g) in HFD control 
group, compared to normal control group of rats whose body weight and total 
fat were 302 ± 7.11 g and 29.22 ± 3.04 g, respectively. Oral administration of 
CFTp (100 and 200 mg/kg b.wt.) for 42 days (from 12 to 16 weeks) considerably 
reduced body weight and body composition in a dose dependent manner. At a 
dose of 200 mg/kg b.wt., CFTp could substantially limit the body weight gain 
and total fat to 312 ± 8.16 g and 96.265 ± 4.78 g respectively. 

3.7. Effects of CFTp on Leptin and Adiponectin Levels 

Figure 5 depicts the levels of leptin and adiponectin in control and experimental 
obese rats. There was a marked increase in leptin levels, while decrease in adiponec-
tin levels found in HFD-fed obese rats compared to the normal rats. Interestingly, 
treatment with CFTp has significantly (p < 0.05) decreased the levels of leptin, 
while the levels of adiponectin increased in HFD-fed obese rats. 
 

Table 1. Effect of CFTp on body weight and body composition parameters of treated and untreated rats. 

Parameters ND HFD HFD + Orlistat HFD + CFTp1 HFD + CFTp2 

Initial body weight (g) 185 ± 5.72 183 ± 7.12* 187 ± 4.93# 180 ± 8.14# 182 ± 6.58# 

Final body weight (g) 302 ± 7.11 478 ± 23.45* 423 ± 14.56# 452 ± 17.25# 446 ± 12.16# 

Body weight gain (g) 117 ± 9.58 295 ± 27.41* 236 ± 12.85# 272 ± 16.94# 264 ± 14.65# 

Lean body mass (g) 286.78 ± 12.68 350.755 ± 11.79* 353.28 ± 26.49# 363.675 ± 9.11# 381.16 ± 10.52# 

Total body fat (g) 15.22 ± 3.04 127.245 ± 2.75* 69.72 ± 2.11# 88.325 ± 3.49# 64.835 ± 4.78# 

body fat (%) 5.03 ± 1.8 26.62 ± 0.7* 16.48 ± 1.9# 19.54 ± 1.6# 14.53 ± 2.1# 

Fat free mass (g) 173.224 ± 3.76 182.164 ± 1.89* 197.384 ± 4.48# 198.74 ± 3.69# 214.172 ± 5.43# 

Total body H2O (mg) 737.748 ± 23.58 777.978 ± 30.64* 846.468 ± 37.8# 852.57 ± 29.72# 922.01 ± 32.45# 

Total body Na (mg) 1022.8 ± 45.2 1078.675 ± 67.54* 1173.8 ± 89.18# 1182.27 ± 36.7# 1278.7 ± 27.56# 

Total body K (mg) 2106.582 ± 76.48 2217.21 ± 112.31* 2405.56 ± 59.7# 2422.34 ± 44.5# 2613.3 ± 72.71# 

All data in the table are shown as mean ±SD (n = 6). * indicates significant difference between normal control and HFD control groups. # indicates signifi-
cant difference between HFD control and other groups. CFTp1 = 100 µg/mL; CFTp2 = 200 µg/mL. 
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Figure 4. (A) Effect of CFTp on mRNA expression of FAS, GLUT-4, PPAR-γ and ACC-2 
in 3T3-L1 adipocytes. (B), (C), (D) and (E) are graphical representation of expression le-
vels of these genes. Bars with different superscripts indicate significant (p < 0.05) differ-
ences from one another. 
 

 
Figure 5. Effect of CFTp on leptin and adiponectin levels in treated and untreated rats. 
Values are mean ± SD, n = 6. Values are statistically significant at *p < 0.05. a* signifi-
cantly different from normal control and b* significantly different from HFD control. 

3.8. Administration of CFTp Decreases Blood Glucose Levels in  
HFD-Fed Obese Rats 

Figure 6 depicts the results of oral glucose tolerance test performed on control 
and experimental obese rats. In the normal control group of rats, blood glucose 
level reached its maximum value at 60 min after glucose load and declined to 
near basal level at 120 min, whereas, in HFD-induced obese rats, the peak in-
crease in blood glucose level was noticed even after 60 min and remained high 
over the next 60 min. Administration of CFTp (100 and 200 mg/kg b.wt) or or-
listat to obese rats elicited a significant decrease in blood glucose level at 60 min 
and beyond when compared with HFD control rats. 
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Figure 6. Effect of CFTp on blood glucose level during OGTT in treated and untreated 
rats. Values are mean ± SD, n = 6. Values are statistically significant at *p < 0.05. a* sig-
nificantly different from normal control and b* significantly different from HFD control. 

4. Discussion 

The cases of obesity, diabetes, hypertension and CVDs have tremendously in-
creased in recent times making metabolic syndrome (MetS) a common global 
public health issue. There remains a growing public interest towards natural 
product based therapeutics in place of synthetic drugs due to their side effects to 
treat such diseases. Adipogenesis is the key process that involves growth and di-
vision of adipocytes. Agents that modulate adipocyte differentiation, lipid me-
tabolism, adipokines and insulin resistance have been reported to reduce obesity 
and diabetes. Here, we have demonstrated anti-obesity and anti-insulin resis-
tance effects of CFTp in HFD-fed obese rats. Further, in vitro treatment of CFTp 
in 3T3-L1 cells exhibited inhibition of adipogenesis and increased lipolysis. 
Overall, these findings support pharmacological effects of CFTp, which can be 
treated as natural product therapy in patients with obesity-related compilations. 

Inhibiting the activity of key enzymes of carbohydrate and lipid metabolism 
has been considered as potential therapeutic target to contain obesity and di-
abetes [25]. In the present study CFTp substantially inhibited the activity of 
α-glucosidase and pancreatic lipase (Figure 2). Previous studies on phytochem-
icals of Oncoba spinosa and Ficus carica have shown inhibition of α-amylase, 
α-glucosidase and pancreatic lipase activity leading to anti-obesity and an-
ti-diabetic activity [26] [27]. Piper and Capsicum extracts have brought about 
weight reduction in diet induced obese rat models through inhibition of key li-
pid metabolizing enzymes [28] [29]. 

Our studies on mRNA expression level showed down-regulation of PPAR-γ, 
FAS and ACC-2 but up-regulation of Glut-4 in the presence of CFTp. This indi-
cates that, CFTp exerts anti-adipogenic activity through modulation of master 
transcriptional regulator PPAR-γ as well as ACC-2 and FAS [10] [11]. 
Down-regulation of ACC-2 by CFTp might lead to increased oxidation of fatty 
acids and favours glucose uptake (as evident from increased expression of 
Glut-4) leading to its oxidation and might contribute to decrease insulin resis-
tance [9]. 
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Enhanced levels of reactive oxygen species (ROS) are observed during obesity 
development. Phytochemicals with potent antioxidant activity could support in 
attenuation of obesity ailments. In the present study CFTp showed potent antioxi-
dant and free radical scavenging activity which might augment the therapeutic effi-
ciency of T. purpurea to treat obesity and insulin resistance (Figure 1(A), Fig-
ure 1(B)). Particularly, the presence of 4-(4-methoxyphenyl)-1H-1,2,3-triazole 
in CFTp could act on NADPH oxidase (NOX) or Toll-like receptor (TLR-4) 
leading to reduced inflammation, insulin resistance and obesity [30] [31]. Our 
results suggest that, CFTp has beneficial effects in the management of adipoge-
nesis, hyperlipidemia and insulin resistance. 

5. Conclusion 

These findings suggest that, CFTp attenuates insulin resistance and obesity 
through inhibition of key enzymes of carbohydrate and lipid metabolism, mod-
ulation of leptin and adiponectin levels in HFD-induced obese rats and through 
transcriptional regulation of mRNA expression of PPAR-γ, FAS, ACC-2 and 
Glut-4 levels in 3T3-L1 adipocytes. Thus, CFTp could be considered as an effec-
tive therapeutic agent to treat obesity and insulin resistance. 
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transporter type-4; DPPH, 2,2-diphenyl-1-picrylhydrazyl; FRAP, ferric reducing 
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