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Abstract 
Ionic liquids (ILs) with buffering and chelating abilities were designed and 
synthesized on the basis of ethylenediaminetetraacetic acid (EDTA) for the 
development of buffered enzymatic IL systems and for enzymatic reaction in 
heavy metal containing aqueous system. Transesterification activity of Can-
dida antarctica lipase B dissolved in the hydroxyl-functionalized IL was buffer 
dependent. High activity and outstanding stability was obtained with the buf-
fered enzymatic IL systems for the transesterification. In heavy metal con-
taining aqueous system, EDTA IL buffers as Hg2+ chelators protected horse-
radish peroxidase (HRP) against Hg2+-induced denaturation and precipita-
tion. Higher pH favored the protection, while at lower pH the protection di-
minished. We can conclude that the new ILs possess both buffering and che-
lating abilities. 
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1. Introduction 

Enzymes catalyze a wide variety of reactions best in heavy-metal-free aqueous 
environments and at physiological pH with exquisite selectivity and stereospeci-
ficity [1]. Thus, an appropriate buffer is needed to closely regulate the ionization 
state of ionizable groups of the enzyme in both aqueous and non-aqueous me-
dia. We have synthesized a new class of ionic liquids (ILs) with buffering beha-
viour that are referred to as IL buffers, which can be used for control of ioniza-
tion state of enzymes in non-aqueous media [2]. Remarkable buffer dependence 
of the catalytic activities has been observed in hydrogenation of olefins [2] and 
selective hydrogenation of unsaturated aldehyde [3] in organic solvents and in 

How to cite this paper: Ou, G.N. and He, 
B.Y. (2019) New Ionic Liquids with Buf-
fering and Chelating Abilities for Enzyme 
Engineering. Advances in Bioscience and 
Biotechnology, 10, 320-330. 
https://doi.org/10.4236/abb.2019.1010025 
 
Received: September 16, 2019 
Accepted: October 20, 2019 
Published: October 23, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/abb
https://doi.org/10.4236/abb.2019.1010025
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/abb.2019.1010025
http://creativecommons.org/licenses/by/4.0/


G. N. Ou, B. Y. He 
 

 

DOI: 10.4236/abb.2019.1010025 321 Advances in Bioscience and Biotechnology 
 

ILs. Organic solvents are widely used with enzymes to improve the solubility of 
hydrophobic reactants and/or products and to shift reaction equilibria from hy-
drolysis toward synthesis [4]-[9]. With the emergence of ILs, the use of ILs as a 
new type of non-aqueous medium may offer a convenient solution to both the 
solvent emission and the catalyst recycling problem [5] [9]-[22]. 

Increasing water contamination by heavy metals has prompted investigations 
to find ways to clean the environment and also to understand the mechanisms 
leading to metal toxicity, among which is enzyme inhibition. This inhibition was 
most often attributed to the reaction of the metal ions with the thiol groups of 
cysteine residues of the enzyme, resulting in the formation of mercaptides [23] 
[24]. 

It was reported that peroxidases are inhibited by heavy metal ions at higher 
concentrations [25] and Hg2+ ion is listed as the most effective inhibitor [26] 
[27]. Konyaeva et al. reported that Hg2+ chelators like EDTA can protect he-
moglobin against Hg2+-induced denaturation and precipitation [28]. 

Like most biological buffers in use today, IL buffers were developed only for 
keeping the pH of a solution constant, which cannot protect enzymes against 
metal-induced denaturation and precipitation. We then designed and synthe-
sized new ILs with both buffering and chelating abilities for enzymatic reactions 
in heavy metal containing aqueous system and in IL system. 

2. Materials and Methods 
2.1. Materials 

Candida antarctica lipase B (CALB, 10.9 U∙mg−1), horseradish peroxidase (HRP, 
150 U∙mg−1), bis-tris-propane (BTP), guaiacol and ethyl butyrate were purchased 
from Sigma-Aldrich. Ethyl butyrate and n-butanol were analytical reagents and 
were dried by 3A molecular sieves before use. All other chemicals and reagents 
were of analytical grade. 1-buthyl-3-methyl-imidazolium chloride ([BMIM]Cl) 
and 1-(1-hydroxyethyl)-3-methyl-imidazolium tetrafluoroborate ([C2OHMIM] 
[BF4]) were synthesised according to published procedures [11]. [C2OHMIM] 
[BF4] was checked for the absence of chloride and acid. The IL was passed 
through a neutral alumina column, dried at 50˚C under reduced pressure for 
more than 18 h, and stored under dry N2. 

The 1H NMR and 13C NMR spectra were obtained on a Brüker AV-400 Fouri-
er transform NMR spectrometer. 1H NMR spectra were referenced to tetrame-
thylsilane in CDCl3. 

2.2. pH Titration Procedure 

Titration was carried out using a custom-built autotitrator. Place a magnetic 
stirring bar in the beaker and set the beaker over a magnetic stirrer. An appro-
priate amount of EDTA acid (1.0 mmol) was dissolved in 20 mL of water. Im-
merse the electrodes in the solution and start the stirring. 0.1 M [BMIM] [OH] 
solution was added by a peristaltic pump (Shanghai Hu Xi analysis instrument 
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factory Co., Ltd., model HL-2) running at 1.0 mL∙min−1. The pH of the mixture 
was recorded with a pH meter (ORION, model 828) interfaced to a computer. 

2.3. Synthesis of EDTA IL Buffer 

An aqueous solution of 1-buthyl-3-methyl-imidazolium hydroxide ([BMIM]OH) 
was prepared by passing [BMIM]Cl solution through a column filled with anion 
exchange resin, as described in the literature [2] [11]. The aqueous [BMIM]OH 
solution was then neutralized with EDTA acid in a beaker and the pH of the so-
lution was adjusted to 3.90, 6.50, 8.50 or 9.80. The solution was evaporated at 
50˚C under reduced pressure to give a viscous liquid, which was then vacuum 
dried at 50˚C for 18 h to afford EDTA IL buffer. NMR spectra of EDTA IL buf-
fer: pH 9.80 1H NMR (400 MHz, D2O) δ: 7.368 (s, 4H, im-H), 7.320 (s, 4H, 
im-H), 4.088 (t, 8H, -CH2), 3.784 (s, 12H, im-CH3), 3.447 (s, 8H, N-CH2-COO-), 
3.033 (s, 4H, N-CH2-CH2-N), 1.721 - 1.758 (m, 8H, -CH2), 1.199 - 1.217 (m, 8H, 
-CH2), 0.794 - 0.831 (t, 12H, -CH3); 13C NMR (400MHz, D2O) δ: 175.703, 
135.599, 123.385, 122.119, 57.238, 51.069, 49.200, 35.547, 31.212, 18.706, 12.600. 
pH 3.90 1H NMR (400 MHz, D2O) δ: 8.067 (s, 2H, im-H), 7.368 (s, 2H, im-H), 
7.328 (s, 2H, im-H), 4.085 (t, 4H, -CH2), 3.796 (s, 6H, im-CH3), 3.782 (s, 8H, 
N-CH2-COO-), 3.580 (s, 4H, N-CH2-CH2-N), 1.717 - 1.754 (m, 4H, -CH2), 1.195 
- 1.214 (m, 4H, -CH2), 0.790 - 0.827 (t, 6H, -CH3); 13C NMR (400 MHz, D2O) δ: 
170.500, 135.822, 123.4495, 122.169, 57.939, 51.569, 49.232, 35.602, 31.235, 
18.721, 12.624. 

2.4. General Procedures of Enzymatic Transesterification in IL 

CALB (1.2 mg) was dissolved in 500 μL of [C2OHMIM][BF4] (30 mg of EDTA IL 
buffer was added in the case of buffered medium) in a 5 mL flask. 110 μL (0.83 
mmol) ethyl butyrate and 110 μL (1.21 mmol) n-butanol and 50 μL nonane (in-
ternal standard) were added. The reaction mixture was stirred at 40˚C in oil bath 
for 3 h. After the reaction was complete, the products was decanted from 
[C2OHMIM][BF4]. The organic phase was analyzed with a gas chromatograph 
equipped with an FID and a capillary column (SE-30, 30 m × 0.32 mm × 0.25 
μm). The residual reactant mixture in IL phase was removed in vacuum at 40˚C 
for more than 1 h. The new cycle was restarted by addition of fresh substrate. 

2.5. HRP activity in Mercury Containing Aqueous System 

HRP activity was measured by following the H2O2-dependent oxidation of 
guaiacol at 470 nm. Guaiacol stock solutions (1.0 mM) were prepared by dis-
solving guaiacol in 0.1 M buffer. For assays done in the presence of Hg2+ ions, 
appropriate amounts of Hg(NO3)2 stock solution were mixed with 0.1 M buffer 
and the pH was readjusted whenever required. H2O2 stock solutions (300 mM) 
were prepared daily by appropriate dilution of 30% H2O2 in distilled water. HRP 
solutions (10 μg/ml) were prepared by dissolving the enzyme in distilled water. 
The assay was performed by mixing 500 μL guaiacol stock solutions with 15 μL 
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of HRP solution (final concentration 7.8 nM) and the mixture was then incu-
bated at 298 K for 30 min. The reaction was started by adding 15 μL of 300 mM 
H2O2. The initial velocity (v0) of the oxidation of guaiacol was determined from 
linear plotting of the absorbance versus time, using an extinction coefficient of 
2.66 × 104 M−1∙cm−1 for guaiacol-derived oxidation product. 

All assays were carried out at 298 K using a UV-Vis spectrophotometer (Un-
ico, UV2800) which cell was connected to a thermostat. 

3. Results and Discussion 
3.1. Titration Profiles of EDTA 

The titration profile of EDTA with [BMIM]OH in water expressed 3 buffer-
ing-like regions, which are centered at pH 3.90, 6.50 and 8.50, respectively 
(Figure 1). 

Thus, we considered that it is possible to synthesize new ILs of buffering abil-
ity by neutralization of aqueous solutions of [BMIM]OH with aqueous solutions 
of EDTA at pH 3.90, 6.50 and 8.50, as illustrated in Scheme 1. 

3.2. Synthesis and Characterization of EDTA IL Buffer 

The structure of EDTA IL buffers were shown in Scheme 1. The IL buffers were 
synthesized as previously reported [2] [11] and characterized by NMR. The cha-
racterization data of EDTA IL at pH 3.90 and pH 9.80 are consistent with the 
expected compositions and structures. The pH, the dilution value, and buffer 
values of EDTA IL buffers were summarized in Table 1. It can be seen that the 
ILs synthesized possess buffering ability and can be used for controlling the io-
nization of enzymes in both aqueous and non-aqueous media. 
 

 
Figure 1. Titration for 0.05 mol∙L−1 EDTA versus 0.1 mol∙L−1 [BMIM]OH in water at 
room temperature. Titration rate is 1.0 mL∙min−1. 
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Scheme 1. Synthesis of EDTA IL buffer. 

 
Table 1. pH, buffer values, and dilution values of the aqueous solution of EDTA IL buff-
ers. 

Buffer pH Concentration/mol∙L−1 Dilution valuea) Buffer valueb) 

IL- 3.90 3.90 0.025 +0.01 0.004 

IL- 6.50 6.50 0.025 +0.03 0.011 

IL- 8.50 8.50 0.025 +0.03 0.002 

The structure of EDTA IL buffers, [ ] [ ]nBMIM EDTA
n

+ −  were shown in Scheme 1. The parameters were 

measured at room temperature. aDilution value is defined as the change of pH on dilution with an equal 
volume of water. bThe buffer value is defined as the number of moles of strong base required to change the 
pH of one liter of solution by one unit. 

3.3. Enzymatic Transesterification in the Presence of EDTA IL 
Buffer 

Lipase-mediated transesterification is one of the economically viable clean tech-
nology for flavor ester production [29]. To test the activity of CALB lipase in 
dissolved form in ILs, we examined the CALB-catalyzed transesterification of 
ethyl butyrate with n-butanol. All the reactions were performed under the same 
conditions, 40˚C and 300 rpm, in this study to eliminate any temperature or 
mixing effects. The results showed that CALB afforded lower substrate conver-
sion in pure [C2OHMIM][BF4] (8.7%). In contrast, CALB exhibited great tran-
sesterification activity in the buffered [C2OHMIM][BF4] (see Figure 2), indicat-
ing that the buffer was responsible for the rate enhancement. 

The above results showed that the lipase activity is greatly affected by the IL 
and IL buffer. This is because the ionization constant of ionizable groups of the 
lipase is greatly affected by the solvent [30]. Thomazeau et al. reported that the 
acid HNTf2 is more acidic in [BMIM][NTf2] and [BMIM][BF4] than in water 
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Figure 2. Transesterification of ethyl butyrate with 1-butanol catalyzed by CALB in buf-
fered ILs. Reaction conditions: CALB powder 1.2 mg; 500 μL of [C2OHMIM][BF4]; 30 mg 
of EDTA IL buffer; 110 μL of ethyl butyrate (0.83 mmol); 110 μL of 1-butanol (1.21 
mmol); 50 μL nonane (internal standard); stirring speed = 300 rpm; temperature = 40˚C. 
The conversion was calculated by ethyl butyrate. 

 
[31]. Thus, when CALB transfer from water to [C2OHMIM][BF4], the ionization 
state of the lipase will be changed, resulting in decrease of lipase activity. And 
addition of EDTA IL buffer can regulate the ionization state of ionizable groups 
of the lipase to the appropriate state. One can conclude that enzyme activity in 
ILs is also buffer dependent as in aqueous systems. 

The recycling ability of the soluble CALB in buffered [C2OHMIM][BF4] under 
the above reaction conditions is illustrated in Figure 2. After each reaction, the 
reactant mixture in the upper layer and CALB-IL in the lower layer were sepa-
rated by decantation. The CALB-IL phase was then evacuated to remove residual 
reactant mixture and charged for the next reaction without adding any new en-
zyme, IL, and buffer. The lipase activity dropped significantly during recycling 
in the presence of EDTA IL buffer of pH 3.90, suggesting that the lipase was 
gradually denatured in the acidic environment. However, the conversion of ethyl 
butyrate can maintain 75% of its initial value after 10 runs in the presence of 
EDTA IL buffer of pH 6.50 or pH 8.50, indicating that the dissolved CALB in the 
above buffered [C2OHMIM][BF4] is very stable. 

3.4. HRP Activity in Mercury Containing Aqueous System 

Oxidative stress causes uncontrolled oxidation, resulting in the progressive dete-
rioration and the collapse of organs and systems in the living organisms [32]. 
Peroxidases are important detoxifying enzymes serving to rid cells of excess 
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Figure 3. Hg2+ effect on HRP activity in EDTA IL buffer system. [HRP] = 7.8 nM and 
[Hg2+] = 6.0 mM. 500 μL guaiacol solution (1.0 mM); 5 μL H2O2 (300 mM ); temperature, 
298 K. The initial velocity (v0) of the oxidation of guaiacol was determined from linear 
plotting of the absorbance versus time, using an extinction coefficient of 2.66 × 104 
M−1∙cm−1 for guaiacol-derived oxidation product. The error bars represent the standard 
deviation of measurements. 

 

 
Figure 4. Comparison of Hg2+ effect on HRP activity in EDTA IL and BTP buffer sys-
tems. [HRP] = 7.8 nM and [Hg2+] = 6.0 mM. r0 and rHg are the initial rate in Hg free and 
Hg containing systems, respectively. 
 
H2O2, Horseradish peroxidase (HRP) is one of the best characterized peroxidases 
[33]. The effects of Hg2+ on HRP can be easily assayed through activity of 
H2O2-dependent oxidation, which can be assayed spectrophotometrically at 470 
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nm using the H2O2-dependent oxidation of guaiacol. 
Figure 3 showed that EDTA IL buffers as Hg2+ chelators protected HRP 

against Hg2+-induced denaturation and precipitation. Higher pH favored the 
protection, while at lower pH the protection diminished. Because the concentra-
tion of the deprotonated conjugate base of EDTA increases with the increase of 
pH of solution, its subsequent increased binding to Hg2+ causes the protection of 
HRP against Hg2+-induced denaturation. On the contrary, there is almost no 
Hg2+ chelators in BTP buffer system, thereby, Hg2+ inhibition occurs. This che-
lating effect undoubtedly explained the difference in Figure 3 and Figure 4. 

4. Conclusion 

In summary, ILs based on EDTA were synthesized by neutralization of 
[BMIM]OH with EDTA acid for the development of buffered enzymatic IL sys-
tems and for enzymatic reaction in heavy metal containing aqueous system. In 
buffered [C2OHMIM][BF4], transesterification activity of CALB is buffer de-
pendent and CALB is stable during recycles. In EDTA IL buffer aqueous system, 
EDTA as Hg2+ chelators protected HRP against Hg2+-induced denaturation and 
precipitation. Higher pH favored the protection, while at lower pH the protec-
tion diminished. We can conclude that the new ILs possess both buffering and 
chelating abilities and can be used for enzymatic applications. 
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