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Abstract: Large rotating machinery, such as centrifugal gas compressors and pumps, have been
widely applied and acted as crucial components in the oil and gas industries. Breakdowns or
deteriorated performance of these rotating machines can bring significant economic loss to the
companies. In order to conduct effective maintenance and avoid unplanned downtime, a system-wide
health indicator is proposed in this paper. The health indicator not only uses a dynamic risk profile,
but also considers financial loss and the fault probability based on condition monitoring data. This
methodology is carried out by four steps: fault detection, probability of fault calculation, consequence
of fault calculation and dynamic risk assessment. In our methodology, the fault probability is
calculated by robust Mahalanobis distance, presenting as a system-wide feature from a sparse
autoencoder fault detection model enabled early fault detection. The value of the health indicator is
presented in financial loss, which assists in effective operational decision-making in a process system.
To evaluate the performance of the proposed indicator, two case studies were carried out—one case
tested on multivariate industrial data obtained from a pump, and another one tested on an industrial
data set from a compressor. Results prove that the integrated health indicator can detect the faults
at their incipient stages, indicate the degradation of the system with dynamically updated process
risk at each sampling instant, and suggest an appropriate shutdown time before the system suffers
severe damage. In addition, this methodology can be adapted to other machines’ health assessments,
such as those of turbines and motors. The presented method of processing the industrial data set can
benefit relevant readers.

Keywords: condition monitoring; health indicator; dynamic risk assessment; financial loss; fault
probability; decision making

1. Introduction

Maintenance aims to minimize or avoid the performance degradation and unplanned
downtime caused by the inevitable degradation of machines over their service times and
to keep them in good working condition. Lack of maintenance is one of the key reasons
that has led to catastrophic consequences and significant economic losses in industry [1].
Therefore, an appropriate maintenance strategy is essential for companies to minimize
their maintenance expenses and maximize profit [2].

Among the commonly used maintenance methods, the risk based inspection
/maintenance (RBI/RBM), which aims to reduce the overall risks that may result in unex-
pected failures [3], is attracting more attention. Many companies report that RBI/RBM’s
systematic approach to inspection and maintenance can not only improve safety but also
reduce operating cost [4].

Although RBI/RBM can quantify the risk associated with a particular process activity,
the quantitative risk assessment factor cannot be updated during the life of a process [5]. To
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overcome this, a dynamic risk assessment method has been developed, which can capture
the time-dependent behavior of the system risk profile.

Bayes theorem is a popular algorithm used for dynamic risk assessment. Meel and
Seider [6] applied Bayes theorem to dynamically update the estimates of accident probabil-
ities, using near misses and incident data collected from similar systems. The hierarchical
Bayesian model was applied to estimate the updated risk profile in [7,8]. In [9], Bayes
theorem was combined with a bow-tie model to assess and update the risk profile in a
sugar refinery.

Most existing dynamic risk assessment methods, as reviewed above, only use statisti-
cal data, i.e., count data of accidents or near misses (precursors) from similar systems, to
update the estimated risk profile. A major drawback of these methods is that one must wait
until accidents or near misses (precursors) occur before updating the estimation of the risk
profile. Besides, statistical data are collected from similar systems, reflecting population
characteristics but not fully accounting for the individual features of the target system.

Industry today seeks maintenance solutions based on real-time health monitoring of
assets [10,11]. Instead of collecting data from similar systems, the condition monitoring
data give information on the individual degradation process of the target system, providing
an opportunity to update the risk factor before actual failure occurs. Therefore, introducing
condition monitoring data in dynamic risk assessment could be a beneficial complement to
the statistical data, towards a condition monitoring-based dynamic risk assessment [12].

There have been a few attempts in the direction of applying condition monitoring data
into the dynamic risk assessment. Zadakbar et al. [13] proposed a multivariate risk-based
fault detection and diagnosis method using Kalman filter to estimate the degradation states
based on condition monitoring data and calculated the residual between the measured
data and estimated data. Similar works were carried out by the same research group
using different condition monitoring techniques, such as the control chart technique [14],
principal component analysis (PCA) [15], and the particle filter [16]. Zeng and Zio [17]
developed a dynamic risk assessment model by combining statistical failure data and
condition monitoring data. However, most of the aforementioned methods do not involve
consequence analysis models when calculating the risk profiles. In reference [13–16], the
“consequence” in the risk model was replaced by a severity score for a fault designed for the
applied fault detection method, i.e., control chart technique, PCA. In [17], the consequence
analysis model was specially designed for a high-flow safety system in a tank.

Therefore, a literature review was carried out on the consequence analysis model,
which is an important component of the dynamic risk assessment model. API RP 581 [18],
published by American Petroleum Institute, is a risk-based maintenance standard applied
for petrochemical equipment, such as tanks, compressors, and pumps. The consequences
calculation method in [18] includes qualitive, semi-qualitive, and static quantitative models,
lacking a fully quantitative consequence model that is applied on condition monitoring data.
To quantify process losses, several researchers proposed different types of loss functions.
Khan et al. [19] carried out a comprehensive review of these loss functions and discussed
their application in detail. In the paper, an inverted beta loss function was applied for units
requiring both the upper and lower boundaries of an operating variable; inverted normal
loss function was used for units only requiring the upper boundary of an operating variable;
and multivariate inverted loss function was employed for units requiring multivariate
monitoring. More works on applying loss function in risk assessment can be found
in [20–22].

However, irrespective of the good performance of the aforementioned works, some
challenges remain in maintenance of machines in real industrial applications.

1. On one hand, dynamic risk-based maintenance research [13–16,19–22] focuses on
lowering the entire risk of the system, without putting much attention on the early
detection of the fault. In the dynamic risk model, the fault/failure probability is
heavily related to fault detection. Therefore, there is a requirement to improve the
fault/failure probability calculation model with the application of advanced fault
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detection methods. Meanwhile, the loss function is suggested to be integrated into
the risk model, as it can help estimate process economic risk and assist in effective
operational decision-making.

2. On the other hand, fault detection research [23–26] mainly focused on the develop-
ment of an advanced model to detect an incipient fault, without considering the
optimum time for maintenance. Most of the models [23–25] were tested on simulated
or experimental data only, lacking the evaluation on real industrial data.

To address the aforementioned challenges, this paper proposes a system-wide health
indicator using a dynamic risk profile, which takes into account both the financial loss and
the fault probability based on condition monitoring data. In our methodology, the fault
probability is calculated by robust Mahalanobis distance, measuring the difference between
the condition monitoring data and the data under healthy conditions, and it is presented
as a system-wide feature from a sparse autoencoder fault detection model, enabling early
fault detection. The value of the health indicator is presented in financial cost, which assists
in effective operational decision-making in a process system. The threshold setting is based
on various literature reviews on anomaly detection [27–29] and an industrial standard
(API 581) [18] by the American Petroleum Institute. The main benefits of the proposed
method include early detection of faults, fault analysis, suggesting maintenance time, safety
improvement, and minimum interruption of operation.

The rest of the paper is organized as follows. The proposed health indicator and the
algorithms employed in this paper are explained in Section 2. Based on the proposed
methodology, the performance of the health indicator was evaluated on multivariate
industrial data obtained from a pump and a compressor; see Sections 3 and 4 respectively.
Finally, the conclusion and the main contributions are highlighted in Section 5.

2. Methodology

This section proposes a methodology to calculate a system health indicator, as pre-
sented in Figure 1. It consists of two phases: (1) an offline phase to develop the fault
detection model and risk model, and (2) an online phase to detect make maintenance
decisions. The detailed working mechanisms of these two phases are explained in the
following two sub-sections.

In the proposed methodology, the system health indicator is represented by the
dynamic risk profile (R) of the system, which is calculated by the probability of fault
(POF) and consequence of fault (COF). The POF is derived from the offline training data
under normal conditions and the COF is measured by financial loss using inversed normal
distribution. The health indicator contains two stages of threshold. The threshold R1
indicates a fault is detected in the system and suggests operators to take priority response
(i.e., schedule a proper maintenance time). The threshold R2 suggests a shutdown is
required to ensure the safety running of the machine and avoid unplanned shutdown. The
health indicator can be used for fault detection and for taking any supervisory decisions to
activate appropriate safety systems in real time.

This work is a further development of our pervious work [1], where we developed a
fault detection and isolation scheme based on sparse autoencoder (SAE), but did not take
financial factors into consideration. This paper merged the system-wide feature, which is
obtained by SAE and Mahalanobis distance (MD), and the financial consequences into a
comprehensive system health indicator. The proposed health indicator can demonstrate
the health condition of the system to the operator at real time, assist the operators on when
an incipient fault is detected, how the system is degraded, what type of fault the machine
suffers from, when the deadline is for maintenance.
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Figure 1. Flow chart of the proposed methodology to calculate integrated system health indicator (estimated maximum loss
(EML), description presented in Section 2.1.3; h is system wide feature in the offline phase; hM is system wide feature in
the online phase; d1 is the fault detection threshold in Mahalanobis distance; d2 is the shutdown threshold in Mahalanobis
distance; R1 is the fault detection threshold for the system health indicator (R); R2 is the shutdown threshold for the system
health indicator.)

2.1. Offline Phase—Model Development and Threshold Calculation

The offline phase builds three models, which are fault detection model, POF model,
and COF model with application of history data under normal condition. Based on these
models, the risk threshold (R1) of the health indicator is calculated.

2.1.1. Fault Detection Model Training
2.1.1.1. Calculation of a System-Wide Feature

In this methodology, the fault detection model is built using the SAE. The MD cal-
culates the statistical difference of the residual outputs between actual inputs and recon-
structed outputs. Then, the statistical difference is used as a system-wide feature for fault
detection and POF estimation.

The SAE is a special type of feedforward unsupervised neural networks. An advantage
of the unsupervised neural network is that it can detect anomaly without data being
labelled. While for conventional Artificial neural network (ANN) and other types of
supervised ANN methods, the input and output of models should be identified by the
operators. The SAE can be divided into an encoder and a decoder. The encoder extracts
features from the input data, which is case-dependent and is defined in Sections 3 and 4.
The decoder reconstructs the autoencoder state back to the input data space. The structure
of SAE can be found in Figure 2.
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The SAE reconstructs the input vectors in the output layer using Equation (1).

X̃ = HW,b(X) ≈ X (1)

where X is the input vector, and X̃ is the reconstructed output. HW,b(X) is the nonlinear
function of SAE, which predicts output X̃ based on the input X, using parameters W and b.
The details of SAE mechanisms can be found in [30,31].

Then, the multivariate residuals E between the input variables X and the reconstructed
outputs X̃ can be calculated by Equation (2).

E = X̃− X (2)

To detect the existence of a fault, an integrated feature is developed based on the
multivariate residuals. In our methodology, the Mahalanobis distance are applied. The MD
is a unitless distance measurement, which considers the correlations among variables. It
has been successfully applied for the anomaly detection in wind turbine data [27–29], and
early fault detection in pumps [30].

In this paper, a robust MD [29,32] is calculated using Equation (3). It calculates
statistical difference of the residual outputs between actual and estimated inputs and used
as an integrated system-wide feature.

h =

√
(E− µ̂)MCD−1(E− µ̂)T (3)

where h is the Mahalanobis distance, µ̂ is the robust measure of central tendency (the me-
dian) and MCD−1 is the inverse covariance matrix calculated from the sample population
through the minimum covariance determinant estimator [29].

The MD considers all input variables of the process data. Any anomalies in the process
data can cause changes in this integrated system-wide feature.

2.1.1.2. Estimation of Probability Density Function (PDF)

The distribution of system-wide feature (h) influences the following steps on threshold
and POF calculation. Reference [27] used Weibull distribution on fault detection threshold
estimation, while reference [29] applied kernel distribution. Reference [15] used Normal
distribution on POF calculation, while reference [33] applied kernel distribution. In this
paper, to make our model more accurate, we add a procedure to select the best-fitting
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probability distribution model for system wide feature h among four well-known candidate
distributions. The candidate distributions and their probability density functions (PDF) are
summarized in Table 1.

Table 1. The probability density function and their parameters.

Life Distribution Probability Density Function Parameters

Generalized extreme
value distribution

For k 6= 0,

f (x) = 1
σ exp (−(1 + k (x−µ)

σ )
− 1

k
)(1 + k (x−µ)

σ )
−1− 1

k

For k = 0
f (x) = 1

σ exp (− exp (− (x−µ)
σ )− (x−µ)

σ )

k is the shape parameter.
σ is the scale parameter.

µ is the location parameter.

Lognormal
distribution f (x) = 1

xσ
√

2π
exp [

−(logx−µ)2

2σ2 ]
µ is the mean of logarithmic values.

σ is the standard deviation of logarithmic values.

Normal distribution f (x) = 1
σ
√

2π
e−

1
2 (

x−µ
σ )

2 µ is the mean value.
σ is the standard deviation.

Kernel distribution fh(x) = 1
nh

n
∑

i=1
K( x−xi

h )
h is the bandwidth.
n is the sample size.

In Table 1, the generalized extreme value distribution (GEVD) includes three types
of extreme value distributions (see Figure 3), which are type I (k = 0), type II (k > 0), and
type III (k < 0).
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The parameters of the distributions can be estimated using maximum likelihood
estimation. The goodness-of-fit test should be performed to quantify how the selected
distribution matches the original data. There are numerous statistical fitting tests, which are
commonly used for evaluating the goodness of the distribution fitting. Some of the popular
statistical fitting tests include Kolmogorov–Smirnov test (K–S) test, Anderson–Darling test,
Cramer–von Mises test, chi-squared test, etc.

In this paper, K–S test [34] is applied to determine if a hypothesized distribution fits a
data set. This test can be used for small and large sample sizes. The K–S test compared
the sample’s empirical cumulative distribution function (CDF) (F′(t)) with the CDF of
a selected distribution F(t). If F′(t) deviates too much from F(t), the null hypothesis is
rejected. In this paper, the null hypothesis is that the selected distribution fits the sample
data. The outputs of K–S test are H and a p value. H is the decision whether to rejected the
hypothesis or not. H = 1 if the test rejects the null hypothesis at the 5% significance level,
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or 0 otherwise. The p value is the probability of observing a test statistic as extreme as, or
more extreme than, the observed value under the null hypothesis. Its range is [0, 1]. Small
values of p cast doubt on the validity of the null hypothesis.

2.1.1.3. Calculation of Thresholds

After getting the PDF function, the fault detection threshold d1 can be obtained from
the PDF function of h for a given confidence level α (α = 0.99 was applied [27]) by solving
Equation (4):

P(h < d1) =
∫ d1

−∞
p(h)dh = α (4)

In Equation (4), p(h) is the PDF function of the selected probability distribution of h.
The details of probability distribution selection can be found in Section 2.1.1.2.

If no corrective action was taken after a fault being detected, the online MD value
would exceed the shutdown threshold d2. The value of this threshold based on the ac-
ceptable criteria of the specific process system. Alternatively, according to [20], when not
enough information is available, the shutdown threshold of a measurement can be defined
as 4 times larger than its maximum operating value.

d2 = min
(√[(

P− P
)
− µ̂

]
MCD−1[

(
P− P

)
− µ̂]

T
)
) (5)

where P is a combination matrix, which covers any variables in the training data becomes
4 times larger than their normal operating values. The value of P can also be given by
the end users based on the acceptable criteria of the specific process system. P is the
reconstructed output. µ̂ and MCD−1 are adopted directly from the training phase as
calculated in Equation (3).

2.1.2. Build Probability of Fault (POF) Model

The probability of fault (POF) indicates the probability of a fault that happened
on the piece of equipment. Hence, the POF of equipment should be calculated using
measurements that can reflect the health status and degradation process of equipment.
Usually, only one key variable is selected to calculate the probability, and this variable is
expected to be the most sensitive one in the system [35]. In our methodology, the system
wide feature (h) is selected for POF calculation.

A visual depiction of the proposed POF is presented in Figure 4. It ranges from 0 to 1.
When no fault is detected in the system, POF < 0.5; when a fault or an anomaly is detected,
POF = 0.5; if no maintenance actions are taken after a fault is detected, the POF would
keep increasing to 1.

Note that, the POF = 1 means the system definitely has a fault, rather than a catas-
trophic failure. d1 is a MD value for early fault detection. When the integrated system-wide
feature (h) is greater than d1, there should be an early fault in the system. However, consid-
ering the fault detection method has false alarm rates, we adjusted the POF(d1) to 0.5. If the
system suffers a fault, it will cause further performance degrading, and the system-wide
feature (h) will increase to 1.

In Figure 4, the blue curve is the cumulative distribution function (CDF) of a standard
distribution, and it can be express as:

CDF =
∫ h

0
f (x)dx (6)

where f (x) is the probability density function depend on the selected distribution.
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Figure 4. The proposed probability of fault (POF) model.

The offline POF model (black curve in Figure 4) is obtained by moving the CDF to
a new position, with the horizontal movement distance equals (d1 − xd). The xd can be
calculated by solving Equation (7). ∫ xd

0
f (x)dx = 0.5 (7)

where f (x) is the probability density function depending on the selected distribution
for the training data. The details of probability distribution selection can be found in
Section 2.1.1.2.

Therefore, the POF is expressed in Equation (8):

POF =
∫ h

0
f (x− (d1 − xd))dx (8)

where d1 is the fault detection threshold for the fault detection model that were calculated
during training stage using Equation (4). h is the Mahalanobis distance in Equation (3).

When POF reaches 1, a fault is occurred in the system, however, as it is still in its
early stage, the financial consequence is low. In order to fully use the remaining life of the
machine, we calculated a shutdown threshold d2, which is calculated using method that
was proposed in reference [2] and an industrial standard API 581 [3].

2.1.3. Build Consequence of Fault (COF) Model Using Loss Function

The consequence of fault (COF) is to quantify the potential consequence of the fault
scenario and the loss function is employed for the calculation of COF. In condition moni-
toring process, the process loss starts to increase if the high-contributing process variables
exceed their normal operation thresholds, and the maximum process loss is reached after
any of the identified variables breach the shutdown threshold [22]. The loss function
used to quantify the process loss is the inverted normal loss function, which is the most
widely used pattern for describing random variables [19]. The loss function is given by
Equation (9) [19,22].

COF = EML·(1− e−(h−htarget)
2/2γ2

) (9)
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In Equation (9), EML represents the estimated maximum financial loss based on the
worst conditions and it can be calculated as:

EML = CD + CM + CL + CTS + CAL + CHL + Cothers (10)

where CD is downtime production loss, CM is the material cost, CL is the labor cost, CTS
is the technical support cost, CAL is the economic consequence of asset loss, CHL is the
economic consequence of human health loss, and Cothers can include environmental clean-
up cost, indirect costs that represent secondary effects, etc.

In Equation (9), h represents the Mahalanobis distance calculated by Equation (3),
htarget is the target value of variable when financial loss is zero [19]. Hence, htarget = 0 in
this case. γ is the shape parameter defining at which value of the process variable when
the maximum loss is reached. The shape parameter γ is calculated using Equation (11) by
the least squares method.

min
γ>0

= (L− EML·(1− e
−d2

2

2γ2 ))

2

(11)

where L is the financial loss based on the worst case conditions, EML·(1− e−d2
2/2γ2

) is
the COF value when MD reaches the shutdown threshold d2. The shutdown threshold
is set to ensure the safety running of the machine, avoid unplanned shutdown and high
financial loss. In our case, when the performance feature exceeds its shutdown threshold,
the degradation of a machine can increase rapidly, or its performance becomes very difficult
to predict. At this circumstance, a machine is in a very dangerous situation, but there still
exist a bit of time for the faulty machine to reach its maximum financial loss. In this case,
the financial loss is set to 50% [20] of EML when MD reaches the shutdown threshold d2,
which means L = 0.5·EML.

In our case, we assume that critical faults can be detected by condition monitoring
and fault detection system. Therefore, when a fault not be detected, EML is given an
initial value (EMLinitial), which is composed of inspection cost and production loss that
are caused by shutdown inspection. When a fault is detected, the fault analysis scheme
would analyze the cause of the fault and infer the fault type, hence, the EML value would
be updated according to the possible fault type.

2.1.4. Calculate Health Indicator and Threshold

The system health indicator is determined by risk, which depends on two factors: the
probability of occurrence of a fault leading to an unwanted event (POF) and consequence
of the event (COF). The system health indicator is given by:

R = POF·COF (12)

The operation of complex industrial processes is often subjected to multiple constraints
to prevent catastrophic failure. These constraints are set at fault detection threshold and
shutdown threshold for critical process variables.

The fault detection threshold can be calculated at the offline phase using the initial
value of EML:

R1 =
∫ d1

0
f (x + (d1 − xd))dx·EMLinitial ·(1− e−d1

2/2γ2
) (13)

where d1 is the fault detection threshold of MD using Equation (4). xd is the Mahalanobis
distance calculated by Equation (7). EMLinitial is the initial estimated maximum financial
loss before a fault being detected. γ is the shape parameter of the loss function, calculated
by Equation (11).
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2.2. Online Phase—Fault Detection and Decision Making

To monitor the system health at real time, the online phase calculates a health indicator
based on dynamic risk profile of the system. Two key parameters, POF and COF of the
risk profile, are updated by applying condition monitoring data into the offline models. In
the online phase, after a fault is detected, the fault analysis system will help operators to
deduce the possible fault type. The COF and shutdown threshold (R2) can be updated for
a specific fault. The comparison of the real time value of the health indicator (R) with fault
detection threshold (R1) and shutdown threshold (R2), provides guidance for operators on
maintenance decision making.

2.2.1. Calculate Probability of Fault (POF)

In the online fault detection phase, the monitoring data are fed to the SAE model
trained offline. The MD at online monitoring stage is calculated as

hM =

√
(EM − µ̂)MCD−1(EM − µ̂)T (14)

EM = Ỹ−Y (15)

where µ̂ and MCD−1 are adopted directly from the training phase as calculated in Equa-
tion (3). EM is the residual between the actual measurement values Y and the reconstructed
output Ỹ obtained using the trained SAE fault detection model.

The POF at online monitoring stage can be calculated as:

POFM =
∫ hM

0
f (x + (d1 − xd))dx (16)

where hM is the MD at online monitoring stage. d1 is the fault detection threshold presented
in MD, and the value of d1 is given in Equation (4). xd is the Mahalanobis distance calculated
by Equation (7).

2.2.2. Calculate Consequence of Fault (COF)

The consequence of an unwanted event can be largely influenced the fault type of
the machine. In this section, the fault type is achieved by fault analysis using a two-
dimensional Q statistic contribution map, which stacks multiple observations (time point)
into one image to clearly illustrate the contribution of the variables over the entire faulty
data times series.

The Q statistic (also called squared prediction error, SPE) is widely used in process
control for condition monitoring data [36–38]. The traditional Q statistic contribution plot
can be calculated by Equation (19) [39]:

Q = (Ỹ−Y)
2

(17)

The conventional contribution plot is a one-dimensional plot, which only examines
the contributions at one time point (one observation), and multiple contribution plots
are needed to illustrate multiple observations in time series data. In contrast, a two-
dimensional contribution map [40] stacks multiple observations into one image to clearly
illustrate the contribution of the variables over the entire faulty data times series, which
enables the fast identification of faulty variables within large heterogeneous data sets.
Therefore, in our methodology, a two-dimensional Q statistic contribution map is applied
for data analysis.

The fault analysis result updates the value of estimated maximum financial loss via
Equation (10).

Therefore, the consequence in the online phase is calculated as:

COFM = EML·(1− e−hM
2/2γ2

) (18)



Energies 2021, 14, 28 11 of 25

where EML is the estimated maximum financial loss. When no fault is detected, the EML
remains its initial value EMLinitial , which is described in Section 2.1.3. When a fault is
detected, the EML should be updated according to the inferred fault type.

2.2.3. Calculate System Health Indicator and Shutdown Threshold

Combining Equations (16) and (18), a general system-wide health indicator using
dynamic risk profile at online monitoring stage is expressed as:

R = POFM·COFM =
∫ hM

0
f (x + (d1 − xd))dx·EML·

(
1− e

−hM
2

2γ2

)
(19)

The shutdown threshold is calculated as

R2 =
∫ d2

0
f (x + (d1 − xd))dx·EML·(1− e−d2

2/2γ2
) (20)

where d2 is the shutdown threshold of MD in Equation (5). EML is the estimated maximum
financial loss for a specific fault type. Alternatively, the shutdown threshold can be decided
by operators according to the maximum risk that a company can take.

To ensure the system risk within the acceptable range, two constraints (R1 and R2) are
set at fault detection threshold and shutdown threshold. These constraints can be decided
by operators or calculated using Equations (13) and (20). The health indicator can be used
for fault detection and for taking any supervisory decisions to activate appropriate safety
systems in real time. If R < R1, it indicates that the health indicator at the monitoring stage
is under the fault detection threshold. Therefore, the system is healthy during this status. If
R1 < R < R2, it means that health indicator exceeds the fault detection threshold (R1). If
the health indicator continuously exceeds R1, suggests operators to take priority response,
for example, order inspection equipment, buy maintenance materials, and schedule a
proper maintenance time. The fault analysis scheme calculates the contribution of each
measurements, infers the possible fault types, and suggests the maintenance planning.
If R > R2, it indicates the system is under a dangerous condition, and thereafter, the
automatic safety system (i.e., emergency shutdown system) would be activated to avoid
unplanned shutdown.

The value d1 is a fault detection threshold in Mahalanobis distance, without consid-
ering any financial factors. It is obtained at confidence level α = 0.99 of the training data,
which means that we assume 99% of the training data is healthy and 1% is anomalies [30].

R1 is the fault detection threshold, which is calculated based on d1 and taken financial
factors into consideration.

The value d2 is a shutdown threshold in Mahalanobis distance. d2 can be adjusted
by operators according to system requirement. R2 is the shutdown threshold, which is
calculated based d1 and taken financial factors into consideration to help operators make
maintenance decision.

3. Case One: Health Indicator Applied on a Pump Data Set

To demonstrate the effectiveness of the proposed methodology in Section 2, a case
study was carried out based on a group of multivariate data collected from a pump system
in an oil and petrochemical factory. In this case, a comprehensive health indicator was
developed for the pump, which can achieve the early detection of a fault, deduce the
possible fault types according to a two-dimensional Q statistic contribution map, and
provide a suggested maintenance time to make full use of the remaining life of the pump
whilst avoiding unplanned shutdowns.

3.1. Data Description

Centrifugal high-pressure injection pumps some one of the most common pump types
used in the oil and petrochemical industry for oil transportation, lift, and injection. Such
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pumps are likely to be subjected to performance degradation, because they are typically
operated under high rotating speed, high pressure, and high loading conditions. The data
used in this case study were obtained from a multivariate condition monitoring system
mounted on a high-pressure injection pump in an oil and petrochemical plant in Europe,
with sampling rate of one sample per hour. The measured variables are listed in Table 2.
The training data were pre-processed to filter out the missing and erroneous data before
feeding into the fault detection and fault analysis model.

Table 2. Measurement variables in the pump monitoring system.

ID Variable Name ID Variable Name ID Variable Name

1 Speed 2 Suction pressure 3 Discharge pressure

4 Discharge temperature 5 Actual flow 6 Radial vibration overall X1

7 Radial vibration overall Y1 8 Radial bearing temperature 1 9 Radial vibration overall X2

10 Radial vibration overall Y2 11 Radial bearing temperature 2 12 Thrust position axial probe1

13 Thrust position axial probe 2 14 Active thrust bearing temperature 1 15 Inactive thrust bearing temperature 1

3.2. Offline Phase—Model Development and Threshold Calculation

In this study, the fault detection model was trained on the data acquired in a quarter
of the year period from 10 March 2013 to 21 June 2013, where no abnormal events were
recorded in the pump. The model was then used to assess the health condition after
22 June 2013. The offline model generation and thresholds calculations are shown in
Section 3.2.1, and the online model testing results are presented in Section 3.2.2.

3.2.1. Fault Detection Model Training

The SAE fault detection model was trained on the pump data from 10 March 2013 to
21 June 2013. In SAE model, the number of nodes in the hidden layer was set as 11. This
value was set according to our previous work presented in [30], where nodes numbered
from 10 to 18 could all get good results on incipient fault detection for several cases, with a
high fault detection rate of around 99%, while producing few false alarms. The MD between
the reconstructed and original training data was calculated as h using Equation (3), and
its histogram can be seen in Figure 5a. The four candidate distributions were generalized
extreme value, lognormal, normal, and kernel distributions. According to K–S test, H is
the null hypothesis that the selected distribution fits the sample data. H = 1 if the test
rejects the null hypothesis at the 5% significance level, and H = 0 means the test accepts
the null hypothesis. Therefore, the best fitted distribution should have the highest p value
and H = 0. The results of fitting distribution of MD between the reconstructed and true
training data can be seen in Figure 5b,c. The results of the K–S test are listed in Table 3.

According to Section 2.1.1.2, the output H = 0 of the K–S test indicates the test
distribution fits the input data. The p value is the probability of observing a test statistic as
extreme as, or more extreme than, the observed value under the condition of H = 0. The
higher the p value, the better the fitting. Therefore, from the table, the kernel distribution
was selected. By maximum likelihood estimation, the parameters of the fitted kernel
distribution were bandwidth = 0.223292 and kernel type of normal kernel.

After the distribution was selected, the fault detection threshold (d1) was calculated
based on Equation (4) with confidence level α = 0.99 [27]. In other words, 99% of the
training data are viewed as healthy data, and 1% are anomaly data. In this case, the
calculated d1 is equal to 7.41.
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Table 3. Results of K–S test for case one.

Distribution H p

Generalized Extreme Value 0 0.6802

Lognormal 0 0.0576

Normal 0 0.0757

Kernel 0 0.9944

The offline fault detection model training result for an industrial pump from 10 March
2013 to 21 June 2013 by SAE is presented in Figure 6. In the figure, the magenta line is the
fault detection threshold d1, the blue points under the threshold are healthy data, and the
red points above the threshold are treated as anomaly data.
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Figure 6. Offline fault detection model training for an industrial pump from 10 March 2013 to
21 June 2013 by the sparse autoencoder (SAE; blue points: healthy data; red points: anomalies;
magenta line: reference MD thresholds).

Then, the shutdown threshold d2 was calculated using Equation (5). In the equation,
the combination matrix P covering each variable in the training data becomes four times
larger than its normal value [20,41]. In this case, d2 is equal to 144.24.
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3.2.2. POF Model

The risk calculation has two parts: POF and COF calculation. The POF model was
developed in the offline phase, with the system wide feature (the Mahalanobis distance h)
on the x-axis, against the POF values on the y-axis.

In Equation (7), f (x) is the probability density function of kernel distribution, with
parameters calculated in Section 3.2.1. Therefore, in this case, xd = 4.0550, and the offline
POF model is presented in Figure 7. As can be seen, the POF was 0.5 when MD value
equaled the fault detection threshold d1. In the offline model, when MD value was lower
than d1, the POF value was lower than 0.5. When MD value was higher than d1, the POF
was higher than 0.5 and could increase to 1. The POF value of the shutdown threshold d2
was 1 when d2 was equal to 144.24.
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3.2.3. COF Model Using Loss Function

The COF is assessed by loss function using Equations (9) and (10). By solving
Equation (11) using the least squares method, with financial loss L = 0.5·EML [20]
and shutdown threshold d2 calculated in Section 3.2.1, the shape parameter γ can be
obtained as γ = 4.1975. Therefore, the default COF model can be written as: COF =

EML·(1− e−h2/(2∗4.19752)). In the offline phase, the EML used its initial value EMLinitial ,
which is composed of inspection cost and production loss that are caused by shutdown
inspection. The value of EML would be updated in the online phase when a fault was
detected.

3.2.4. Calculate Default Health Indicator Thresholds

The health indicator thresholds include a fault detection threshold (R1) and a shut-
down threshold (R2). Using the parameters calculated in Section 3.2.1 to Section 3.2.3,
the fault detection threshold (R1) equals 3587.3 ($), and shutdown threshold (R2) will be
calculated in the online stage after a fault is detected and the fault type is diagnosed.

3.3. Online Phase—Fault Detection and Decision Making
3.3.1. Calculating POF

The online phase was to use the trained SAE model to assess the health condition of
the monitored pump using data recorded after 22 June 2013. The fault detection results for
the pump from 22 June 2013 to 6 July 2013 can be seen in Figure 8. The MD value (h) for
the online phase exceeds threshold d1 after 3 July, which indicates a fault in the machine.

Then, the POF values of the monitoring data were calculated using MD obtained in
the online monitoring stage. The POF values of the pump system obtained by SAE based
fault detection model are shown in Figure 9. As designed in Sections 2.1.2 and 3.2.2, the
fault detection threshold using POF was 0.5. The system would be in healthy condition
with a POF value below 0.5. A fault condition was indicated once the POF value exceeded
0.5. The POF value showed that a fault occurred at 5:00 3 July 2013, which was consistent
with that obtained using the MD value in Figure 8.
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threshold d1)

3.3.2. Calculating COF

After a fault is detected, the fault analysis module will deduce the possible fault
type, and therefore, update the COF value of the fault. In this paper, a two-dimensional
Q statistic contribution map was calculated. As shown in Figure 10, an incipient fault
was detected on 3rd July. Gradually, four bearings’ temperatures and discharge pressures
started to show faults. The fault analysis worked in real time, and when a fault type is
inferred, the financial factors will be updated accordingly. The results give maintenance
staff a clear indication of bearing-related faults, e.g., bearing faults, misalignment, and
rotor unbalance.

After the fault type was inferred, the financial factors in estimated maximum financial
loss (EML) were updated by bearing-related faults, and the financial factors and their
values are listed in Table 4. The COF at online phase can be found in Figure 11.
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Table 4. Financial factors and their values updated by bearing-related fault in the pump.

Financial Factors Values ($)

Downtime Cost (CD) 83,000

Material Cost (CM) 4000

Labor Cost (CL) 1080

Technical Support Cost (CTS) 4000

CAL + CHL + Cothers 33,048
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3.3.3. Calculating the System Health Indicator

The system health indicator is a dynamic risk profile of the pump. It was obtained
by combining the COF with the POF in the online phase. The system health indicator
presented by risk profile of the pump is shown in Figure 12.
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Figure 12. System health indicator presented by risk profile of the pump.

In Figure 12, the first threshold R1 was used for fault detection, which means that if
the value exceeds the threshold, it is considered as a fault. This threshold also suggests
to operators a priority for the response (i.e., schedule a proper maintenance time) to the
detected fault. In this case, the health indicator gave warnings at 5:00, 3 July 2013. The start
point of the fault was marked at the point that the health indicator continuously exceeded
the R1. Comparing to the measured variables from the pump’s condition monitoring system
in Figure 13, the health indicator successfully detected the fault at its incipient stage.
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Figure 13. The measured bearing temperature obtained from the pump’s condition monitoring
system.

The second threshold R2 in Figure 12 was used for system protection. R2 was calcu-
lated in the online stage using Equation (20) after a fault being detected and fault type
deduced. If no corrective action is taken or the corrective action fails to bring down the
risk, the risk factor would exceed the second threshold. Then, the emergency shutdown
system would be activated to avoid unplanned shutdown.

As the health indicator is updated with condition monitoring data, it can reflect the
system’s health status at real time. It considers the probability of fault and financial loss,
showing the system’s risk in dollars. All these features help maintenance decision making.



Energies 2021, 14, 28 18 of 25

The company shut down the pump when the risk was quite close to R2. The developed
health indicator indicated that the maintenance action should be taken no later than 6 July
to avoid the unplanned shutdown.

4. Case Two: Health Indicator Applied on a Compressor Data Set

In order to further assess the ability of the proposed methodology for effective incipient
fault detection and maintenance work, the model was tested using data captured from an
operational industrial compressor.

4.1. Data Description

The monitored variables for the compressor are listed in Table 5. The SAE model was
trained on the data for a four month period from 22 April 2014 to 22 August 2014, where
no faults were recorded in the compressor. The models were then used to assess the health
condition from 23 August 2014 to 23 October 2014.

Table 5. Monitoring variables for a compressor system.

ID Variable Name ID Variable Name ID Variable Name

1 Stage1 Suction Pressure 2 Stage1 Discharge Pressure 3 Stage1 Suction Temperature

4 Stage1 Discharge Temperature 5 Stage2 Suction Pressure 6 Stage2 Discharge Pressure

7 Stage2 Suction Temperature 8 Stage2 Discharge Temperature 9 Stage3 Suction Pressure

10 Stage3 Discharge Pressure 11 Stage3 Suction Temperature 12 Stage3 Discharge Temperature

13 Stage1 Standard flow 14 Stage2 Standard flow 15 Stage3 Standard flow

16 Stage 1–2 DE Radial Vibration
Overall X 17 Stage 1–2 DE Radial Vibration

Overall Y 18 Stage 1–2 NDE Radial Vibration
Overall X

19 Stage 1–2 NDE Radial Vibration
Overall Y 20 Stage 1–2 Thrust Position Axial

Probe 1 21 Stage 1–2 Thrust Position Axial
Probe 2

22 Stage3 DE Radial Vibration
Overall X 23 Stage3 DE Radial Vibration

Overall Y 24 Stage3 NDE Radial Vibration
Overall X

25 Stage3 NDE Radial Vibration
Overall Y 26 Stage3 Thrust Position Axial

Probe 1 27 Stage3 Thrust Position Axial
Probe 2

28 Speed 1

4.2. Offline Phase—Model Generation and Threshold Calculation

The parameters of SAE model were set to be the same as in case one, with 11 nodes in
the hidden layer. The MD between the reconstructed and the measured data is expressed
as h in Equation (3). The results of the K–S test are listed in Table 6. As can be seen, the
kernel distribution fits best with this data set. The maximum likelihood estimation was
then applied to estimate the parameters for the selected distribution. The fitted kernel
distribution was normal kernel and the bandwidth was 0.186253.

Table 6. Results of K–S test for case two.

Distribution H p

Generalized Extreme Value 0 0.1261

Lognormal 1 8.2503 × 10−7

Normal 1 3.3784 × 10−33

Kernel 0 0.9890

After the distribution was selected, the fault detection thresholds (d1) for the SAE
model were calculated based on the training data using Equation (4) with confidence level
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α = 0.99 [27]. The MD fault detection thresholds d1 and d2 were equal to 9.5590 and 28.6584,
respectively.

The offline fault detection model trained for an industrial compressor from 22 April to
22 August 2014 by SAE is presented in Figure 14. In the figure, the magenta line is the fault
detection threshold d1, the blue points under the threshold are healthy data (99% of the
training data), and the red points above the threshold are treated as anomaly data (1% of
the training data).
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Figure 14. Offline fault detection model trained for an industrial compressor from 22 April to
22 August 2014 by SAE. (Blue points: healthy data; red points: anomalies; magenta line: reference
MD thresholds).

In the offline phase, the POF model was developed, with the system wide feature (the
Mahalanobis distance h) on the x-axis, against the POF values on the y-axis. By applying
the selected kernel distribution into Equation (7), xd can be calculated as 5.1890.

The offline POF model was presented in Figure 15. As can be seen, the POF was 0.5
when MD value equaled the fault detection threshold d1. When MD value was lower than
d1, the POF value was lower than 0.5. When MD value was higher than d1, the POF was
higher than 0.5 and could increase to 1. This result was in accordance with the POF model
designed in Section 2.1.2.
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Figure 15. Offline POF model for case 2.

The COF is calculated using Equations (9) and (10). By solving Equation (11) using
least squares method, with financial loss L = 0.5·EML [20], the shape parameter γ can be
obtained. In this case, γ = 2.8281. Therefore, the default COF model can be written as:
COF = EML ·(1− e−h2/(2∗2.82812)).

According to the aforementioned parameters, the fault detection threshold (R1) of
9768.4 ($) was obtained. The shutdown threshold (R2) was calculated in the online phase
after a fault was detected and the fault type inferred.
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4.3. Online Phase—Fault Detection and Decision Making

Figure 16 shows the health condition of the industrial compressor from 23 August
2014 to 23 October 2014. An incipient fault was detected during 22 September to 2 October,
as the MD value continuously exceed the fault detection threshold. After 2 October, the
health status of the compressor became worse as the MD value kept increasing.
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Figure 16. Online testing results for an industrial compressor from 23 August to 23 October 2014
by SAE model. (Blue points: healthy data; red points: anomalies; magenta line: reference MD
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The risk calculation has two parts: POF and COF calculation. The POF of the indus-
trial compressor for the online phase is shown in Figure 17. The fault detection threshold
was 0.5. The fault detected time using POF value was 22 September 2014, which was
consistent with that using MD value in Figure 16.
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Figure 17. POF of the compressor obtained by SAE in the online phase (red line: fault detection
threshold d1)

The two-dimensional Q statistic contribution map in Figure 18 shows the contribution
of each input variable to the detected anomaly. The figure clearly shows that stage 3 DE
bearings’ measurements mainly contributed to the increase of the MD value.
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After the fault type was inferred, the financial factors in estimated maximum financial
loss (EML) were updated by bearing-related faults. The financial factors and their values
for maintaining this compressor are listed in Table 7. The COF at online phase can be found
in Figure 19.

Table 7. Financial factors and their values updated by bearing-related fault in the compressor.

Financial Factors Values ($)

Downtime Cost (CD) 62,500

Material Cost (CM) 1000

Labor Cost (CL) 720

Technical Support Cost(CTS) 3000

CAL + CHL + Cothers 33,048
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The system health indicator combined both POF and COF. Figure 20 shows the
system health indicator of the compressor that was tested for the online phase. R1 and R2
were respectively calculated in offline and online phases, as descripted in Sections 2.1.4
and 4.2.
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In this case, the health indicator detected the fault during 22 September to 2 October
2014. Compared to the measured variables obtained from the compressor’s condition
monitoring system in Figure 21, during this time, only slight changes appeared in the
measurements of the compressor. This indicated that the health indicator successfully
detected the fault at its incipient stage.
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In Figure 20, R2 is the shutdown threshold used for system protection. In this case,
the company shut down the compressor at 23 October, which is 7 days after the risk value
exceeded the shutdown threshold R2. As can be seen in Figure 21, from 22 September to
16 October, mainly measurements of the stage 3 DE bearing were abnormal. However, after
16 October, many other measurements (i.e., the vibration of the stage 1–2 DE bearing, the
vibration of the stage 3 NDE bearing, the suction temperature of stage 2) were influenced
by the faulty bearing, which indicated the system was deteriorated and in a dangerous
condition. As can be seen in Figure 20 that the developed health indicator suggested to shut
down the compressor not later than 16 October, in order to avoid the dangerous condition.

5. Conclusions

In this paper, a system-wide health indicator is proposed using condition monitoring-
based dynamic risk assessment, providing maintenance solutions based on real-time health
monitoring of assets. The methodology combines two advanced fault detection methods, a
sparse autoencoder and robust Mahalanobis distance, which enables the health indicator
to detect a fault at its incipient stage and estimate financial loss. The proposed health
indictor presents the system’s risk in dollars, making it effective in operational decision-
making in a process system. To evaluate the performance of the proposed indicator, two
case studies were carried out with multivariate industrial data obtained from a pump
and a compressor. The results show that the indicator was able to show the degradation
of the system with dynamically updated process risk at each sampling instant. In both
cases, the health indicator was able to identify the faults at their incipient stages, before
the measured signals showed obvious changes. The fault analysis scheme can analyze
the contribution of each measurement, inferring the possible fault types to assist the
maintenance planning. Especially in the second case, after the indicator exceeded the
suggested shutdown threshold, many other measurements (i.e., the vibration of the stage
1–2 DE bearing, vibration of the stage 3 NDE bearing) were influenced by the faulty
bearing, which indicated the system was deteriorated to a dangerous point. In this case,
the proposed health indicator suggested appropriate shutdown time before the system
suffered severe damage.

The main benefits of the proposed method include early detection of faults, fault
analysis, suggesting maintenance time, safety improvement, and minimum interruption of
operation. In summary, the main contributions of this paper include:

(1) A system-wide health indicator has been developed using condition-based dynamic
risk assessment. The proposed health indictor presented the system’s risk in dollars,
making it easier for operators to make maintenance decisions. In addition, the health
indicator can demonstrate the health condition of the system to the operator in real
time, and assist the operators as to when an incipient fault is detected, how the system
is degraded, what type of fault the machine suffers from, and when the deadline is
for maintenance.

(2) The probability of a fault is calculated based on the application of a state-of-the-art
fault detection models, SAE and MD. To the authors’ knowledge, this is the first time
a study has obtained fault probability from a single system-wide feature calculated in
MD value, instead of using multiple measurements of a system. Compared with other
statistical measurements, such as Hotelling’s T2 and Euclidean distance, the MD is a
better way to calculate probability of fault. The value of Hotelling’s T2 is much higher
than MD (nearly squared). When using Hotelling’s T2, the value can increase rapidly
to a very high value after a fault appears. This makes a fault more obvious in a fault
detection process; however, it is hard to transfer such rapidly changing and highly
statistical value to a fault probability. In contrast, the value of Euclidean distance is
much more moderate. However, it is not as sensitive as MD for early fault detection
in our cases.

(3) The proposed health indicator is evaluated by using a pump and a compressor using
multivariate industrial data. This methodology can also be applied to other types
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of machines’ health assessments, such as turbines and motors. In addition, our
experience of processing the industrial data set can benefit relevant readers.
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