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Abstract: Sugarcane breeding programs require 15 years of experimentation to create more produc-
tive cultivars, and estimates of genetic progress can indicate the efficiency of breeding programs. In
this study, we used a diversity panel, the Brazilian Panel of Sugarcane Genotypes (BPSG), with the
following objectives: (i) to estimate, through a mixed model, the adjusted means and genetic param-
eters of ten traits evaluated over three harvest years; (ii) to estimate genotypic correlation among
those traits; and (iii) to estimate genetic progress over six decades of breeding. The heritabilities
ranged from 0.43 to 0.88, and we detected 42 significant correlations, 9 negative and 33 positive. Over
six decades, the sucrose-related traits BRIX, POL%C, and POL%J showed an average increase per
decade of 0.27 ◦Brix, 0.26% and 0.31%, respectively. Stalk number, height, and weight of the plot,
and cane and sucrose yields revealed average increases per decade of 3.27 stalks, 0.06 m, 9.42 kg,
11.22 t/ha, and 2.08 t/ha, respectively. The genetic progress of the main agronomic traits is discussed
through a historical series of sugarcane genotypes present in the BPSG. The findings of this study
could contribute to the management of new breeding strategies and allow for future studies of
associative mapping.

Keywords: genetic progress; germplasm; mixed model; conventional breeding; yield potential

1. Introduction

Brazil is the world’s largest producer of sugarcane, with 720 million tons, which
corresponds to 40% of the total cultivation worldwide. It is a versatile raw material used
for sugar, ethanol, and bioenergy production [1,2]. Sugarcane is cultivated predominantly
in the central-south region, hundreds of kilometers away from the Amazon rainforest
edges [3,4]. In 2019, sugarcane accounted for 18% of the country’s energy matrix [5].

Modern sugarcane cultivars are polyploids with variable levels of ploidy, frequent
aneuploidy, large genome size of approximately 10 Gb, and gene duplication events [6–9].
Presently, modern sugarcane cultivars originate from the Saccharum complex, which con-
sists of six Saccharum species (S. spontaneum, S. robustusm, S. officinarum, S. sinense, S. barberi,
and S. edule) and four related interbreeding genera (Erianthus, Miscanthus, Narenga, and
Sclerostachya) [10]. S. officinarum (2n = 80) and S. spontaneum (2n = 40–128) were used for
the first hybridizations, searching for high sucrose content from the first species, hardiness,
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ratooning ability, and disease resistance from the second species. Subsequently, succes-
sive backcrosses with S. officinarum were performed to recover sucrose content [11,12].
Studies of sequences of hom(oe)ologous haplotypes (BAC clones) from typical modern
cultivars suggested the existence of three founding genomes (A, B, C) in modern cultivars.
Two genomes (A and B) were contributions from S. officinarum, and one genome (C) was
contributed by S. spontaneum [13].

Faced with an immense genetic challenge, sugarcane breeding programs worldwide
have been able to increase cane yield in the last decades [14,15]. In Brazil, breeding
programs have developed more productive cultivars, with greater adaptability to different
production environments, resistance to the main diseases, and varied maturation profiles.
This effort resulted in the expansion of harvesting throughout the year (from March to
November in the central-south), the use of marginal agricultural areas, and adaptation
of sugarcane to mechanized harvesting [3,4,16]. However, sugar yield has increased
more slowly in recent years [15,17]. In addition, the viability of ethanol production from
lignocellulosic waste has been demonstrated [18,19], opening new frontiers for research on
genetic profiles that increase productivity in the field and facilitate microorganism access
to sugars in the cell wall [20,21].

The performance of any breeding program must be periodically critically analyzed
to develop better methods for increased effectiveness [22,23]. An assessment of genetic
progress due to plant breeding within a specific period not only shows the benefit of
breeding efforts but also provides a means to understand the phenotypic changes associated
with this improvement [24]. In sugarcane breeding, this overview of genetic progress
achieved between varieties over the decades is crucial because the process of obtaining a
new variety is time-consuming (10–15 years) and expensive. Moreover, the maintenance
and characterization of germplasm banks are fundamental for breeding strategies and,
consequently, yield maximization for traits of commercial interest [25]. Core collections
of any crop require accurate phenotypic characterization, for future general and specific
combining ability estimates [26] to identify heterotic pools, as well as associative mapping
studies to identify favorable alleles and assist breeders in better managing crosses [27–30].
Genetic components, the environment, and the relationship between the traits of interest
are essential for developing breeding strategies [31]. Genetic variance in crop traits is most
commonly studied, as reflected in the high rate of scientific and technological progress
in plant breeding [32,33]. The mixed models approach is suitable for evaluating the
heterogeneity of genetic variances and correlations [34] and is becoming increasingly
popular in plant breeding, particularly in research involving the prediction of breeding
values combined with genomic data [28,35–37].

Hence, to aid breeders in enhancing genetic gain in sugarcane, this study was con-
ducted to (i) estimate, through a mixed model, the adjusted means and genetic parameters
of ten traits evaluated over three harvest years in a diversity panel composed of ancestor
and modern sugarcane accessions; (ii) estimate genotypic correlation among traits, and (iii)
estimate genetic progress over six decades with Brazilian breeding. We discussed these
results in the context of genetic progress in relation to improving Brazilian sugarcane. In
addition, we argued that phenotypic characterization is primary for advances in breeding
strategies for this crop.

2. Materials and Methods
2.1. Plant Material

In this study, 242 accessions (Table S1) of the Brazilian Panel of Sugarcane Genotypes
(BPSG) were used. BPSG is the core collection from the germplasm bank of the Interuni-
versity Network for the Development of Sugarcane Industry (RIDESA) and consists of
86 ancestors accessions (A) (80 accessions from Saccharum spp. and six from Erianthus spp.),
129 hybrids from Brazilian breeding programs (BB), and 27 hybrids from foreign breed-
ing programs, foreign hybrids (FH) [29]. Breeding hybrids (BB and FH) originated from
11 countries that grow sugarcane (Brazil, Australia, United States, India, Argentina, Bolivia,
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Reunion, Java, Taiwan, South Africa, and the Dominican Republic) (Table S1). The BPSG
accessions chosen were according to the following criteria: (i) relevant Brazilian cultivars,
(ii) the main parents for Brazilian breeding programs, (iii) cultivars from countries that
grow sugarcane, (iv) parents used in mapping programs [38,39], and (v) representatives of
the species from which the Saccharum complex originated. The genetic variability present in
BPSG, for the most part, was the genetic basis for Brazilian sugarcane breeding programs.

2.2. Experimental Design and Phenotypic Data

The accessions of BPSG were planted in a field experiment performed in 2013 at the
Agricultural Science Center of the Federal University of São Carlos (UFSCar) in Araras
City, São Paulo State, Brazil. Araras is located at 22◦21′25′′ S, 47◦23′3′′ W, at an altitude
of 611 m. The soil in the experimental area is Typic Eutroferric Red Latosol. Planting
was performed using pre-sprouted seedlings. The experimental design consisted of a
randomized complete block, replicated four times. The plots consisted of two rows 3 m
long spaced 1.5 m apart. The distance between the rows was 0.5 m. The BPSG was
evaluated for ten yield components: stalk height (SH, in m), stalk diameter (SD, in mm),
stalk number (SN), stalk weight of the plot (SW, in kg), soluble solid content (BRIX, in
◦Brix), sucrose content of cane (POL%C, in %), sucrose content of juice (POL%J, in %), fiber
content (FIB, in %), cane yield (TCH, in t/ha), and sucrose yield (TPH, in t/ha). Phenotypic
yield data were collected according to Consecana [40] and Balsalobre et al. [31] over three
harvest years: plant cane (2014), first ratoon (2015), and second ratoon (2016). Briefly, a
10-stalk sample per plot was taken for the analysis of the SH, SD, BRIX, POL%C, and
POL%J. The weight of the 10 stalks was added to the total weight of the plot (SW) to
estimate the TCH, which was calculated as the product of the SW of a linear meter and
the amount of linear meters in one hectare (6667 linear meters compose one hectare with a
spacing of 1.5 m). The SN was estimated by directly counting the stalks in each plot. The
TPH was estimated from the product of TCH and POL%C divided by 100.

2.3. Statistical Analysis of Phenotypic Data

The statistical model for data analysis was based on Piepho et al. [41] and Barreto
et al. [28]. Briefly, the analysis was conducted for each trait using the GenStat 19th
edition [42] based on restricted maximum likelihood (REML) and the following linear
mixed model:

yimkuv = µ + hm + bkm + gimk + rumk + cvmk + eimkuv

where yimkuv is the phenotype of the ith accession, evaluated at the mth harvest, located
in the uth row and the vth column inside the kth replication; µ is the overall mean; hm is
the fixed effect of the mth harvest (M = 1, . . . , M; M = 3); bkm is the fixed effect of the
kth replication (k = 1, . . . , K; K = 4) at the mth harvest; gimk is the random effect of the
ith accession (i = 1, . . . , I, I = 242) at the mth harvest evaluated in the kth replication;
rumk and cvmk are the random effects of the uth row and vth column, both evaluated at the
mth harvest and kth replication; and eimkuv is the random residual error. In addition, for
the SN, SW, and TCH traits, the number of clumps per plot was included in the mixed
model as a fixed covariate. To model the accession effects, the genetic variance–covariance
(VCOV) matrix G = GM ⊗ IIg, i.e., g ∼ N(0, G) was considered, where M is the number
of harvests, and ⊗ represents the Kronecker product of both the genetic GM and identity
IIg matrices with the respective dimensions of 2× 2 and 1× 242. For the GM matrix, four
structures (identity, ID; diagonal, DIAG; first-order autoregressive homogenous, AR1; and
first-order autoregressive heterogeneous, AR1(het)) were examined and compared using
Akaike (AIC; [43]) and Bayesian (BIC; [44]) information criteria [45]. For the residual, a
structure of variance heterogeneity was assumed for the different harvests. For each trait,
the fixed effects were tested using the Wald statistics test and were retained in the model
if statistically significant (p < 0.05). After the GM matrix structure selection, the adjusted
means for accessions and genetic parameters for each evaluated trait were obtained. The
phenotypic (σ̂2

P) and genotypic (σ̂2
g ) variances were used to calculate heritability in the
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broad sense on an individual-plant basis (Ĥ2 = σ̂2
g / σ̂2

P). The σ̂2
P value is determined from

σ̂2
P = σ̂2

g + σ̂2
e + σ̂2

r + σ̂2
c , where σ̂2

e is the residual variance, σ̂2
r is the variance for row effects

and σ̂2
c is the variance for column effects [46].

Using genotypic adjusted means and the ggplot2 package [47] in software R [48], the
following analyses were performed: (i) testing of genotypic correlations between traits
using Pearson’s correlation coefficient assuming a global significance level α∗ = 0.05, using
the GGally extension and ggpairs function; (ii) biplot analysis using the ggbiplot function;
and (iii) boxplots using the ggplot function to verify data variation within the ancestor
germplasm (set A), foreign breeding germplasm (set F), and Brazilian breeding germplasm
(set B). This last set of accessions was divided into subsets B1, B2, B3, B4, B5, and B6,
which were composed of accessions originating from crossings made from 1940–1951,
1952–1961, 1962–1971, 1972–1981, 1982–1991, and 1992–2001, respectively. In addition,
linear regression was performed for each trait, using the lm function to estimate possible
genetic gain rates per decade of breeding. The multiple R-squared was the coefficient of
determination. Genetic progress (GP (%)) over time was estimated for each trait using
linear coefficients (b1—slope and b0—intercept) by the formula GP = [(b1/b0)× 100]/2,
as performed by [22].

3. Results
3.1. VCOV Models, Variance Components, and Heritabilities

The VCOV AR1(het) model showed the lowest AIC and BIC values for all evaluated
traits, except for POL%C and POL%J, which had an adjusted AR1 structure (Table S2).
This result suggests a correlation between successive harvests for all evaluated traits and
heterogeneous genetic variances between harvests for traits that had AR1(het) selected for
the GM matrix. The results regarding the ranges, averages, estimates of the components
of variance, residual and genetic coefficients of variation, and broad-sense heritability of
the 10 traits evaluated in the BPSG on an individual-plant basis are summarized in Table 1.
In general, the Ĥ2 of the traits was high for the first two harvests (above 0.60) and from
medium to high for the third harvest (greater than 0.43). The Ĥ2 ranged from 0.64 (SH) to
0.88 (SN), from 0.72 (SW, TCH, and TPH) to 0.86 (POL%C), and from 0.43 (TPH) to 0.87
(BRIX) on the first, second, and third harvests, respectively. The coefficients of residual
variation (CVR) between the three harvests were similar, except for certain traits in the
third harvest: an increase of CVR for FIB and SN, and a decrease of CVR for SW, TCH, and
TPH. Furthermore, the coefficients of genetic variation (CVG) were similar among the three
harvests, except for the SW, TCH, and TPH traits, which showed a decrease in CVG in the
third harvest. The CVG values indicated that there was high genetic variability in BPSG,
since it showed values ranging from 11% (BRIX) to 53% (SN), 10% (BRIX) to 77% (SN), and
11% (BRIX) to 72% (SN), for the first, second, and third harvest years, respectively. Genetic
variances (σ̂2

G) were higher than residual variances (σ̂2
R) for all traits, except in the third

harvest for FIB, SW, TCH, and TPH. The ranges for the evaluated traits showed that the
BPSG was composed of contrasting accessions. The values revealed that SN had the largest
range of variation, and the superior extremity accession, SES205A, was approximately
45 times greater in the number of stalks per plot than the inferior extremity accession,
FORMOSA. In contrast, BRIX had the least variation, and TUC71-7 was approximately
twice as high as the value found for the IN84-73 accession, the inferior limit of the variation.
The inferior and superior accessions of the range of variation for the other two sucrose
content-related traits were IN84-77 and RB835486, and IN84-77 and SP80-1836 for POL%C
and POL%J, respectively. The inferior and superior accessions for FIB, SH, and SD traits
were CANA MANTEIGA and IJ76-318, IN84-106 and IN84-77, and SES205A and CANA
MANTEIGA, respectively. The accessions NG21-17 and RB925268 were the inferior and
superior accessions of the range of variation for SW, TCH, and TPH traits.
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Table 1. Ranges, averages, estimates of components of genetic (σ̂2
G) and residual (σ̂2

R) variances, coefficient of genotypic (CVG) and residual (CVR) variation, and broad-sense heritability on
an individual-plant basis (H2) for BRIX (in ◦Brix), sucrose content of the cane (POL%C, in %), sucrose content of the juice (POL%J, in %), fiber content (FIB, in %), stalk height (SH, in m),
stalk number (SN), stalk diameter (SD, in mm), stalk weight of the plot (SW, in kg), cane yield (TCH, in t/ha), and sucrose yield (TPH, in t/ha) for BPSG over three harvest years (2014(1),
2015(2), and 2016(3)).

BRIX (◦Brix) POL%C POL%J FIB (%) SH (m) SN SD (mm) SW (Kg) TCH (t/ha) TPH (t/ha)

Ranges
(min/max) 10.98/22.41 3.54/17.18 5.04/20.52 9.76/26.50 1.15/2.75 10.83/490.01 11.22/37.16 6.36/201.02 7.60/239.30 1.56/36.55

Average 19.48 13.98 16.79 13.45 2.00 82.67 23.79 131.30 156.20 19.83
Phi_1 0.96 0.96 0.96 0.95 0.93 0.94 0.97 0.92 0.92 0.95
σ̂2

G(1) 4.79 7.62 8.84 13.90 0.11 1987.00 19.98 3103.00 4397.00 109.40
σ̂2

G(2) 3.90 7.62 8.84 6.11 0.15 4060.00 16.15 2754.00 3902.00 108.90
σ̂2

G(3) 5.12 7.62 8.84 11.48 0.07 3570.00 13.55 557.00 789.20 15.08
σ̂2

R(1) 1.14 2.02 2.32 3.14 0.06 267.50 3.48 1180.00 1673.00 35.99
σ̂2

R(2) 0.85 1.16 1.57 1.29 0.05 707.60 4.71 1036.00 1468.00 41.01
σ̂2

R(3) 0.77 2.99 3.02 12.45 0.03 1943.00 2.85 591.30 837.80 19.64
CVG(1) 0.11 0.19 0.17 0.27 0.16 0.53 0.18 0.42 0.42 0.52
CVG(2) 0.10 0.19 0.17 0.18 0.19 0.77 0.16 0.40 0.40 0.52
CVG(3) 0.11 0.19 0.17 0.25 0.13 0.72 0.15 0.18 0.18 0.19
CVR(1) 0.05 0.10 0.09 0.13 0.12 0.19 0.07 0.26 0.26 0.30
CVR(2) 0.04 0.07 0.07 0.08 0.11 0.32 0.09 0.24 0.24 0.32
CVR(3) 0.04 0.12 0.10 0.26 0.08 0.53 0.07 0.18 0.18 0.22

Ĥ2
(1) 0.80 0.79 0.79 0.81 0.64 0.88 0.85 0.72 0.72 0.75

Ĥ2
(2) 0.82 0.86 0.85 0.82 0.75 0.85 0.77 0.72 0.72 0.72

Ĥ2
(3) 0.87 0.71 0.74 0.48 0.70 0.64 0.82 0.48 0.48 0.43
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3.2. Genotypic Correlations

The correlations among the 10 traits evaluated in this study, considering three harvest
years, are shown in Figure 1. A total of 42 significant correlations were found (p < 0.05),
of which nine were negative and 33 were positive. They were grouped according to the
value of correlation among traits: low (≤0.35), moderate (0.36–0.70), and strong (≥0.71)
with 14, 17, and 11 correlations classified as low, moderate, and strong, respectively. The
SN and FIB traits showed negative correlations with BRIX, POL%C, and POL%J, which
are indirectly or directly related to sucrose content. In addition, SN showed a significant
negative correlation with SD, while FIB was negatively correlated with SD and TPH. The
highest correlations were between BRIX, POL%C, and POL%J traits, and between SW, TCH,
and TPH.

Agriculture 2021, 11, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 1. Genotypic correlation between yield traits [BRIX (in °Brix), sucrose content of the cane (POL%C, in %), sucrose 

content of the juice (POL%J, in %), fiber content (FIB, in %), stalk height (SH, in m), stalk number (SN), stalk diameter (SD, 

in mm), stalk weight of the plot (SW, in kg), cane yield (TCH, in t/ha) and sucrose yield (TPH, in t/ha)] evaluated in the 

Brazilian Panel of Sugarcane Genotypes (BPSG). For each trait, the density plots of the adjusted means (diagonal), scatter-

plots (below diagonal), and values of the genotypic correlation (above diagonal) between pairs of traits are shown. * Sig-

nificant at the 5% global level (𝑝 <  0.05). ** Significant at the 1% global level (𝑝 <  0.01). *** Significant at the 0.1% global 

level (𝑝 <  0.001). 

3.3. Biplot Analysis 

The biplot analysis showed the distribution of accessions according to the adjusted 

means of the 10 evaluated traits. The first two principal components (PC1 and PC2) ex-

plained 84.80% of the total variability between accessions (Figure 2). Briefly, the first PC 

indicated a comparison between BRIX, POL%C, POL%J, SH, SD, SW, TCH, and TPH (pos-

itive PCA loadings) and FIB and SN (negative PCA loadings). The second PC indicated a 

comparison between BRIX, POL%C, POL%J, SD and FIB, SH, SN, SW, TCH, and TPH. 

This analysis revealed a feasible division of BPSG into two groups: (i) those composed of 

accessions from breeding programs, identified in the graph by blue color; and (ii) those 

composed of accession species, which gave rise to the Saccharum complex, identified in 

the graph as green. The most distant ancestors of the improved accessions showed low 

sucrose content and high fiber content. For example, the SES 205A (S. spontaneum), IN84-

83 (Erianthus spp.), and IN84-77 (Erianthus spp.) accessions had adjusted averages for 

POL%C of 6.83, 3.98, and 3.54, respectively, and adjusted averages for FIB of 22.22, 23.64 

and 23.89, respectively. Some ancestors that were located near the center of the graph and 

improved accessions were representatives of S. officinarum (BLACK BORNEO, CAIANA 

RISCADA, CANA BLANCA, CERAM RED, IJ76-326, IN84-46, IN84-105, NG21-21, NG57-

221, and WHITE TRANSPARENT), S. sinense (AR CHI, AGAUL, CHINA, and UBA DEM-

ERARA), S. barberi (CHIN, CHUNNEE, and GANDA CHENI), and a hybrid between S. 

officinarum and S. spontaneum (NG57-50). Furthermore, most of the improved accessions 

were positioned in the fourth quadrant of the graph to increase TPH, a trait that combines 

sucrose content and biomass production. This organization of accessions in the graph re-

flects the evolutionary and improvement history of sugarcane, i.e., the improved 

Figure 1. Genotypic correlation between yield traits [BRIX (in ◦Brix), sucrose content of the cane (POL%C, in %), sucrose
content of the juice (POL%J, in %), fiber content (FIB, in %), stalk height (SH, in m), stalk number (SN), stalk diameter
(SD, in mm), stalk weight of the plot (SW, in kg), cane yield (TCH, in t/ha) and sucrose yield (TPH, in t/ha)] evaluated
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3.3. Biplot Analysis

The biplot analysis showed the distribution of accessions according to the adjusted
means of the 10 evaluated traits. The first two principal components (PC1 and PC2)
explained 84.80% of the total variability between accessions (Figure 2). Briefly, the first
PC indicated a comparison between BRIX, POL%C, POL%J, SH, SD, SW, TCH, and TPH
(positive PCA loadings) and FIB and SN (negative PCA loadings). The second PC indicated
a comparison between BRIX, POL%C, POL%J, SD and FIB, SH, SN, SW, TCH, and TPH.
This analysis revealed a feasible division of BPSG into two groups: (i) those composed of
accessions from breeding programs, identified in the graph by blue color; and (ii) those
composed of accession species, which gave rise to the Saccharum complex, identified in
the graph as green. The most distant ancestors of the improved accessions showed low
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sucrose content and high fiber content. For example, the SES 205A (S. spontaneum), IN84-83
(Erianthus spp.), and IN84-77 (Erianthus spp.) accessions had adjusted averages for POL%C
of 6.83, 3.98, and 3.54, respectively, and adjusted averages for FIB of 22.22, 23.64 and 23.89,
respectively. Some ancestors that were located near the center of the graph and improved
accessions were representatives of S. officinarum (BLACK BORNEO, CAIANA RISCADA,
CANA BLANCA, CERAM RED, IJ76-326, IN84-46, IN84-105, NG21-21, NG57-221, and
WHITE TRANSPARENT), S. sinense (AR CHI, AGAUL, CHINA, and UBA DEMERARA), S.
barberi (CHIN, CHUNNEE, and GANDA CHENI), and a hybrid between S. officinarum and
S. spontaneum (NG57-50). Furthermore, most of the improved accessions were positioned in
the fourth quadrant of the graph to increase TPH, a trait that combines sucrose content and
biomass production. This organization of accessions in the graph reflects the evolutionary
and improvement history of sugarcane, i.e., the improved accessions have inherited and
fixed favorable alleles from the ancestors for the traits of economic importance during the
breeding process.
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Figure 2. Biplot analysis of the accessions of Brazilian Panel of Sugarcane Genotypes (BPSG) considering adjusted means of
three harvest years (2014, 2015, and 2016) for BRIX (in ◦Brix), sucrose content of the cane (POL%C, in %), sucrose content of
the juice (POL%J, in %), fiber content (FIB, in %), stalk height (SH, in m), stalk number (SN), stalk diameter (SD, in mm),
stalk weight of the plot (SW, in kg), cane yield (TCH, in t/ha) and sucrose yield (TPH, in t/ha). Ancestors and breeding
accessions are in green and blue, respectively.
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3.4. Association Panel Subsets

Figure 3 indicates the distribution of genotypic means considering the subset struc-
tures for all evaluated traits. Considering the boxplot ranges and medians, it is possible to
compare the ancestor group (A) with the Brazilian breeding germplasm (from B1 to B6).
In general, the boxplot range indicated a large variability from ancestors when compared
with Brazilian subsets, except for TPH. This variability can be detailed, i.e., for FIB and
SN the larger variation was an increase in the trait values; SD and SH indicated variability
for both sides of selection; and sucrose-related traits (BRIX, POL%C, and POL%J) showed
variability related to accessions with reduced sugar yield. The only ancestor group median
that was greater than the B subsets was FIB, whereas for SN the values were approximately
similar, and for the others, the median values were smaller than the B subsets.
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Figure 3. Boxplot analysis of yield traits (BRIX (in ◦Brix), sucrose content of the cane (POL%C, in %), sucrose content of the
juice (POL%J, in %), fiber content (FIB, in %), stalk height (SH, in m), stalk number (SN), stalk diameter (SD, in mm), stalk
weight of the plot (SW, in kg), cane yield (TCH, in t/ha), and sucrose yield (TPH, in t/ha)) evaluated in the Brazilian Panel
of Sugarcane Genotypes (BPSG). The accessions of BPSG were grouped into A (ancestors), E (foreign breeding accessions),
and B (Brazilian breeding accessions). Group B was subdivided according to the decade in which the accession parents were
crossed: B1 (1940–1951), B2 (1952–1961), B3 (1962–1971), B4 (1972–1981), B5 (1982–1991), and B6 (1992–2001). The boxplots
of A, E, and B (B1, B2, B3, B4, B5, and B6) sets were black, gray, and white, respectively.

The comparison of A and B subsets indicates the following: (i) the ancestor group has
large genetic variability, which can be considered for some traits, such as biomass; (ii) the
shrinkage found from subsets A to B is an indication of Brazilian breeding success due to
the fixing of favorable alleles, e.g., sucrose-related traits have eliminated genotypes with
low sucrose content over time; (iii) shrinkage found for FIB, SN, and SD indicated that
these were not the primary target, but the average accession resulted in relevant behavior
for both industry and agriculture; and (iv) SW indicated a lower shrinkage, but it was the
trait with a high increase of median over B subsets, indicating the efficiency of breeding
programs in pyramiding favorable alleles, which is also verified for TCH and TPH.

The foreign group (E subset) showed an intermediate pattern when compared with
the ancestor and Brazilian accessions. Besides TPH, the range of the foreign group was
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less than that of the ancestor. For FIB, SN, and SD, the E subset rage was similar to the B
subsets. The remaining traits showed the E subset as similar in B1, B2, and B3, but lower
than the more recent groups (especially B5 and B6). This was evidenced for BRIX, POL%C,
and POL%J, and most notably for SH, SW, TCH, and TPH.

Furthermore, from the medians and considering the entire period from B1 to B6, we
can infer that the sucrose-related traits, BRIX, POL%C, and POL%J, revealed the largest
increase in genetic gain from B3 (1962–1971) to B5 (1982–1991). The SN, SW, TCH, and TPH
traits had the largest rise in genetic gain from B5 (1982–1991) to B6 (1992–2001), while for
SH it was from B4 (1972–1981) to B5 (1982–1991).

By studying the composition of the Brazilian germplasm, a temporal structure could
be recognized, allowing us to study the genetic progress during this period. For simplicity,
we modeled a linear regression, the results of which are shown in Table 2. Besides FIB
and SD, the linear models were significant (p-value < 0.05). The significant R2 varied from
6.80% (SD) to 21.15% (TPH). Sucrose-related traits (BRIX, POL%C, and POL%J) showed
similar patterns. However, assuming the traits were evaluated at different measurement
scales, the variances and slopes were not directly comparable. This can be illustrated by,
for example, SD (millimeters) not being significant (p-value = 0.27) with a slope of 0.11,
whereas SH (m) was significant (p-value = 1.24 × 10−7) with a lower slope (0.06). To adjust
for this, we calculated the genetic progress (GP (%)), which is a non-dimensional value.
The highest significant GP (%) was observed for TCH (9.12%), followed by TPH (6.54%),
SW (6.53%), SN (2.54%), SH (1.60%), POL%C, POL%J (0.92% for both), and BRIX (0.69%).
The lowest GP% was found for FIB (0.04%) and SD (0.23%).

Table 2. Linear regression, coefficient of determination (R2), and p-value for the angular coefficient
significance and genetic progress (GP (%)) for BRIX (in ◦Brix), sucrose content of the cane (POL%C, in
%), sucrose content of the juice (POL%J, in %), fiber content (FIB, in %), stalk height (SH, in m), stalk
number (SN), stalk diameter (SD, in mm), stalk weight of the plot (SW, in kg), cane yield (TCH, in
t/ha), and sucrose yield (TPH, in t/ha) for accessions from Brazilian breeding programs considering
six decades of breeding.

Trait Linear Regression R2 (%) p-value GP (%)

BRIX (◦Brix) y = 19.30 + 0.27x 17.66 6.41 × 10−7 0.69
POL%C y = 14.13 + 0.26x 13.44 1.79 × 10−5 0.92
POL%J y = 16.82 + 0.31x 15.51 3.55 × 20−6 0.92
FIB (%) y = 12.50 + 0.01x 0.03 0.84 ns 0.04
SH (m) y = 1.87 + 0.06x 19.69 1.24 × 10−7 1.60

SN y = 67.00 + 3.27x 6.80 2.71 × 10−3 2.44
SD (mm) y = 24.39 + 0.11x 0.94 0.27 ns 0.23
SW (Kg) y = 72.06 + 9.42x 15.96 2.48 × 10−6 6.53

TCH (t/ha) y = 85.77 + 11.22x 15.97 2.48 × 10−6 6.54
TPH (t/ha) y = 11.40 + 2.08x 21.15 3.70 × 10−8 9.12

Moreover, according to the linear regression, the slope of BRIX, POL%C, and POL%J
traits showed an average increasing trend per decade of 0.27 ◦Brix, 0.26%, and 0.31%,
respectively. The slopes of the SN, SH, SW, TCH, and TPH traits showed an average
increasing trend per decade of 3.27 stalks, 0.06 m, 9.42 kg, 11.22 t/ha of sugarcane, and
2.08 t/ha of sugarcane, respectively.

4. Discussion

The maintenance of germplasm banks is important for the conservation of genetic
resources and ensuring the continuity of the entire genetic breeding process [49]. In sugar-
cane, the choice of parents for crossings marks the beginning of a long breeding process of
approximately 15 years [14,50]. Therefore, these parents should carry favorable alleles for
traits of commercial interest, such as sucrose content, tillering, resistance to disease, and
fiber content. After the cross-step, progenies are evaluated for various traits over many crop
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years in multi-environment trials [31,45,51–53]. Therefore, the characterization of cultivated
germplasm and less-adapted or wild germplasm are fundamental to introgress greater
diversity into the crop, introduce better cross management, and set breeding strategies that
may increase the yields of the target traits [54,55].

Heritability is a population parameter that measures the degree of variation in a
phenotypic trait that is related to genetic variation [56]. It is a key parameter because it
determines the potential for selection gain and/or correlated response based on the range
of environmental variation relevant to crop production [33,46,57]. In the present study,
the heritabilities were above 0.64, 0.72, and 0.43 at the plant cane, first ratoon, and second
ratoon (Table 1), respectively, suggesting a strong genetic component for the evaluated traits.
Furthermore, the heritability values are in accordance with those recorded by previous
studies. Chaudhary [58], using 32 sugarcane accessions found similar values for SD (0.85)
and SH (0.72); Kimbeng et al. [59], using 17 sugarcane accessions, found similar values for
POL%C (0.81); Gouy et al. [60] using two diversity panels, REU and GUA, found similar
values for SN (0.80 and 0.90, respectively), SD (0.89 and 0.96, respectively), BRIX (0.83
and 0.88, respectively) and FIB (0.89 and 0.71, respectively); and Gouy et al. [14], using
180 sugarcane accessions at two altitude conditions, low and high, found similar values
for POL%C (0.60 and 0.67, respectively), SN (0.48 and 0.50, respectively), and SH (0.73
and 0.79, respectively). Thus, despite the genetic complexity and mode of inheritance that
may occur in polyploids such as sugarcane [7,61], the genetic effects are pronounced for
most quantitative traits and can be explored in different ways depending on the goals of
breeding, whether for sugarcane or energy cane purposes.

In breeding programs, genotypic correlations can be used to predict the effectiveness
of an indirect selection of a trait with the primary goal of improving another trait [62,63].
This is relevant for traits that are difficult to measure or expensive to quantify, or those
with low heritability as their covariances with higher heritability traits can be explored [63].
The strong positive (BRIX–POL%C, BRIX–POL%J, POL%C–POL%J, SW–TCH, SW–TPH,
and TCH–TPH) and negative (FIB–POL%C, FIB–POL%J, FIB–SD) genotypic correlations
(Figure 1) are comparable to previous reports [31,64–66] and suggest that BPSG congregate
contrasting accessions for sucrose and fiber content. This is also evidence that BPSG
has accessions with a genetic base to obtain sugarcane and accessions with favorable
alleles for a high biomass energy cane [67,68]. The biplot analysis (Figure 2) showed that
ancestors and breeding accessions were grouped based on the breeding and evolutionary
history of sugarcane, that is, the ancestor representatives of S. spontaneum, which is known
as an allelic reservoir for biomass production and less used in the sugarcane breeding
crosses [69,70], were positioned farther from the breeding accessions than representatives
of S. officinarum. In addition, the phenotypic averages were in accordance with those
reported for sugarcane [14,27,60,65,66,71,72].

Through the boxplot analysis, it was possible to observe the productivity scenario
of Brazilian breeding programs over six decades (sets B1 to B6), the phenotypic ranges of
ancestor germplasm (set A), and those of foreign breeding germplasm (set E). Overall, sets
B1 to B6 had smaller ranges of variation when compared with sets A and E, suggesting
a strong concentration of favorable alleles for the evaluated traits related to the breeding
process. In addition, only FIB had the highest median in set A, indicating that Brazilian
breeding programs focused on the alleles for increased BRIX, POL%C, POL%J, SN, SD,
SH, SW, TCH, and TPH rather than FIB. During this period, the sucrose content-related
traits (BRIX, POL%C, and POL%J) had smaller increases when compared with the biomass
production-related traits (SN, SH, SW, and TCH). These results suggest (i) stagnation or
lower genetic gain for sucrose-related traits; (ii) crossing management for increase biomass,
since a higher sucrose yield is limited, and (iii) improvements in agricultural practices
that benefit plant development and, consequently, higher biomass productivity. Therefore,
regarding breeding programs, the alerts of some previous studies on timid annual genetic
gain rates and lower yield increases for traits of commercial interest [15,17,73] were also
verified here. Despite the previous success of Brazilian breeding programs, the need to
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incorporate new tools to overcome the current productivity level is evident, especially for
sucrose-related traits.

In this study, the selection of the best foreign accessions showed similar results to
the superior newest accessions for sucrose-related traits. In this case, integrating foreign
germplasm in a breeding program can contribute to broadening the genetic basis, caus-
ing the increase in sucrose content due to transgressive segregation resulting from the
germplasm exchange efforts. For example, SW and TCH are complex traits in which
heritability may vary from low to intermediate values [28,31], resulting in a pronounced
non-genetic influence on the phenotype. Considering that foreign accession was selected
for another type of environmental condition, the lower values of the boxplots, especially
when compared with B4, B5, and B6 subsets, indicate that the local breeding programs
were able to exploit the benefits of G×E interaction properly.

These results suggest that: (i) the highest genetic progress was verified for the primary
trait for sugarcane breeding process, which is sugar-yield expressed by TPH; (ii) SW, SH,
and SN are the main components for TCH, but the improvement of SW was the greatest
contributor; (iii) sugar content (BRIX, POL%C, and POL%J) had been increased, but the
lower rates compared with the other traits may indicate that a plateau is being reached;
(iv) the Brazilian varieties have increased the TPH, especially due to TCH; (v) Brazilian
programs intended to obtain new varieties based on sugar yield, and fiber was not the main
purpose, although with the current interest in biomass breeding [4,19,74], this tendency
may change in the near future, and (vi) considering the boxplots and GP, breeding programs
can still succeed in improving the sugar yield, thereby increasing the biomass as opposed
to the sucrose-related traits.

Finally, some previous studies have highlighted the timid annual genetic gain rates
and lower yield increases for traits of commercial interest [15,17,73]. This was verified in
this study, particularly for sucrose-related traits. Despite the previous success of Brazilian
breeding programs, it is evident that there is a need to incorporate new tools to overcome
current productivity levels. The phenotypic characterization of BPSG presented in this
study offers new options since it represents the entire allelic pool explored by Brazilian
breeding programs and allows future studies of genome-wide association to detect alleles
that may integrate assisted selection platforms. In practice, the combination of appropriate
phenotypic characterization of germplasm banks with molecular variation genotyping may
be very useful for detecting effective alleles, designing new cross strategies, or selecting
potentially superior cultivars in the early stages of the breeding process. Furthermore, the
introgression of foreign hybrids or less-adapted germplasm may introduce new favorable
alleles for quantitative traits of interest [56,75]. The fixation of these alleles may be possible
through conventional breeding and could be the subject of further studies since the linkage
disequilibrium in sugarcane has been previously described to a large extent [28,30,76,77].
Therefore, efforts to develop high-quality phenotyping of germplasm banks and early
selection stages, along with the development of molecular data analysis for polyploids
could lead to major advances for sugarcane crops.

Supplementary Materials: The following are available online at https://www.mdpi.com/xxx/s1,
Table S1. Brazilian Panel of Sugarcane Genotypes (BPSG): Accessions, pedigree information, origin,
and predefined groups of the 242 accessions. Table S2. Selected models for the GM matrix and
number of estimated parameters (npar) considering each trait separately. The Akaike (AIC) and
Bayesian (BIC) information criteria were used to compare the structures of the variance-covariance
matrix. The models for the GM matrix were selected according to the lowest value of the BIC criterion
for BRIX (in ◦Brix), sucrose content of the cane (POL%C, in %), sucrose content of the juice (POL%J,
in %), fiber content (FIB, in %), stalk height (SH, in m), stalk number (SN), stalk diameter (SD, in
mm), stalk weight of the plot (SW, in kg), cane yield (TCH, in t/ha) and sucrose yield (TPH, in t/ha)
for BPSG over three harvest years (2014, 2015, and 2016). Bold numbers represent the smallest AIC
and BIC values. Table S3. Spreadsheet with raw data for the 10 traits evaluated in the present study.
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