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Abstract 
The purpose of this application paper is to apply the Stein-Chen (SC) method 
to provide a Poisson-based approximation and corresponding total variation 
distance bounds in a time series context. The SC method that is used approx-
imates the probability density function (PDF) defined on how many times a 
pattern such as { }1 2, , 1 0 1t t tI I I+ + =  occurs starting at position t in a time se-
ries of length N that has been converted to binary values using a threshold. 
The original time series that is converted to binary is assumed to consist of a 
sequence of independent random variables, and could, for example, be a se-
ries of residuals that result from fitting any type of time series model. Note 
that if {1 0 1} is known to not occur, for example, starting at position t = 1, 
then this information impacts the probability that {1 0 1} occurs starting at 
position t = 2 or t = 3, because the trials to obtain {1 0 1} are overlapping and 
thus not independent, so the Poisson distribution assumptions are not met. 
Nevertheless, the results shown in four examples demonstrate that Poisson-based 
approximation (that is strictly correct only for independent trials) can be re-
markably accurate, and the SC method provides a bound on the total varia-
tion distance between the true and approximate PDF. 
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1. Introduction and Background 

Suppose there is interest in the probability that a pattern such as {1 0 1} or {1 1 
1} occurs in a sequence of N = 10 independent Bernoulli trails. The main interest 
in this paper is the case with a small Bernoulli success probability, p = P (Ii = 1), 
consisting, for example, of whether a residual from a fitted time series model 
exceeds a threshold. A pattern such as {1 0 1} or {1 1 1} could indicate a depar-
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ture from the fitted model, perhaps indicating that a signal of interest is present.  
This paper considers scanning for {1 x 1} with x = 0 or 1, with p = P (Ii =1) 

being quite small, such as 0.10 or less. Then the probability of the pattern {1 x 1} 
is p2, and there are N – 2 = 8 possible starting locations for the pattern in N = 10 
trials. Because there are only 210 = 1024 possible patterns of 0’s and 1’s, all 1024 
patterns could be listed, and the probabilities assigned to each set of 10 binary 
values that include {1 x 1} at least once could be summed to provide an exact 
calculation (Example 2 in Section 4). For larger values of N, this exact calculation 
is unwieldy, so an approximate method is desired, provided the approximation 
is highly accurate with provable error bounds. 

This paper uses the SC approximation method (Section 3) to greatly simplify 
calculating the probability that a specified pattern occurs in a sequence of inde-
pendent residuals in a time series context. The SC method approximates the 
probability density function (PDF) defined on how many times a pattern such as 

{ }1 2, , 1 0 1t t tI I I+ + =  occurs starting at position t in a time series of length N that 
has been converted to binary values using a threshold. The original time series 
that is converted to binary is assumed to consist of a sequence of independent 
random variables, and could, for example, be a series of residuals that result from 
fitting any type of time series model. Note that if {1 0 1} is known to not occur, 
for example, starting at position t = 1, then this information impacts the proba-
bility that {1 0 1} occurs starting at position t = 2 or t = 3, because the trials to 
obtain {1 0 1} are overlapping and thus not independent, so the Poisson distri-
bution assumptions are not met. 

Figure 1 is an example of time series data, consisting of electric consumption 
recorded every hour for 14 days for a total of 336 measurements (the data named 
elec_load aggregated from 30 minute to 60 minute time steps from the TSrepr 
package in [1]). This electric consumption data is used here simply as an example 
of the type of time series that this paper considers. Figure 2 is a binary version of 
the series in Figure 1, with values 3.5 or larger set to 1 and values less than 3.5 
set to 0. Approximately 2% (6 of 336) of the 336 values exceed 3.5. 
 

 
Figure 1. Time series data: 336 observations of electric consumption values in arbitrary 
units. 
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Figure 2. A binary version of the same data in Figure 1; 6 of 336 values exceed the 3.5 
threshold. 
 

Figure 2 is the type of data that motivated this case-study application of the 
SC method. In the applications of interest, the combinatorial counting can only 
be done for very short time series (and so it is done only in Example 2 below with 
a length 5 time series). Therefore, the application led the authors to apply and as-
sess the SC bound for a corresponding simple Poisson approximation. The SC 
bound does not seem to be well known among practitioners; however, as this 
paper shows, the SC bound can defend the use of the simple Poisson approxima-
tion in some real applications, and can provide a very small bound on the ap-
proximation error. 

The advantage of the SC method in this context is simplicity and tractability 
(as shown in Examples 1 to 4 below). The disadvantage is that the SC method is 
an approximate method for which the total variation distance bound must be 
calculated in order to assess the quality of the approximation under various con-
ditions (as shown in Examples 1 to 4 below). Fortunately, the SC approximation 
quality is excellent in the applications of interest. 

2. Methodology: Scanning for Specified Patterns 

The N = 336 binary values in Figure 2 are an example of the type of binary time 
series considered here. The binary values 1 2 3, , , , NI I I I  are assumed to be in-
dependent and identically distributed with constant probability p = P (Ii = 1). 
The probability p is the probability that the original time series X exceeds a thre-
shold, and the I notation denotes an indicator or binary variable. As an aside, the 
SC method can also be applied if p is not constant over time, but the indepen-
dence assumption is difficult to avoid [2]. Any type of time series model [3] can 
be fit to the series of interest, and then the resulting residuals become the origi-
nal series that is thresholded to convert to binary; therefore, the application is 
quite general. 

Suppose that large values of the original series are thought to rarely cluster, so, 
for example, a pattern such as {1 0 1} or {1 1 1} could indicate a departure from 

https://doi.org/10.4236/am.2021.1211067


T. Burr, B. Henderson 
 

 

DOI: 10.4236/am.2021.1211067 1034 Applied Mathematics 
 

the assumed time series model, perhaps indicating that a signal of interest is 
present. This paper will consider scanning for {1 x 1} with x = 0 or 1, with p = P 
(Ii = 1) being quite small, such as 0.10 or less. Then the probability of the pattern 
{1 x 1} is pp = p2. 

Start at index i = 1 and check whether {1 x 1} occurs in positions {1 2 3}, then 
start at index i = 2 and check whether {1 x 1} occurs starting at index 2 in posi-
tions {2 3 4}, then start at index 3, etc. Note, for example, that if {1 x 1} occurs 
starting at position i = 1, then the probability that {1 x 1} also occurs starting at 
index 3 is p. Clearly, there is a small neighborhood of dependence around each 
starting index, as just illustrated. This neighborhood of dependence violates the 
assumptions for a Poisson distribution (as a limit distribution for a sequence of 
N Bernoulli trials, each with small probability of success), but [2] shows that 
provided the dependence neighborhood is modest, the Poisson distribution can 
still provide an excellent approximation to the PDF defined on the number of 
times {1 x 1} occurs in a series of length N.  

3. Stein-Chen Method 

According to Theorem 2 in [2], the Poisson PDF with mean parameter  
( )2 pN pλ = −  provides an approximation Y to the true PDF W for the num-

ber of times {1 x 1} occurs in a series of length N. The value ( )2N −  is used 
instead of N because the length-3 pattern could only be found starting at index 
1,  2, 2, N − . 

The quality of the Poisson (λ) approximation can be measured by computing 
the terms b1 and b2, where 1 1 i i j

N
i j Nb p p
= ∈

= ∑ ∑ , with  
{ }2, 1, , 1, 2iN i i i i i= − − + +  being the dependence neighborhood of index i, and 

{ }2 1 , i j jj
N
i j Nb E I I ′′= ∈

= ∑ ∑ , where j j′≠ . The term b3 is equal to 0 in Theorem 
2 of [2] by construction of iN  in this example. Then, it is easily shown that the 
total variation distance (TVD) satisfies: 

( ) ( ) ( )( )2
1 2, 4 4 2 9 3TVD p pd Y W b b N p p p≤ + = − +            (1) 

The TVD is a quite general distance measure between two PDFs. The TVD is 
defined here as the maximum absolute difference between the probability as-
signed by Y and the probability assigned by W to any specified subset of possible 
integer values. In the current scanning context, the most important subset of possi-
ble values to consider is the single value {0}, which would imply that the pattern 
{1 x 1} never occurred (occurred 0 times) in the N - 2 overlapping trials. Then, 
the SC method in this context uses the Poisson approximation to assign a value 
to P {0} and the SC method ensures that the Poisson approximation to P {0} is 
quite accurate, as shown below.  

According to the Poisson approximation, P ({1 x 1} never occurs) = e−λ. For 
example, using N = 1000 and p = 0.01, 998 0.0998ppλ = = , then e−λ = 0.905 is 
the approximate probability that the pattern never occurs, with a SC-based 
bound of ( )( )24 2 9 3 0.0123p pN p p p− + = . Therefore, the maximum difference 
between the true probability defined by the Y random variable and the approx-

https://doi.org/10.4236/am.2021.1211067


T. Burr, B. Henderson 
 

 

DOI: 10.4236/am.2021.1211067 1035 Applied Mathematics 
 

imate probability assigned to any subset of the possible number of occurrences 
of {1 x 1} defined by the approximating W (Poisson random variable) is 0.01236. 
So, for example, if the probability that ({1 x 1} never occurs) = e−λ = 0.905, then 
the true probability of 0 occurrences of the pattern is between 0.89 and 0.92. The 
next section uses simulation to confirm the quality of the SC approximation in 
Equation (1) in this context. 

4. Simulation Results 

This section provides simulation results for four examples. Example 1 was given 
in Section 3. Example 2 uses N = 5 and p = 0.02 where the exact PDF can be de-
rived analytically by hand fairly easily. Example 3 uses N = 336 and p = 0.02, 
similar to that observed in the data in Figure 2. Example 4 is the same as Exam-
ple 3, but increases N to N = 104 and is close to the actual application that moti-
vated this investigation. Note that for small values of N such as N = 5, the 2N 
possible patterns can be enumerated and the fraction of patterns for which the 
specified pattern of interest such as {1 1 1} starting at any position 1, 2, or 3 can 
be calculated exactly; therefore, simulation is not necessary (but also still can be 
done for comparison and completeness) in order to calculate the probability that 
{1 1 1} occurs at least once in a sequence of N = 5 binary values. 

The simulation results have shown next each used 106 repeated sets of N Ber-
noulli trials. The Appendix provides example R code to do the simulations and 
calculations [1]. 

Example 1 
Use N = 1000 and p = 0.01, then 998 0.0998ppλ = = , and e−λ = 0.905. 
The simulation-based P (0 occurrences of {1 x 1}) = 0.907, and the Pois-

son-based approximation gives 0.905 with a SC-based TVD bound from (1) of 
0.0123. 

Example 2 
Use N = 5 and p = 0.02, then the exact PDF can be computed analytically fair-

ly easily by finding the 17 of 32 possible patterns of 0 - 1 values in N =5 posi-
tions. The analytically-derived exact (and the simulation-based) PDF both assign 
0.999 to 0 occurrences of {1 x 1} and 0.001 to 1 occurrence. The SC-based Pois-
son approximation also assigns probability 0.999 to 0 occurrences and 0.001 to 1 
occurrence. The SC-based TVD bound from (1) is 0.0003.  

Example 3 
As for the data in Figure 2, use N =336 and p = 0.02. The simulation-based 

PDF assigns 0.88 to 0 occurrences of {1 x 1} and 0.12 to 1 occurrence. The 
SC-based Poisson approximation assigns probability 0.87 to 0 occurrences and 
0.12 to 1 occurrence. The SC-based TVD bound from (1) is 0.034, in this case 
with N = 336 and p = 0.02. For the data in Figure 2, the pattern {1 x 1} actually 
occurred zero times in the 336 -2= 334 trials.  

Example 4 
Example 4 is the same as example 3, but N = 104 and p = 0.0032, so  
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9998 0.102ppλ = = , which is nearly the same value of λ as in Example 1, but 
this example has quite large N and quite small p. The simulation-based PDF as-
signs 0.903 to 0 occurrences of {1 x 1} and 0.091. 

Example 4 is close to the real application that motivated this paper, and for 
that length time series, the exact method’s combinatorial counting (as was done 
in Example 2 where N = 5) is prohibitively unwieldy, so the SC bound becomes 
indispensable. 

5. Conclusions and Summaries 

This paper applied the SC method to approximate the PDF for the number of 
occurrences of an example pattern in an independent binary time series. In 
scanning for whether a pattern such as {1 x 1} occurs starting at index i, there are 
overlapping tries to achieve the pattern, resulting in many non-independent tri-
als consisting of the values in three successive indices. As the time series length 
increases and the probability p = P (Ii = 1) decreases, the SC method shows that 
the Poisson approximation is excellent, with a small total variation distance 
bound, just as in the case of many independent trials, each with small success 
probability. 

The SC bound does not seem to be well known among practitioners; however, 
related references are available [4] [5] [6] [7]. Reference [4] applies the SC me-
thod to calculate coincidence probabilities. References [5] and [6] apply the SC 
method in different time series contexts than ours. Reference [7] applies the SC 
identity ( ) ( )( )1Xf X E f Xµ= + , where X is a Poisson(μ) random variable and 
E denotes expected value and ()f  is any bounded function defined on the 
nonnegative integers, to simplify calculation of bivariate Poisson moments. The 
SC identify was used to develop the SC approximation method used in this pa-
per. 

The main contribution of this paper is to show that the SC bound can defend 
use of the simple Poisson approximation in real applications (as opposed to un-
wieldy combinatorial calculations as in Example 2 for larger time series lengths 
N), and provide a very small bound on the approximation error. Example 4 is 
close to the real application that motivated this paper, and for that length time 
series, the exact method’s combinatorial counting (as was done in Example 2 
where N = 5) is prohibitively unwieldy, so the SC bound becomes indispensa-
ble. 
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Appendix. Example R Code to Illustrate the Simplicity of the 
SC Method 

p = 0.01; N = 10^3; nsim = 10^6; temp = numeric(nsim) 
# record how many 1 0 1 occurrences in N − 2 overlapping trials. 
for(isim in 1:nsim) { 

x = as.numeric(runif(N) < p) # simulated N independent Bernoulli trials 
for(i in 1:(N − 2)) { 
if(x[i]==1 && x[i + 2]==1) {temp[isim] = temp[isim] + 1} 

} 
} 
mean(temp==0) 
lam = (N − 2) * p^2 
exp(−lam) 
# bound  
pp = p^2; 4*(N − 2) * (9 * pp^2 + 3 * pp * p) 
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