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Abstract: Most electrochemical sensing requires affordable, portable and easy-to-use electrochemical
devices for use in point-of-care testing and resource-limited settings. This work presents the design
and evaluates the analytical performance of a near-field communication (NFC) potentiostat, a flat
card-sized electrochemical device containing a microchip for electrical analysis and an NFC antenna
for smartphone connection. The NFC interface is a wireless connection between the microchip and
smartphone to simplify measuring units and make the potentiostat into a passive operated device,
running without a battery. The proposed potentiostat can perform the common electrochemical
techniques including cyclic voltammetry and chronoamperometry with a current range and voltage
range of ±20 µA and ±0.8 V. The performance of the NFC potentiostat is compared to a commercial
benchtop potentiostat using ferricyanide as a standard solution. The results show that the NFC
potentiostat is comparable to a commercial benchtop potentiostat for both cyclic voltammetry and
chronoamperometry measurements. The application of the proposed potentiostat is demonstrated
by measuring ascorbic acid concentration. As described, the NFC potentiostat, which is compatible
with a smartphone, is low-cost, small in size and user-friendly. Thus, the device can be developed for
on-site measurement to apply in various fields.

Keywords: potentiostat; battery-less; near-field communication; smartphone

1. Introduction

Electrochemical sensing has been developed and is widely applied in various fields
including food safety and control [1–3], environmental monitoring [4–6] and clinical di-
agnostics [7–9], since it offers many advantages such as high sensitivity and selectivity,
rapid detection and small sample volume [10–12]. Typically, a potentiostat is an electronic
instrument used to perform electroanalytical measurements by controlling the voltage
difference and measuring the current flow through an electrochemical cell [13,14]. How-
ever, the commercially available potentiostats that are suitable for the laboratory are large
and expensive, with a price of several thousand dollars [15–17], which largely limits their
application for point-of-care testing and in resource-limited settings. For these reasons,
an electrochemical workstation needs to be portable, low-cost and easy to use to meet the
demand for on-site measurement.

In recent years, there has been growing research in the development of low-cost and
portable potentiostats. Some studies have developed inexpensive and open-source poten-
tiostats that complement commercial laboratory potentiostats [18–21], but the instrument
requires a computer to operate the detection process, analyze the data and display the
results. These devices limit the application for home-based testing and in resource-limited
settings. Moreover, those devices cannot easily transmit the data to the cloud for storage
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and cannot directly share data with related users such as physicians or healthcare services
for clinical applications. With the rapid growth of smartphone users worldwide, which ex-
ceeds 3.5 billion in 2020, accounting for 45.4% of the world’s population and being projected
to grow further in the next few years [22], the development of smartphone coupling with
potentiostats is an increasing trend for electrochemical sensing systems. In these systems,
smartphones can be connected with potentiostats through Bluetooth, Wi-Fi, USB or an
audio port interface for supplying power, data transmission, data processing, result display
and sharing [23]. There have been previous studies on the development of potentiostats in-
terfaced with a smartphone for specific applications and techniques. Ainla et al. proposed
an open-source “universal wireless electrochemical detector” (UWED) that interfaces with
a smartphone using Bluetooth [24]. In addition, Cai et al. presented xenSTAT, which can
connect to the phone via Bluetooth and can perform most electrochemical techniques [25].
In another study, ABE-Stat, developed by Jenkins et al., can perform electrochemical
analyses including cyclic voltammetry (CV), differential pulse voltammetry (DPV), high
impedance potentiometric measurements, and can connect wirelessly to a smartphone
through Wi-Fi [26]. However, these devices often require wired connection with USB and
audio port or need rigid batteries for wireless power through Bluetooth and Wi-Fi, which
greatly limits simplification and miniaturization of the device, and also increases the cost
and maintenance demands [27,28].

Near-field communication (NFC) is short-range wireless connectivity that allows the
smartphone or other device to communicate with devices containing an NFC tag. NFC is
being implemented on most new generation smartphones, and is being rolled out for sev-
eral applications, including identification and cashless payments [29,30]. This technology is
nowadays a high potential technology for use as a wireless sensor platform [31]. NFC sen-
sors provide inexpensive, portable and real-time monitoring, which has been utilized in the
field of food [32,33], the environment [34,35] and healthcare [36–38]. The advantage over
other wireless standards such as Wi-Fi, Bluetooth and ZigBee is that NFC can receive and
transfer power between devices with a long battery lifetime or battery-free implementation
of a sensor [31,39]. Some studies have demonstrated the integration of NFC technology
with an electrochemical sensing platform. Kassal et al. presented a radio-frequency identifi-
cation (RFID)/NFC wireless sensor tag capable of performing potentiometric measurement
for use with pH and ion-selective electrodes [40]. For amperometric measurement, Stein-
berg et al. demonstrated a wireless potentiostat that communicated with a smartphone by
NFC. This potentiostat is semi-autonomous and able to store chronoamperometric data and
perform data analysis externally on the smartphone [41]. In addition, NFC-based chemical
sensors have been used to determine uric acid and glucose concentration. Kassal et al.
developed smart bandage biosensor interfaces with a wearable potentiostat that wirelessly
transfers data for uric acid levels, a wound biomarker, to a computer, tablet or smartphone
by RFID or NFC. The smart bandage provides highly sensitive and specific uric acid de-
tection, which is useful for home-based patients and healthcare service providers [42].
Fedtschenko et al. demonstrated a wireless sensor system used to determine glucose
concentration in tear fluid by chronoamperometry. This system transfers the measurement
data wirelessly to a handheld reader using RFID and NFC [43]. For the application in cyclic
voltammetry, Siegl et al. reported a sensor strip with an integrated circuit (IC) powered
via NFC for cyclic voltammetry. The strip consists of an antenna, a chip, an electrode con-
nector and an oscilloscope that monitors the output electrode voltages [44]. Therefore, we
introduce an NFC potentiostat, a battery-free and flat card-sized device, which interfaces
with a smartphone through near-field communication. In this study, we demonstrate the
design and performance of an NFC potentiostat compared with a commercial benchtop
potentiostat in chronoamperometry and cyclic voltammetry techniques. In this work, the
NFC potentiostat was used to evaluate the concentration of ascorbic acid in deionized
water and commercial drinking water.



Appl. Sci. 2021, 11, 392 3 of 13

2. Materials and Methods
2.1. Chemicals and Materials

All chemicals used in this work were analytical grade and deionized water was used
throughout the experiments. Potassium ferricyanide (K3[Fe(CN)6]), potassium chloride
(KCl) and ascorbic acid were purchased from Sigma Aldrich (St. Louis, MO, USA). All
electrochemical measurements including cyclic voltammetry and chronoamperometry were
performed on an NFC potentiostat developed by Silicon Craft Technology PLC (Bangkok,
Thailand) and a Galaxy Nexus smartphone (Samsung, Seoul, South Korea) with Android
operating system. A CH instrument (CHI 611E, Texas Instruments Inc., Austin, TX, USA)
was used as a standard instrument. A commercial screen-printed carbon electrode (TE100,
Zensor R&D Co., Ltd., Taichung City, Taiwan), consisting of a 3 mm diameter carbon
working electrode, carbon counter electrode and Ag/AgCl reference electrode, was used to
perform the experiment.

2.2. NFC Potentiostat Design

The NFC potentiostat is designed in the form of a compact credit card having dimen-
sions of 5.5 cm × 8.6 cm, consisting of a planar antenna, NFC microchip (SIC4341) and
connector for electrode interface. The dimension of the NFC potentiostat is designed to
ensure stable operation during tapping the mobile, while leaving some space for electrode
insertion and solution drop. The NFC microchip harvests energy from the magnetic field
emitted from a smartphone or RFID reader through a loop antenna realized from 1 oz.
(35 µm) copper trace on FR4-PCB. The printed circuit board was processed by PCBway
(Shenzhen, China). The antenna consists of a 4-turn loop with a size of 4.5-by-3.0 cm maxi-
mum perimeter and 250 µm conductor width and spacing. The antenna has an inductance
of 2.04 µH with a quality factor of 130, measured by LA-19-13-02 VNA from LA technique
Ltd. (Surrey, UK) and couples to a microchip having a 50 pF internal capacitance. This
creates a parallel resonance circuit at a peak resonance frequency of 15.7 MHz, based on
the f r = 1/2π

√
LC relationship. The resonance frequency of the antenna is set a bit higher

than the operating frequency of 13.56 MHz in order to compensate coupling effects from
near-field operation. The maximum operating read distance from the antenna is 2 cm, over
which the potentiostat can still operate stably. The energy is regulated to the internal 1.8 V
power supply for the internal potentiostat to cover a maximum operation range of ±20 µA,
an analog-to-digital data converter, a digital signal processor to convert raw data into
measurement current information and an NFC analog front-end communication circuit to
communicate with the smartphone or RFID reader.

2.3. Android Application

A user-friendly SIC4341-POTEN Android mobile application was developed to op-
erate the NFC potentiostat. The main screen shows the detection method as depicted in
Figure 1a. After selecting the electrochemical method, the user can set the parameters of the
experiment as shown in Figure 1b. Next, the software allows the user to drop the substrate.
Then, the screen automatically displays the voltammogram as presented in Figure 1c. After
finishing the process, users press the “next” icon. Data were obtained as illustrated in
Figure 1d. Three options are then available, namely: back to the main screen, perform the
electroanalytical experiment again and export the data. The resulting data are stored as
“.txt” files and transferred to a computer for the interpretation steps by ES File Explorer.
The resulting data enable upload through the cloud (e-mail, social media or Dropbox) for
sharing storage or remote analysis of the data. Furthermore, the application can be adapted
to suit different analyte detection by reporting the concentration of the sample calculated
from the embedded standard calibration in the system.
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Figure 1. Smartphone screenshots showing the SIC4341-POTEN Android application: (a) initial screen, (b) electrochemical
parameters settings, (c) cyclic voltammogram and (d) resulting data.

2.4. Performance Test of the NFC Potentiostat

To evaluate the performance of the NFC potentiostat, a commercial screen-printed
carbon electrode consisting of a 3 mm diameter carbon working electrode, carbon counter
electrode and an Ag/AgCl reference electrode was used to perform cyclic voltammetry
and chronoamperometry. The experiments on the NFC potentiostat were compared to a
commercial laboratory potentiostat (CHI 611E, Texas Instruments Inc., Austin, TX, USA)
used as a standard instrument. For each experiment, 100 µL of potassium ferricyanide in
0.1 M KCl as a supporting electrolyte was applied on a screen-printed carbon electrode.
The solution of potassium ferricyanide is a common analyte to test the performance of
a potentiostat, because it exhibits a reversible electrochemical behavior and rapid one-
electron process [45,46]. Cyclic voltammetry was carried out over the potential range from
−300 to 600 mV at a scan rate of 5–200 mV/s. For chronoamperometric detection, the fixed
potential of−100 mV was applied to the working electrode and the current period of 0–30 s
was recorded.

2.5. Ascorbic Acid Measurement

To demonstrate the application of the NFC potentiostat, the detection limit of standard
ascorbic acid was determined by cyclic voltammetry. In this experiment, different concen-
trations of ascorbic acid, ranging from 0.1–1 mg/mL, were drop-cast onto a commercial
screen-printed carbon electrode. Cyclic voltammetry was performed over the potential
range from 200 to 800 mV, and the current at 550 mV was used to determine the ascorbic
acid concentration. Commercial drinking water was spiked with ascorbic acid into different
concentrations. The concentration of ascorbic acid in spiked commercial drinking water
was analyzed from the calibration curve.

3. Results
3.1. NFC Potentiostat Operation

The main components of an NFC potentiostat are shown in Figure 2a, containing a
loop antenna, NFC microchip (SIC4341) and connector for electrode interface designed on
a printed circuit board with a credit card size. The details of the integrated circuit shown in
Figure 2b include (1) an analog part to connect between radio signals and controller, (2)
digital controller and memory unit to control the operation of integrated circuits to respond
to data transmission that operates at 13.56 MHz in the high frequency (HF) radio band and
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is compatible with ISO14443A, and (3) the chemical sensor processing to measure signal
responses from sensors.
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Figure 2. (a) Hardware components consisting of a planar antenna, near-field communication (NFC) microchip (SIC4341)
and connector for electrode interface. (b) The integrated circuit of the NFC potentiostat, which includes (1) an analog part,
(2) digital controller and memory unit and (3) the chemical sensor processing.

The operational steps of the NFC potentiostat are shown in the Supplementary In-
formation Video S1. When an NFC smartphone approaches the NFC antenna, the NFC
microchip is woken up by the radio frequency (RF) power from the induced magnetic
field. If the incoming power is sufficiently high, indicated by its internal status, the NFC
microchip starts initializing the system, activates the microchip peripheral devices and
waits for a command from the NFC smartphone for further operations. The NFC microchip
(SIC4341) consists of an internal potentiostat that is capable of supporting current measure-
ment from chemical sensors at a maximum input current of ±20 µA. The biasing voltage
between working electrode and reference electrode can be between −800 mV and 800 mV,
generated from the differential voltage of dual digital-to-analog converters (DACs) having
full scale voltage of 1.28 V with a step of 5 mV. The NFC smartphone application controls
the biasing voltage across the sensor by transmitting a command to adjust the DAC voltage.
The amount of current from the sensor in the physical world is processed by the 10-bit
analog-to-digital converter with a digital signal processor, and finally converted into digital
data stored in internal memory, ready to be transmitted back to the NFC smartphone. The
application on the NFC smartphone can periodically transmit commands to set the DACs,
following biasing profiles such as cyclic voltammetry. The NFC smartphone can read the
conversion result after each period to reconstruct a voltammetry waveform in the applica-
tion graphic interface. As the timing can be set by the application, for example, for cyclic
voltammetry, the sweep rate can be set on the application from 5 mV/s up to 1000 mV/s.
The application provides a graphic user interface (GUI) to set the three electrode terminals
freely and flexibly to support various electrode arrangements.

3.2. NFC Potentiostat Performance
3.2.1. Cyclic Voltammetry

NFC potentiostat performance was compared to a commercial potentiostat (CHI 611E,
Texas Instruments Inc., Austin, TX, USA), which is a benchtop potentiostat designed to
enable various electrochemical techniques to be performed in the laboratory. The cyclic
voltammograms of 0.1, 0.5 and 1 mM potassium ferricyanide in 0.1 M KCl at a scan rate
of 100 mV/s performed on the NFC potentiostat and the commercial potentiostat are
shown in Figure 3. The cyclic voltammograms showed a characteristic duck shape for a fully
reversible one-electron reaction of ferricyanide. The results showed good agreement of cyclic



Appl. Sci. 2021, 11, 392 6 of 13

voltammograms between the two devices. The higher the concentration of ferricyanide, the
greater the current signals observed. The average and relative standard deviation (RSD)
values of cathodic peak current and anodic peak current obtained from both potentiostats
are listed in Table 1. As shown in the table, the relative standard deviation was less than
±5% (n = 3), indicating that both potentiostats had a good reproducibility for conducting
the experiments.
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using the NFC potentiostat (red) and a commercial potentiostat, CHI 611E, (black) sweeping the potential between −300 mV
and 600 mV, at a scan rate of 100 mV/s.

Table 1. The average (AVG), standard deviation (SD) and relative standard deviation (RSD) of cathodic and anodic peak
currents using the commercial potentiostat and the NFC potentiostat.

Commercial Potentiostat NFC Potentiostat

0.1 mM 0.5 mM 1 mM 0.1 mM 0.5 mM 1 mM

AVG
± SD %RSD AVG

± SD %RSD AVG
± SD %RSD AVG

± SD %RSD AVG
± SD %RSD AVG

± SD %RSD

Ipc
−1.62
± 0.02 −1.50 −8.54

± 0.24 −2.77 −16.33
± 0.46 −2.82 −1.48

± 0.02 −0.97 −7.76
± 0.04 −0.46 −14.82

± 0.57 −3.85

Ipa
1.65 ±

0.03 2.00 8.40 ±
0.16 1.85 16.18

± 0.46 2.86 1.47 ±
0.03 2.19 7.62 ±

0.06 0.85 14.93
± 0.11 0.73

Ipc: cathodic peak current, Ipa: anodic peak current.

To evaluate the performance of the potentiostats in cyclic voltammetry at various
scan rates, cyclic voltammograms were recorded for 1 mM potassium ferricyanide con-
taining 0.1 M KCl by sweeping the potential from −300 to 600 mV at various scan rates
of 5–200 mV/s. Cyclic voltammograms produced on the NFC potentiostat are shown in
Figure 4a. When the potential is applied at higher scan rates, higher peak currents are
observed because of the decrease in the diffusion layer [47]. Figure 4b shows the theoretical
linear relationship between the redox peak current of ferricyanide and the square root of
the scan rate according to the Randles−Sevcik equation (Equation (1)), indicating that the
reaction was a diffusion-controlled process [47,48]. Furthermore, the calibration plots ob-
tained from the NFC potentiostat and the commercial potentiostat showed parallel results.
A plot from the NFC potentiostat provided a linear slope for cathodic peak current of 1.242
A/(V/s)1/2 (R2 = 0.995) and an anodic peak current of −1.222 A/(V/s)1/2 (R2 = 0.996).
In comparison, the linear slopes for cathodic and anodic peak currents recorded from
the commercial potentiostat were 1.237 A/(V/s)1/2 (R2 = 0.999) and −1.242 A/(V/s)1/2

(R2 = 0.999), respectively.

ip =

[
0.4463nFAC0

(
nFD
RT

)1/2
]

ν1/2 (1)
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where ip is the peak current (A), n is the number of electrons involved in the redox reaction,
F is the Faraday’s constant (96,485 C/mol), A is the surface area of the working electrode
(cm2), C0 is the concentration of the redox species (mol/cm3), D is the diffusion coefficient
of the redox species (cm2/s), R is the universal gas constant (8.314 J/mol K), T is the
absolute temperature (K) and υ is the scan rate (V/s).
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3.2.2. Chronoamperometry

To evaluate the performance of the potentiostat in chronoamperometric detection, an
experiment was performed with ferricyanide at concentrations ranging from 25–100 µM.
For chronoamperometric detection, a fixed potential was applied at −100 mV and the
measurement period was 30 s. Although the signal response from the NFC potentiostat
showed current noise, as shown in Figure 5a, while the current signals from the commercial
potentiostat were smooth and free of noise (Figure 5b), there was good agreement between
data obtained by the NFC potentiostat and the commercial potentiostat at different concen-
trations of ferricyanide (Figure 6a). The final steady-state current after 25 s, calculated as
the mean current due to the steady-state value, was proportional to the concentration of
the analyte [49,50]. Figure 6b demonstrates the theoretically expected linear relationship
between the current and concentration of ferricyanide. The calibration curve obtained from
the commercial potentiostat corresponds to Equation (2) with the regression coefficient as
R2 = 0.999,

y (I(µA)) = 0.0207 × x(µM(mol/L)) + 0.0303, (2)

while the calibration curve for the NFC potentiostat was obtained as the following Equation (3)
with R2 = 0.998,

y (I(µA)) = 0.0212 × x(µM(mol/L)) + 0.0169. (3)

The reliability of the potentiostat in detection of the analyte by chronoamperometry
was calculated by comparing the slopes between our device and the standard device [51].
The result demonstrated that the reliability was greater than 97%. The average (AVG) and
relative standard deviation (RSD) values of the current obtained from both potentiostats
are shown in Table 2. The current values obtained from the commercial potentiostat were
reproducible with RSD of ±2.55% and ±3.40% corresponding to chronoamperometric mea-
surement for 25 × 10−6 M and 1000 × 10−6 M, respectively, while the RSD obtained from
the NFC potentiostat gave values±0.91% and±7.74% for 25× 10−6 M and 1000 × 10−6 M,
respectively.
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Figure 6. (a) The chronoamperometry recorded in 25–100 µM ferricyanide solution measured by the NFC potentiostat (red)
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Table 2. The average (AVG), standard deviation (SD) and relative standard deviation (RSD) value of
the current obtained from both potentiostats in chronoamperometric measurements.

Molarity Commercial Potentiostat NFC Potentiostat

AVG (µA) ± SD %RSD AVG (µA) ± SD %RSD
25 × 10−6 −0.037 ± 0.0007 −2.55 −0.042 ± 0.0003 −0.91

1000 × 10−6 −2.064 ± 0.0572 −3.40 −2.071 ± 0.1309 −7.74

3.3. Application of NFC Potentiostat

To evaluate the application of the NFC potentiostat, it was used to measure the ascorbic
acid concentration and determine ascorbic acid in spiked commercial drinking water. The
detection limit of standard ascorbic acid was determined by cyclic voltammetry over the
potential range from 200 to 800 mV. Cyclic voltammograms of different concentrations of
ascorbic acid (0.1–1 mg/mL) are shown in Figure 7a. The current at 550 mV corresponds to
the oxidation of ascorbic acid [19,52]. Therefore, the current at 550 mV was used to plot
the calibration curve as shown in Figure 7b. The linear regression equation of ascorbic
acid measurement was y(µA) = 4.709x(mg/mL) + 1.198, with a correlation coefficient of
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0.998. The limit of detection (LOD) was calculated from 3 s/m and the limit of quantitation
(LOQ) was obtained from 10 s/m where s is the standard deviation of blank (n = 10) and
s is the slope of the calibration curve. According to the equation, the limit of detection
and the limit of quantitation were calculated to be 0.0024 mg/mL and 0.0080 mg/mL,
respectively. King et al. reported that the detection limit for measuring ascorbic acid using
the pencil electrode was 0.0326 mg/mL [52]. So, the limit of detection for ascorbic acid
determination using a screen-printed carbon electrode in this study was lower than the
previous work. The proposed NFC potentiostat was employed to determine ascorbic acid
in spiked commercial drinking water. The results are shown in Table 3. The recoveries were
98.78% ± 4.74, 95.80% ± 2.87 and 92.69% ± 2.35 for spiking ascorbic acid at concentrations
of 0.2, 0.4 and 0.6 mg/mL, respectively. The results indicated that the NFC potentiostat has
acceptable accuracy for ascorbic acid measurement.
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Table 3. Analyses of ascorbic acid in spiked commercial drinking water measured by cyclic voltam-
metry (n = 3).

Sample Added (mg/mL) Found (mg/mL) Recovery (%)

0.2 0.197 ± 0.009 98.78 ± 4.74
0.4 0.383 ± 0.011 95.80 ± 2.87
0.6 0.556 ± 0.014 92.69 ± 2.35

4. Discussion

This study demonstrated the design and performance of an NFC potentiostat (Silicon
Craft Technology PLC, Bangkok, Thailand), which is a battery-free and flat card-sized de-
vice that interfaces with a smartphone through near-field communication. The device was
designed for electrochemical measurement in point-of-care testing and resource-limited
settings that do not require technical users. These potentiostats have the following aspects:
(1) portability: the device is credit-card-sized (5.5 cm × 8.6 cm) and weighs only 8.07 g; (2)
low cost: this potentiostat is designed to be used with a screen-printed electrode, which is
low-cost, disposable and has ease of modification to detect various analytes [53,54]; (3) ease
of use: the NFC potentiostat is operated via a smartphone application. The smartphone
application allows the user to set the parameters of an electrochemical experiment and re-
ceive the resulting data; (4) wireless and cloud connectivity: the connection of smartphones
facilitates sharing and storage of all information to the database in order to minimize the
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manual error and create big data for further analysis, such as machine learning or artificial
intelligence.

The performance of the NFC potentiostat was evaluated by comparing it to a com-
mercial benchtop potentiostat. Cyclic voltammetry and chronoamperometry were carried
out in a potassium ferricyanide solution containing 0.1 M KCl. The results showed good
agreement of cyclic voltammograms between the two devices, but current signals of our
NFC potentiostat were lower than the commercial potentiostat. The deviation was from the
difference of applied potential step voltage from the DAC and differences in sampling time
and period designed for each potentiostat. For amperometric measurements, the slope of
the current response obtained by the NFC potentiostat was similar to the commercial po-
tentiostat with a reliability greater than 97%, although the signal from the NFC potentiostat
was observed to have current noise, compared with the commercial potentiostat, which
was free of noise. The noise was from a limitation of the analog-to-digital converter (ADC)
resolution of the potentiostat, which is 12 bit and less than that of the commercial benchtop
potentiostat. Note that the setting measurement range was ±20 µA, hence, the noise floor
should be around 10 nA.

The first prototype of the NFC potentiostat can perform cyclic voltammetry and
chronoamperometry with the input current ±20 µA and the biasing voltage at ±0.8 V.
Although the benchtop potentiostats offer a wide operational window of current and
voltage (±2 A,±10 V), they are too expensive and large for on-site measurement. Therefore,
an NFC potentiostat can be an alternative device for electrochemical measurement in point-
of-care testing and resource-limited settings. In a future prototype, the operation ranges
will be expanded and the system will be developed to support various electrochemical
techniques such as linear sweep voltammetry, square wave voltammetry and differential
pulse voltammetry.

5. Conclusions

This study demonstrated the design and performance of an NFC potentiostat de-
veloped by Silicon Craft Technology PLC (Bangkok, Thailand). The NFC potentiostat
is a flat, card-sized, lightweight device and is operated using an NFC smartphone, so it
is portable and easy to use. The performance of the NFC potentiostat exhibits a good
agreement with a commercial benchtop potentiostat for both cyclic voltammetry and
chronoamperometry. The application of this device was demonstrated through its use
in ascorbic acid measurement. This platform is suitable for various analytes, depending
on the design and modification of the electrodes used as a sensor. Therefore, an NFC
potentiostat can be an alternative device for electrochemical measurement in point-of-care
testing and resource-limited settings in many fields, including healthcare, agriculture and
the environment.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/1/392/s1, Video S1: Demonstration of NFC potentiostat operation. A 100 µL of 1.0 mg/mL
ascorbic acid was drop-cast on screen-printed carbon electrode, followed by a cyclic voltammetry
measurement by NFC potentiostat.
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