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ABSTRACT 
 

Present study aims to predict the evapotranspiration values over the Northern Telangana Zone 
through the identification or patterns in correlated data trends and seasonal variation and to assess 
the accuracy of the forecasting model. Plans for managing crop water consumption include potential 
evapotranspiration heavily. As a result, in a semi-arid environment, forecasting of the potential 
evapotranspiration is the foundation of any successful water resources management plans. The 
Thronthwaite method was used to estimate daily evapotranspiration, and a Seasonal Auto 
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Regressive Integrated Moving Average was used to forecast potential evapotranspiration. Time 
series analysis of evapotranspiration data set showed a seasonality behaviour and thus Seasonal 
ARIMA model with the least Akaike Information Criteria (AIC) and Bayesian Information Criteria 
(BIC) values were selected. The Seasonal Arima model selected for the districts Adilabad, Jagtial, 
Karimnagar, KumuramBheem, Nirmal, and Peddapalli was (2,0,2)(2,1,0)12 and  for Nizamabad 
district (2,0,2)(1,1,0)12. Basic statistical properties are used to compare the observed and forecasted 
data which shown that that there is no significant difference between the mean values of the 
observed and predicted data at a 5% significance level. Hence the developed model was optimum 
to forecast the evapotranspiration over the study area and to sustain the forecasting accuracy. 
 

 
Keywords: SARIMA; potential evapotranspiration; forecasting; model. 
 

1. INTRODUCTION 
 

“Evapotranspiration (ET) represents the 
combination of evaporation and transpiration, 
where evaporation is vaporization from the soil or 
water surface and transpiration is a plant water 
absorption from the root zone” [1]. “Both 
precipitation and the ET represent climate of a 
given region and are used as a decision support 
tool for water management in agriculture. While 
contributing to the surface energy balance, the 
ET quantifies the water requirement for the 
efficient water management” [2,3]. “Not only in 
irrigation assessments but also in the accurate 
modelling of river basin hydrology, estimation of 
the local ET is one of the essential tasks” [4]. 
Krishna [5] highlighted that “the accurate 
estimation of ET is important because 
understanding and quantifying the processes 
governing ET clarifies the uncertainties in the 
behaviour of the hydrologic cycle with the 
changing climate”. “Since the ET is a critical 
factor in water balance from the plot scale to a 
global scale, well-grounded ET estimations are 
required to regulate the components of the 
irrigation system: the size of canals and dams, 
and the capacity of pumps” [6]. 
 

One of the most significant agricultural backward 
links is irrigation. The need to improve water use 
efficiency and the performance of large irrigation 
systems is driven in part by the competition for 
water, high pumping costs, challenges 
associated with water storage and delivery, and 
environmental concerns. Agricultural managers 
have long relied on the evapotranspiration (ET) 
measurements or estimates for the purpose of 
timely and effective water application. Therefore, 
in order to improve water management practices, 
an accurate assessment of the ET is required.  
 

Knowledge of evapotranspiration is important for 
watershed management activities in meteorological 
and hydrological modelling, particularly water 

management in irrigated agriculture [7]. 
“Evapotranspiration plays a major role in the       
crop water requirement (CWR) of any crop.  
Determining the crop water requirement using 
evapotranspiration is considered one of the          
main planning needs for water resources 
management. In much long-term planning, it is 
necessary to outline the future state of rainfall 
and dry and wet periods for the region. For this 
purpose, the prediction of drought and the 
estimation of its characteristics are of great 
importance in water resources management” [8]. 
“One of the ET forecasting methods is the use of 
time series analysis, which has been rapidly 
developed for predictive and analytical issues 
since the 1970s. Therefore, due to the nature of 
the hydrological events, if the correct selection of 
the model and correct calculations are made, 
time series can be particularly consistent with the 
hydrologic data” [9]. “In many time series, there 
is a consistent correlation between the 
observations, which is a hallmark of the 
autoregressive integrated moving average model 
(ARIMA) and seasonal ARIMA (SARIMA) 
models” [10]. 
 

“One definition of a time series is that of a 
collection of quantitative observations that are 
evenly spaced in time and measured 
successively. Time series are analysed in order 
to better understand the underlying structure, 
repetitive behaviour and functionality that 
produce observational data [11]. Understanding 
the theoretical explanation of a time series 
analysis allows a mathematical model to be 
developed to explain the data trend in such a 
way that monitoring, simulation, prediction, 
assessment and management can occur”            
[12-15].  
 

“Hydrological processes are complicated; since 
they are influenced by not only deterministic, but 
also stochastic factors” (Wang et al. 2007). 
“Generally speaking, determinism includes the 
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periodicity, tendency and abrupt change. A strict 
deterministic hydrological process is rare. 
Stationary time series has been widely used in 
hydrological data assimilation and prediction to 
tackle the stochastic factors in hydrological 
processes. Some researchers have used ARIMA 
model for the analysis of hydrological processes, 
while most of the studies neglected stationary 
test and the influence from the inter-monthly 
variation within a year” [16-18].  
 

Telangana is the most recent state to join the Indian 
Union. In terms of both population and area, 
Telangana is ranked 11th in the nation. The 
Godavari and Krishna rivers, with catchment areas 
of 79% and 69% respectively, are the main drains 
of the region. The monsoons are primarily 
responsible for the unpredictable and uneven 
rainfall that characterises Telangana state. A 
comprehensive irrigation development strategy has 
been adopted by the Telangana government in 
order to provide irrigation facilities for about 125 
lakh acres of land throughout the state. The 
government has also launched a number of 
initiatives and adopted strategies to expeditiously 
complete ongoing irrigation projects. With the 
predicted rise in atmospheric temperature that 
comes with climate change, there will be more 
energy available for evaporation. Therefore, 
Accurate estimation of the ET must serve as the 
foundation for improvements in water use efficiency 
and sustainable water management in agriculture. 
In light of these facts, the current study's objective is 
to forecast the evapotranspiration values for the 
Northern Telangana Zone by identifying patterns 
in correlated data trends and seasonal variation 
and evaluating the forecasting model's precision.  
 

2. MATERIALS AND METHODS 
 

The Northern Telangana semi-arid zone lies 
between 17°42' and 19°84' N Latitude and 77°38' 
and 81°16' E Longitude. This zone includes the 
districts of Adilabad, KumuramBheem, 
Manchiriala, Nirmal, Karimnagar, Jagtial, 
Peddapalli, Rajanna Siricilla, Nizamabad and 
Kamareddy with Regional Agricultural Research 
Station, Jagtial as Regional headquarters. The 
annual average rainfall is 900 to 1150 mm mostly 
from the south-west monsoon. The maximum and 
minimum temperature during south-west monsoon 
ranges from 32°C to 37°C and 21°C to 25°C 
respectively. Red soils are predominant in the zone 
which includes chalkas, red sandy, deep red loamy 
and very deep black cotton soils, which are also 
seen in some parts of the zone. This zone has a 

total geographical area of 35.5 lakh ha. The climate 
is typically tropical rainy. The net sown area is 2.21 
m. ha. of which 0.67 m. ha. is irrigated representing 
30.3 per cent of the net sown area. Cropping 
intensity is 110 per cent. Wells are the main source 
of irrigation followed by canals. The Important crops 
grown are rice, maize, soybean, cotton, redgram 
and turmeric. 
 

2.1 ARIMA Models 
 

A hydrological time series  ntyt .,.........2,1,   

could be either stationary or non-stationary. 
Given that there are essentially no strictly 
deterministic hydrological processes in nature, 
the analysis of hydrological data by means of the 
non-stationary time series is of importance, 
among which the ARIMA model is one of the 
available choices. The Autoregressive (AR) 
models can be considered in conjunction with 
the moving average (MA) models to create a 
specific and effective class of time series models 
called autoregressive integrated moving average 
(ARMA) models. In the ARMA model, present 
value of the time series is explained as a linear 
aggregate of p lagged values and a weighted 
sum of q former deviations plus a random 
parameter. The ARIMA models are generally 
used for a time series which are stationary in 
nature. However, these models can be used in 
non-stationary data set by differencing the 
series. Box and Jenkins (1976) developed “a 
new forecasting tool, known as the ARIMA 
methodology, that focus on the analysing of the 
stochastic characteristics of time series on its 
own rather than constructing single or 
simultaneous equation models. The ARIMA 
models allow stating each variable by its own 
lagged values and stochastic error terms”. “The 
general non-seasonal ARIMA model is AR to 

order p and MA to order q and operates on     
difference of the time series   ; thus a model of 
the ARIMA family is classified by the three 
parameters (p, d, q) that can have zero or 
positive integral values” [19]. 
 

The general non-seasonal ARIMA model may be 
written as follows: 
 

    t
d
Z aBB

t
 

       

                              (1)
 

 
 

where,  (B) are polynomials of order p and q, 
respectively.  
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The non-seasonal AR operator of order p is 
written as follows: 
 

   P
PBBB   2

211B     (2)
 

 

And non-seasonal MA operator of order q is 
written as follows: 
 

   q
qBBB   2

211B      (3)
 

 

2.2 Seasonal ARIMA Models 
 

“A lot of time series features are cyclic in nature. 
Quite often, such characteristics are on an annual 
period in hydrologic time series mainly due to the 
Earth's rotation around the sun. Such a type of 
series is cyclically non-stationary. After removing 
the determinist cyclic effects from a series, the 
ARIMA approach may be applied to obtain a 
linear model for the stochastic part of the series” 
[20]. Box et al. (1994) standardized “the ARIMA 
model to address seasonality and defined a 
general multiplicative seasonal ARIMA model 
commonly referred to as SARIMA models. An 
inherent advantage of the SARIMA family of 
models is that the description of time series 
requires a few model parameters, which exhibit 
non-stationarity both in season and throughout”. 
In general the SARIMA model described as 
ARIMA (p,d,q) (P, D, Q)s, where (p, d, q) is the 
non-seasonal part of the model and (P, D, Q) is 
the seasonal part of the model which is 
mentioned below: 
 

        t
s

Qqt
D
s

ds
Pp aBBZBB         (4)

 

 

where, p is the order of non-seasonal auto 
regression, d is the number of the regular 
differencing, q is the order of the non- seasonal 
MA, P is the order of the seasonal auto 
regression, D is the number of the seasonal 
differencing, Q is the order of the seasonal MA, s 
is the length of season, seasonal AR parameter 
of order P, seasonal MA parameter of order Q. 
 

2.3 Implementation of the ARIMA Model  
 

The procedure of estimating ARIMA model 
involves the following steps:  
 

1. Stationary identification: The input time 
series for the ARIMA model needs to be 
stationary, i.e., the time series should have a 
constant mean, variance, and auto 

correlation through time. Therefore, the 
stationarity of the data series needs to be 
identified first. If not, the non-stationary time 
series is then required to be stationarized. 
Although the stationary test, such as the unit 
root test and the Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) tests are used to 
identify whether a time series is stationary, 
plotting approaches based on scatter 
diagrams, autocorrelation function diagrams, 
and partial correlation function diagrams are 
also often used. The latter approach can 
usually not only provide information on 
whether or not the testing time series is 
stationary, but it can also indicate the order 
of the differencing which is needed to 
stationarize the time series.  

 
In this study, we use the autocorrelation function 
diagram and partial correlation function diagram 
to determine a time series' stationarity. A time 
series is typically differentiated to make it 
stationary if it is found to be non-stationary. The 
lowest order of differencing that produces a time 
series in the differencing method that fluctuates 
around a clearly defined mean value and whose 
autocorrelation function (ACF) plot decays fairly 
quickly to zero, either from above or below, is 
typically considered to be the appropriate              
amount of differencing. The time series is often 
transformed for stabilizing its variance              
through proper transformation, e.g., logarithmic 
transformation. The reduction in variance of a 
time series is typically helpful to reduce the order 
of difference in order to make it stationary, even 
though logarithmic transformation is frequently 
used to stabilise the variance of a time series 
rather than directly stationarize one.  
 

Stationary test (Dickey fuller test): A time 
series is said to be stationary (in the weak 
sense) if its statistical properties do not vary 
with time (i.e., means and variance). If the 
compute p values are greater than 0.05 the 
series is said to be non-stationary. The time 
series need to be in stationary form in order 
to fit to the stochastic models. 
 

2. The identification of the order of ARIMA 
model: After a time series has been 
stationarized, the next step is to determine 
the order terms of its ARIMA model, i.e., the 
order of differencing, d for non-stationary 
time series, the order of auto-regression, p, 
the order of moving average, q, and the 
seasonal terms if the data series show 
seasonality. While one could try some 
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different combinations of terms and valuate 
what works best strictly, the more systematic 
and common way is to tentatively identify the 
orders of the ARIMA model by looking at the 
autocorrelation function (ACF) and partial 
autocorrelation (PACF) plots of the 
stationarized time series. The ACF plot is 
merely a bar chart of the coefficients of 
correlation between a time series and lags of 
itself, while  the PACF plot presents a plot of 
the partial correlation coefficients between 
the series and lags of itself. The detailed 
guidelines for identifying the ARIMA model 
parameters based on the ACF and PACF, 
can be found elsewhere in relevant literature, 
e.g., Pankratz [21] and Shumway and Stoffer 
[22]. It should be noted that, to be strict, the 
ARIMA model built in this step is actually an 
ARMA model with if the time series is 
stationary, which is in fact a special case of 
the ARIMA model with d = 0. 

3. Estimation of ARIMA model parameters: 
while least square methods (linear or 
nonlinear) are often used for the parameter 

estimation, in this paper we use the 
maximum likelihood method [23,24] in this 
paper. A t test is also performed to test the 
statistical significance. The information given 
by the ACF and PACF is useful in suggesting 
the type of models that may be constructed. 
The final model was then selected using the 
Akaike information criterion (AIC) and 
Bayesian information criterion (BIC). 

 
These criteria help to rank the models where the 
models with the lowest criterion value are the 
best). The AIC and SBC take the mathematical 
form as shown below: 

 

kLAIC 2)log(2                               (5) 

 

))ln(log(2 nkLSBC                       (6)
 

 
where, k is number of parameters in the model, L 
is the likelihood function of the ARIMA model; 
and n is the number of observations. 

 

 
 

Fig. 1. Line plot of differenced potential evapotranspiration data of first order (d=1) 
 

 
 

Fig. 2. Autocorrelation function plot of PET time series for Raichur Station 
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Fig. 3. Partial autocorrelation function plot of PET time series for Raichur Station 
 

4. White noise test is used for the residual 
sequence: It is necessary to evaluate the 
established ARIMA model with the estimated 
parameters before using it to make the 
forecasting. We use white noise test here. If 
the residual sequence is not a white noise, 
some useful information has not been 
extracted and the model needs to be further 
tuned. The null hypothesis of the Box Ljung 
Test, H0 is that our model does not show lack 
of fit (or in simple terms- the model is just 
fine). The alternate hypothesis, Ha is just that 
the model does show a lack of fit. A 
significant p-value in this test rejects the null 
hypothesis that the time series isn’t auto 
correlated. 

5. ET forecasting: The prediction of the 
potential evapotranspiration (PET) was done 
time using the best fit models from the 
historical data. Basic statistical properties of 
the observed and predicted data were 

computed and tested whether the predicted 
data preserve the basic statistical properties 
of the observed PET series. The correlation 
coefficients (R), RMSE and MAE were 
observed between the observed and 
predicted data. 

 
Input dataset and software: The time series of 
the temperature data set (Max and Min) was 
taken from the NASA POWER-Prediction of 
Worldwide Energy Resources and for Jagtial 
District, data were collected from the 
meteorological station, Regional Agriculture 
Research Station (RARS) Jagtial. The data set 
was from 1990-2020, out of which 1990-2019 
was used for the development of the model and 
the data set for 2019-2020 was used for the 
validation purpose. The potential 
evapotranspiration was estimated using the 
Thornthwaite method and the ARIMA models 
were developed in the R studio. 

 

2.4 Thornthwaite Method (Potential Evapotranspiration Estimation)  
 
The potential evapotranspiration is calculated by the following formula:  
 

m

I

T
KPET 










10
16                                                                                                              (7)

 

 
Where,  
 
T is the monthly mean temperature (°C);  
I is the heat index calculated as the sum of 12 month index values;  
m is the coefficient dependent on I.  
 

492.01079.11071.71075.6 22737   IIIm                                      (8) 

 
K is a correction coefficient computed as a function of the latitude and month.  
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3. RESULTS AND DISCUSSION 
 

“For any given time series data set there is            
at least one assumed systematic pattern 
embedded in the data. The most common 
patterns are trends and seasonality; trends are 
generally either linear or quadratic. To find out 
trends and/or moving averages, the regression 
analysis is often used. Seasonality is a trend that 
repeats itself systematically over time” [12,25].  
 

The development of model was done with the 
prerequisite tests namely stationary and 
autocorrelation tests. The autocorrelation test 
was carried out using the box test and 
corresponding probability levels that are 
presented in Table 1. The results revealed that 
the test statistic for box test with a Chi square 
174.24, 171.36, 176.55, 169.84, 173.69, 176.62 
and 170.28 and p-values < 0.001 were for 
Adilabad, Jagtial, Karimnagar, KumuramBheem, 
Nirmal, Nizamabad and Peddapalli respectively 
were observed to be significant at 5% level of 
significance reflecting autocorrelation in data. On 
the other hand, the adf.test was carried out to 
check whether the data is stationary or not. The 
data were observed to have a seasonality there 
by seasonal differencing was done to the data 
sets (Table 2). 
 

The principal step in the Box-Jenkins ARIMA 
model building is identification of the model. 
Different orders of the Autoregressive (AR) and 
Moving Average (MA) parameters p and q are 
considered and a combination of the order which 
yields maximum log-likelihood and the lowest 
values of Akaike Information Criteria (AIC) and 
Bayesian Information Criteria (BIC) are 
considered as the best model. The results 
pertaining to Adilabad, Jagtial, Karimnagar, 
KumuramBheem, Nirmal, Nizamabad and 
Peddapalli districts regarding model development 
are presented in Tables 3 and 4. The ACF and 
PACF were plotted (Figs. 2 and 3) to determine 
the model, the data were observed to have a 
seasonality thereby seasonal ARIMA models 
were selected with a seasonal differencing as 
shown in Table 4. The best selected models for 
the different stations were ARIMA(2,0,2)(2,1,0), 
ARIMA (2,0,2) (2,1,0), ARIMA (2,0,2) (2,1,0), 
ARIMA (2,0,2) (2,1,0), ARIMA (2,0,2) (2,1,0), 

ARIMA (2,0,2) (1,1,0) and ARIMA (2,0,2) (2,1,0) 
with maximum likelihood values of -1753.77, -
1760.99, -1722.34, -1793.98, -1735.35, -1722.63 
and -1812.89 respectively for Adilabad, Jagtial, 
Karimnagar, KumuramBheem, Nirmal, 
Nizamabad and Peddapalli. The parameters 
estimated for different districts are presented in 
Table 4. In addition, the residuals were obtained 
by differencing original series with the fitted 
series and residuals were found to be white 
noise as presented in Table 5. 

 
After the development of models for 7 districts, 
the forecasting part was carried out seperately 
and the results (Table 6) reveal that for all 
stations the forecast was observed to be good 
with a correlation coefficient of 0.883, 0.838, 
0.813, 0.865, 0.847, 0.813 and 0.806 for 
Adilabad, Jagtial, Karimnagar, KumuramBheem, 
Nirmal, Nizamabad and Peddapalli districts. The 
RMSE and MAE were observed to be the least 
and hence these stochastic models were found 
to be suitable to forecast up to 1 lead time. The 
analysis of the Table 6 reveal that seasonal 
ARIMA models suited well for the forecasting of 
the potential evapotranspiration under Northern 
Telangana zone. Basic statistical properties are 
compared between observed and forecasted 
data for 1-month lead time, using t-test for the 
means and F-test for standard deviation [26], as 
shown in Table 7.  

 
Since tcal values related to means were between 
tcritical and table values (±1.71 for two tailed at a 
5% significance level), the data shows that there 
is no significant difference between the mean 
values of observed and predicted data. Similarly, 
the Fcal values of standard deviation were smaller 
than the F-critical values at a 5% significance 
level. Hence, we can conclude that the selected 
ARIMA (2,0,2) (2,1,0) and ARIMA (2,0,2) (1,1,0) 
seem to provide an adequate predictive model 
for evaluation of the evapotranspiration. 
Combining the use of the remote sensing data to 
estimate the evapotranspiration and the use of 
Seasonal ARIMA model provides the keystone of 
the advanced and rational water resources 
management in arid ecosystems, which agreed 
with similar results conducted by Landeras et al. 
[27] and Patil et al. [28]. 

 

Table 1. Auto correlation test for different districts of NTZ 
 

Station Chi-square Lag order p-value 

Adilabad 174.24 1 <0.001 
Jagtial 171.36 1 <0.001 
Karimnagar 176.55 1 <0.001 
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Station Chi-square Lag order p-value 

KumuramBheem 169.84 1 <0.001 
Nirmal 173.69 1 <0.001 
Nizamabad 176.62 1 <0.001 
Peddapalli 170.28 1 <0.001 

 

Table 2. Stationery test for different districts of NTZ 
 

Station Dickey fuller  Lag order p-value 

Adilabad -19.367 7 0.01 
Jagtial -19.132 7 0.01 
Karimnagar -18.725 7 0.01 
KumuramBheem -19.256 7 0.01 
Nirmal -18.965 7 0.01 
Nizamabad -18.73 7 0.01 
Peddapalli -18.758 7 0.01 

 
Table 3. Log likelihood AIC and BIC values of ARIMA model for different station 

 

Station Model Log-Likelihood AIC BIC 

Adilabad ARIMA(2,0,2)(2,1,0)[12] -1753.77 3523.54 3554.36 
Jagtial ARIMA(2,0,2)(2,1,0)[12] -1760.99 3537.97 3568.79 
Karimnagar ARIMA(2,0,2)(2,1,0)[12] -1722.34 3458.68 3485.64 
KumuramBheem ARIMA(2,0,2)(2,1,0)[12] -1793.98 3603.96 3634.77 
Nirmal ARIMA(2,0,2)(2,1,0)[12] -1735.35 3486.69 3517.51 
Nizamabad ARIMA(2,0,2)(1,1,0)[12] -1722.63 3459.27 3486.23 
Peddapalli ARIMA(2,0,2)(2,1,0)[12] -1812.89 3639.79 3666.75 

 

Table 4. Parameter estimation of SARIMA by maximum likelihood method for different station 
 

Station Model Parameters Estimate S.E. Z value P-value 

Adilabad ARIMA 
(2,0,2)(2,1,0)[12] 

AR1 -0.079653 0.464948 -0.1713 0.864 
AR2 0.24941 0.349428 0.7138 0.475 
MA1 0.256002 0.47104 0.5435 0.587 
MA2 -0.07307 0.302982 -0.2412 0.809 
SAR1 -0.697556 0.056636 -2.3164 < 0.001 
SMA1 -0.272944 0.056214 -4.8555 < 0.001 
SMA2 0.050321 0.122127 0.412 0.680 

Jagtial ARIMA 
(2,0,2)(2,1,0)[12] 

AR1 -0.0791 0.3581 -0.2209 0.825 
AR2 0.2732 0.2852 0.9579 0.338 
MA1 0.2537 0.3651 0.6947 0.487 
MA2 -0.0806 0.26 -0.3101 0.757 
SAR1 -0.6878 0.0568 -2.1141 < 0.001 
SMA1 -0.2394 0.0565 -4.2392 < 0.001 
SMA2 0.0527 0.1301 0.4048 0.686 

Karimnagar ARIMA 
(2,0,2)(2,1,0)[12] 

AR1 -0.072463 0.278068 -0.2606 0.794 
AR2 0.188861 0.237323 0.7958 0.426 
MA1 0.329784 0.27958 1.1796 0.238 
MA2 0.070375 0.204407 0.3443 0.731 
SAR1 -0.563659 0.047201 -1.9416 < 0.001 
SMA2 0.073067 0.155137 0.471 0.638 

Kumuramb
heem 

ARIMA 
(2,0,2)(2,1,0)[12] 

AR1 -0.127469 0.367393 -0.347 0.729 
AR2 0.247821 0.307589 0.8057 0.420 
MA1 0.263579 0.374477 0.7039 0.482 
MA2 -0.073922 0.293495 -0.2519 0.801 
SAR1 -0.67717 0.05713 -1.8531 < 0.001 
SMA1 -0.247445 0.056703 -4.3639 < 0.001 
SMA2 0.045271 0.133255 0.3397 0.734 
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Station Model Parameters Estimate S.E. Z value P-value 

Nirmal ARIMA(2,0,2) 
(2,1,0)[12] 

AR1 -.0102837 0.4648525 -0.0221 0.982 
AR2 0.1916833 0.3503454 0.5471 0.584 
MA1 0.2279929 0.467351 0.4878 0.626 
MA2 -.0027449 0.2841486 -0.0097 0.992 
SAR1 -.7142443 0.0562602 -2.6954 < 0.001 
SMA1 -.2738084 0.055936 -4.895 < 0.001 
SMA2 0.0674401 0.1205473 0.5594 0.576 

Nizamabad ARIMA(2,0,2) 
(1,1,0)[12] 

AR1 -0.072633 0.278162 -0.2611 0.794 
AR2 0.188288 0.237448 0.793 0.428 
MA1 0.329702 0.279661 1.1789 0.238 
MA2 0.070771 0.20454 0.346 0.729 
SAR1 -0.563714 0.047203 -1.9424 < 0.001 
SMA2 0.073186 0.155168 0.4717 0.637 

Peddapalli ARIMA(2,0,2) 
(2,1,0)[12] 

AR1 -0.058909 0.301447 -0.1954 0.845 
AR2 0.376635 0.24794 1.5191 0.129 
MA1 0.214592 0.31331 0.6849 0.493 
MA2 -0.191379 0.241965 -0.7909 0.429 
SAR1 -0.66275 0.056576 -1.7142 < 0.001 
SAR2 -0.216286 0.056216 -3.8474 < 0.001 

 

Table 5. Auto correlation check for residuals of seasonal ARIMA model at different stations 
 

Station Chi-square Lag order p-value 

Adilabad 1.66E-06 1 0.999 
Jagtial 3.57E-05 1 0.9952 
Karimnagar 2.55E-06 1 0.9987 
KumuramBheem 3.60E-06 1 0.9985 
Nirmal 1.16E-05 1 0.9973 
Nizamabad 2.45E-06 1 0.9967 
Peddapalli 0.0016663 1 0.9674 

 

Table 6. Performance measure of seasonal ARIMA models at different stations 
 

Station Performance measures 1-Lead time 

Adilabad RMSE 36.40649 
MAPE 14.89317 
MAE 23.38337 
R 0.8827 

Jagtial RMSE 37.18512 
MAPE 14.50108 
MAE 23.79058 
R 0.8379 

Karimnagar RMSE 33.333 
MAPE 13.7328 
MAE 21.34267 
R 0.8127 

Kumurambheem RMSE 40.89183 
MAPE 15.19015 
MAE 25.578 
R 0.8654 

Nirmal RMSE 34.51507 
MAPE 13.96106 
MAE 22.29738 
R 0.8472 

Nizamabad RMSE 33.36109 
MAPE 13.7337 
MAE 21.35144 
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Station Performance measures 1-Lead time 

R 0.8131 

Peddapalli RMSE 43.19527 
MAPE 15.1979 
MAE 26.82257 
R 0.8061 

 

Table 7. Comparison of the statistical properties of the observed and predicted data 
 

Stations Mean 
observed 

Mean 
forecasted 

Decision 
(t<1.71) 

Observed 
variance 

Forecast 
variance 

Decision 
(f < 4.05) 

Adilabad 157.62 189.46 0.457 10142.03 22187.32 0.105 
Jagtial 156.29 189.10 0.453 9219.09 20328.94 0.103 
Karimnagar 145.53 180.87 0.474 6860.23 14470.09 0.116 
KumuramBheem 165.54 196.11 0.457 11616.63 25411.04 0.105 
Nirmal 151.03 189.25 0.462 8415.17 18218.94 0.108 
Nizamabad 145.58 180.96 0.474 6881.91 14522.76 0.116 
Peddapalli 169.74 198.51 0.504 11211.69 22223.83 0.136 

 

4. CONCLUSION 
 

From the trend shown in both estimation and 
forecasting of the potential evapotranspiration 
values, the Seasonal ARIMA models have an 
ability to forecast potential evapotranspirationwith 
anoptimum accuracy over all the districts of NTZ. 
From basic statistical analysis conducted in the 
presented study, it is revealed that the difference 
between the observed and forecasted mean           
are non-significant. Since the trends in the           
potential evapotranspiration estimation Swere             
replicated trends in the forecasted potential 
evapotranspiration, hence forecasting of the 
evapotranspiration is a powerful tool for related 
studies. The prediction of the potential 
evapotranspiration using SARIMA model hence 
guarantees reliable project planning, design and 
operating of the irrigation systems. 
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