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Abstract: The clinical severity of multiple sclerosis (MS), an autoimmune disorder of the central 

nervous system, is thought to be determined by environmental and genetic factors that have not yet 

been identified. In a recent genome-wide association study (GWAS), a single nucleotide polymor-

phism (SNP), rs10191329, has been associated with MS severity in two large independent cohorts of 

patients. Different approaches were followed by the authors to prioritize the genes that are tran-

scriptionally regulated by such an SNP. It was concluded that the identified SNP regulates a group 

of proximal genes involved in brain resilience and cognitive abilities rather than immunity. Here, 

by conducting an alternative strategy for gene prioritization, we reached the opposite conclusion. 

According to our re-analysis, the main target of rs10191329 is N-Acetylglucosamine Kinase (NAGK), 

a metabolic gene recently shown to exert major immune functions via the regulation of the nucleo-

tide-binding oligomerization domain-containing protein 2 (NOD2) pathway. To gain more insights 

into the immunometabolic functions of NAGK, we analyzed the currently known list of NAGK pro-

tein partners. We observed that NAGK integrates a dense network of human proteins that are in-

volved in glucose metabolism and are highly expressed by classical monocytes. Our findings hold 

potentially major implications for the understanding of MS pathophysiology. 

Keywords: multiple sclerosis; NOD2; glycolysis; monocytes; dendritic cells; NAGK; multiple  

sclerosis severity; multiple sclerosis heritability 

 

1. Introduction 

In the last decade, a flurry of genome-wide association studies (GWAS) have allowed 

a fine mapping of multiple sclerosis (MS) susceptibility genes. These research efforts cul-

minated in 2019 with a reference map of MS genetic architecture which gathered more 

than 200 autosomal regulatory single nucleotide polymorphisms (SNPs) associated with 

MS risk [1]. However, none of these SNPs were found to be associated with the severity 

of MS, thus leaving a fundamental question unanswered. Indeed, multiple sclerosis can 

manifest in a wide variety of clinical forms in terms of symptoms and prognosis. Up to 

30% of patients with multiple sclerosis develop a benign form of the disease that requires 

little or no therapeutic intervention [2,3]. On the other side of the spectrum, aggressive 

forms of MS may lead to severe clinical disability in a few years. Adjusting treatments to 

the predicted clinical severity of MS represents thus a major challenge that genetics did 

not seem able to meet. In this context, the recent demonstration that a unique SNP, 

rs10191329, associates with MS severity [4] is undeniably a milestone discovery for at least 

two reasons. First of all, this finding indicates that rs10191329 could be used as a 
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standalone genetic marker for the stratification of MS patients, whether in the context of 

therapeutic trials or for routine clinical management. Secondly, the association of 

rs10191329 with MS severity is supposed to provide major pathophysiological insights, as 

far as the gene(s) regulated by such an SNP is/are clearly identified. Unravelling this or 

these gene(s) may also deeply impact our quest for new biological markers and therapeu-

tic targets in MS. 

In their paper, Harroud et al. [4] identified two genes, namely Zinc Finger Protein 

638 (ZNF638) and Dysferlin (DYSF), as the main targets of rs10191329. Importantly, such 

genes were prioritized firstly on the basis of proximity, i.e., the close vicinity of rs10191329 

with the transcription start sites (TSS) of ZNF638 and DYSF. Since both genes are highly 

expressed by neural cells, notably oligodendrocytes, the authors suggested then that 

rs10191329 impacts MS severity via the transcriptional regulation of ZNF638 and DYSF in 

neural cells [4]. It was concluded that such a molecular mechanism may set the level of 

brain tissue resilience and thus clinical severity in MS patients. However, Harroud et al. 

[4] did not provide any experimental proof that rs10191329, depending on the allele con-

sidered, associates with distinct expression levels of ZNF638 and/or DYSF in neural cells. 

Harroud et al. [4] further supported their “tissue resilience” hypothesis by demonstrating 

an inverse correlation link between the trait “years of education” and MS severity [4]. 

Overall, it was thus proposed that the so-called “cognitive reserve”, recognized as a pro-

tective factor in the context of Alzheimer’s disease [5,6], might also be involved in a pro-

cess of brain resilience underlying the association between rs10191329 and MS severity. 

Such findings may immensely impact the upcoming orientation of MS therapeutic re-

search. Actually, there is no doubt that many researchers will rely on this key paper to 

advocate for the development and use of neuroprotective treatments in MS. 

However, we think that caution should be exercised regarding the gene prioritization 

strategy that was chosen by these authors. It is useful to remind that the term “gene pri-

oritization” refers to the methods used by geneticists for determining which gene(s) is/are 

more likely to be transcriptionally regulated by a given SNP. This can be a complex pro-

cess based on multiple parameters, including, in particular, (i) gene proximity, (ii) the rel-

evance of candidate target genes in the context of a given pathology (at least for SNP as-

sociated with a pathological trait), (iii) the expression profile of candidate target genes in 

relevant cells and/or tissues and, most importantly, (iv) the measured impact of a SNP on 

gene expression and/or protein levels in relevant cells and/or tissues. 

Here, we present gene prioritization results indicating that ZNF638 and DYSF are not 

the main targets of rs10191329. Instead, we found that rs10191329 appears to essentially 

target the immunometabolic gene N-Acetylglucosamine Kinase (NAGK). Moreover, such 

an effect may operate in immune cells, not neural cells. Our data mining analyses also 

provide insights into the expression pattern of NAGK as well as the genomic and proteo-

mic networks that associate with NAGK. We conclude that NAGK is crucially involved in 

the glucose metabolism of classical monocytes and that such a function likely contributes 

to (or interferes with) the immunoregulatory pathway linking NAGK to the innate im-

mune receptor “nucleotide-binding oligomerization domain-containing protein 2” 

(NOD2). These findings are discussed in the context of MS pathophysiology. 

2. Results 

2.1. The Regulatory SNP rs10191329 Targets NAGK in Immune Cells 

There is now a large number of expression quantitative trait loci (eQTL) studies in 

which links between SNPs and transcriptomics data have been explored in a multitude of 

cells and tissues. In this regard, the Open Targets Genetics (OTG) platform (https://genet-

ics.opentargets.org/ (accessed on 02/12/2024)) offers the unique opportunity to simultane-

ously survey as many as 60 eQTL datasets generated by distinct consortia and obtained 

across 92 tissues and cell types [7,8].The OTG platform is more than a catalog of previously 

published data as it retrospectively performs integrated statistical fine-mapping across 
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thousands of trait-associated loci, including expression quantitative traits (eQTLs) and 

protein quantitative trait loci (pQTLs) [7,8]. We thus surveyed the OTG database and ex-

tracted results linking the SNP rs10191329 with expression and/or protein quantitative 

traits. We observed first that rs10191329 does not associate with any expression or protein 

quantitative trait previously described in the CNS across 18 distinct CNS regions. In con-

trast, rs10191329 was reported to associate with eQTLs in (i) blood cells for N-Acetylglu-

cosamine Kinase (NAGK), Zinc Finger Protein 638 (ZNF638), Methylmalonyl-CoA Epi-

merase (MCEE), C-Type Lectin Domain Family 4 Member F (CLEC4F) and M-Phase Phos-

phoprotein 10 (MPHOSPH10), (ii) interferon-gamma (IFN-γ)-stimulated monocytes for 

NAGK and iii) testis and induced pluripotent stems cells for Dysferlin (DYSF) (Table 1 and 

Figure 1). While the reported rs10191329-regulated genes actually comprise ZNF638 and 

DYSF, it should be underscored that NAGK is by far the gene for which the largest size 

effect and most significant p-value are reported. Of note also, such a regulatory effect was 

observed in both blood cells and monocytes stimulated with interferon-gamma (IFN-γ), 

i.e., cell types that can be considered as relevant in the context of MS pathophysiology. 

Finally, according to OTG, rs10191329 associates with only one protein quantitative trait, 

namely the plasma levels of NAGK (beta value = −0.165, p-value = 2.5 × 10−7) (Table 1). 

Table 1. Results from expression quantitative trait loci (eQTL) studies reported for rs10191329 in the 

Open Targets Genetics (OTG) platform. 

Tissue or Cell Type 
Regulated 

Gene 
Distance from TSS Beta Value p-Value 

blood cells NAGK 385,525 bp −0.316 6.7 × 10−101 

 ZNF638 173,308 bp +0.166 3.2 × 10−51 

 MCEE 319,630 bp −0.123 3.6 × 10−34 

 CLEC4F >500 Kb +0.0573 1.4 × 10−8 

 MPHOSPH10 319,559 bp −0.0511 4.2 × 10−7 

IFN-γ-stimulated monocytes NAGK 385,525 bp −0.0972 1.9 × 10−6 

testis DYSF 3692 bp −0.290 2.3 × 10−6 

induced pluripotent stem cells DYSF 3692 bp −0.263 5.0 × 10−9 

TSS: transcription start site. 

 

Figure 1. Representation of rs10191329 localization in the human genome (extracted and adapted from 

the Open Targets Genetics platform). ADD2: Adducin 2, FIGLA: Folliculogenesis Specific BHLH Tran-

scription Factor, CLEC4F: C-Type Lectin Domain Family 4 Member F, CD207: CD207 Molecule, VAX2: 

Ventral Anterior Homeobox 2, ATP6V1B1: ATPase H+ Transporting V1 Subunit B1, ANKRD53: Ankyrin 

Repeat Domain 53, TEX261: Testis Expressed 261, NAGK: N-Acetylglucosamine Kinase, MCEE: 

Methylmalonyl-CoA Epimerase, MPHOSPH10: M-Phase Phosphoprotein 10, PAIP2B: Poly(A) Binding 

Protein Interacting Protein 2B, ZNF638: Zinc Finger Protein 638, DYSF: Dysferlin. 
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There is thus compelling evidence indicating that the regulatory SNP rs10191329 es-

sentially targets NAGK in immune cells rather than ZN638 or DYSF in neural cells. 

2.2. Monocytes, Macrophages and Myeloid Dendritic Cells Are the Immune Cell Types 

Exhibiting the Highest NAGK mRNA Levels 

To gain more insights into the expression pattern of NAGK, we surveyed the single-

cell RNA-seq database provided by the Human Protein Atlas (HPA) (https://www.pro-

teinatlas.org/)(accessed on 2 December 2024) [9]. Extracted results showed that among the 

six candidate genes selected above on the basis of eQTL data (Table 1), NAGK exhibits the 

highest expression levels in immune cells, notably dendritic cells, monocytes and macro-

phages) (Table 2). In contrast, NAGK is poorly expressed by neural cells, including excita-

tory neurons, inhibitory neurons, astrocytes, oligodendrocytes and microglia (Table 2). 

Table 2. Expression levels of NAGK, ZNF638, MCEE, CLEC4F, MPHOSPH10 and DYSF as assessed by 

single-cell RNA-seq analysis of human immune or neural cells according to the Human Protein Atlas. 

Gene 

(Gene Symbol and HPA URL) 

Mean Normalized  

TPM in Immune Cells 

Mean Normalized  

TPM in Neural Cells 

NAGK 

https://www.proteinatlas.org/ENSG000

00124357-NAGK/single+cell+type 

(accessed on 2 December 2024) 

dendritic cells: 119.6  

monocytes: 85.4 

macrophages: 104.9 

T-cells: 25.4 

B-cells: 44.2 

excitatory neurons: 11.1 

inhibitory neurons: 14.5 

astrocytes: 14.2 

microglia: 25 

oligodendrocytes: 22.3 

ZNF638 

https://www.proteinatlas.org/ENSG000

00075292-ZNF638/single+cell+type 

(accessed on 2 December 2024) 

dendritic cells: 48.7 

monocytes: 53.8 

macrophages: 52.5 

T-cells: 60.4 

B-cells: 61.9 

excitatory neurons: 277.2 

inhibitory neurons: 257 

astrocytes: 216.1 

microglia: 215.6 

oligodendrocytes: 576.6 

MCEE 

https://www.proteinatlas.org/ENSG000

00124370-MCEE/single+cell+type 

(accessed on 2 December 2024) 

dendritic cells: 12.1 

monocytes: 5.9 

macrophages: 10.1 

T-cells: 9.7 

B-cells: 7.8 

excitatory neurons: 12.8 

inhibitory neurons: 13.9 

astrocytes: 13 

microglia: 13.4 

oligodendrocytes: 19.4 

CLEC4F 

https://www.proteinatlas.org/ENSG000

00152672-CLEC4F/single+cell+type 

(accessed on 2 December 2024) 

dendritic cells: 0 

monocytes: 13.9 

macrophages: 3.6 

T-cells: 0.1 

B-cells: 0 

excitatory neurons: 0.2 

inhibitory neurons: 0.1 

astrocytes: 0 

microglia: 0 

oligodendrocytes: 0.1 

MPHOSPH10 

https://www.proteinatlas.org/ENSG000

00124383-

MPHOSPH10/single+cell+type 

(accessed on 2 December 2024) 

dendritic cells: 42 

monocytes: 27.8 

macrophages: 21.1 

T-cells: 43.6 

B-cells: 35.2 

excitatory neurons: 9.5 

inhibitory neurons: 10.9 

astrocytes: 7.7 

microglia: 14.3 

oligodendrocytes: 14.8 

DYSF 

https://www.proteinatlas.org/ENSG000

00135636-DYSF/single+cell+type 

(accessed on 2 December 2024) 

dendritic cells: 0.4 

monocytes: 3.5 

macrophages: 10 

T-cells: 0.7 

B-cells: 1.3 

excitatory neurons: 33.6 

inhibitory neurons: 12.5 

astrocytes: 0.9 

microglia: 16.1 

oligodendrocytes: 58.4 

TPM: transcripts per kilobase million. 

Importantly, a survey of the HPA transcriptomics database dedicated to human 

blood cells [10] indicates that, among blood-circulating immune cells, classical monocytes 

(also named conventional monocytes) exhibit the highest NAGK mRNA levels 

(https://www.proteinatlas.org/ENSG00000124357-NAGK/immune+cell)(accessed on 

02/12/2024). Confirming these data, the single-cell RNA-seq database run by the European 

Molecular Biology Laboratory (EMBL) also reports that myeloid cells, notably monocytes 
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and dendritic cells, form the great majority of cell types to which NAGK was assigned by 

clustering analysis (Table 3). 

Table 3. Occurrence of NAGK as a gene marker in single-cell RNA-seq studies according to the Eu-

ropean Molecular Biology Laboratory (EMBL) single-cell RNA-seq database. 

PMID Assigned Cell Types 

27864467 Blood pre-conventional dendritic cells 

29808007 Monocytes and dendritic cells 

31597962 Fetal liver hematopoietic cells 

30692988 Tonsils dendritic cells  

30402542 Decidual macrophages and dendritic cells 

31594933 Blood monocytes 

29352091 Effector memory CD4+ T lymphocytes 

33352111 Neonatal liver monocytes 

32351704 Blood, liver or spleen dendritic cells 

30737144 Skin regulatory T-cells 

PMID: PubMed Identifier. 

To further assess the expression pattern of NAGK, we queried the co-expression da-

tabase COEXPRESdb (https://coxpresdb.jp/) (accessed on 2 May 2024) [11] and extracted 

the top 100 genes exhibiting the most significant NAGK co-expression links across 25,362 

samples and 1324 studies (Table S1). From this list, we explored via the enrichment plat-

form Enrichr (https://maayanlab.cloud/Enrichr/)(accessed on 2 May 2024) [12,13] three cell 

type enrichment libraries that we selected on the basis of their high gene coverage 

(>10,000). These libraries comprise Jensen Tissues [14], Human Gene Atlas [15] and 

CellMarker Augmented 2021 [16]. Confirming the expression data presented above, this 

analysis showed that monocytes are the cell type expressing the most significant number 

of NAGK co-expressed genes (Table 4). In addition, from the same list of NAGK co-ex-

pressed genes, a combined survey of five libraries of pathways (Reactome [17], BioPlanet 

[18], KEGG [19], Panther [20] and WikiPathways [21]) showed that the phagocyte-related 

term “lysosome” reached the most significant enrichment (adjusted p-value: 0.00004). 

Table 4. Results from cell and tissue enrichment analyses performed on the list of top 100 NAGK co-

expressed genes. 

Library Cell Type Adjusted p-Value 

Jensen Tissues Monocyte 6.205 × 10−17 
 Intestine 3.604 × 10−14 
 Natural killer cell 8.235 × 10−14 
 Blood 2.823 × 10−13 
 Blood platelet 5.428 × 10−13 

Human Gene Atlas CD33+ myeloid cell 0.001403 
 CD56+ natural killer cell 0.007790 
 CD14+ monocytes 0.009458 
 Whole blood 0.01149 

CellMarker Augmented 2021 Pancreatic Islet cell 1.508 × 10−7 
 Basal cell 0.0004272 
 Monocyte from feta kidney 0.0008851 
 Liver regulatory T-cell 0.0008851 
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Altogether, these data unravel the unique expression pattern of NAGK in immune 

cells and suggest that classical monocytes could be the main cell type affected by a 

rs10191329-mediated regulation of NAGK. 

2.3. In Monocytes, NAGK Physically Interacts with a Dense Network of Proteins Involved in the 

Glycogenesis and Neoglucogenesis Pathway 

We then sought to gain insights into the functions potentially exerted by NAGK in 

classical monocytes. To achieve this goal, we first queried the protein–protein interaction 

database BioGrid [22] to extract the currently known list of NAGK protein partners, irre-

spective of the cell type considered (Table S2). From this list, we then used the Enrichr 

platform to perform a pathway enrichment analysis based on the combined survey of five 

libraries of pathways (Reactome [17], BioPlanet [18], KEGG [19], Panther [20] and Wik-

iPathways [21]). Interestingly, the most statistically significant enrichment was found for 

the pathway termed “glycogenesis and neoglucogenesis” (adjusted p-value: 0.002). This 

pathway comprises the following NAGK protein partners: lactate deshydrogenase A 

(LDHA), pyruvate kinase M1/M2 (PKM), hexokinase 2 (HK2), glutamic-oxaloacetic trans-

aminase 1 (GOT1) and lactate dehydrogenase A like 6B (LDHAL6B). We next attempted to 

determine whether NAGK might interact with a network of glycolysis-related proteins in 

classical monocytes. To this aim, we assessed in classical monocytes the expression levels of 

the 45 human genes annotated with the term “glycogenesis and neoglucogenesis” according 

to the library of pathways “Wikipathways” [21]) (Table S3). From these 45 genes, we selected 

the top 20% of genes exhibiting the highest expression levels in classical monocytes (Table 

S4), and for each of the proteins encoded by such genes (n = 9), we extracted the currently 

known list of protein partners according to the database BioGrid (Tables S5–S13). Surpris-

ingly, we found that each of these lists of protein partners were themselves highly signifi-

cantly enriched in proteins involved in the “glycogenesis and neoglucogenesis” pathway 

(Tables S5–S13). In other words, the proteins annotated with the term “glycogenesis and 

neoglucogenesis” are highly connected with proteins annotated with the term “glycogene-

sis and neoglucogenesis”. From these experimental proteomic data, we were thus able to 

draw a dense network of proteins that are likely abundant in classical monocytes, are con-

nected with NAGK and exert glycogenesis and neoglucogenesis functions (Figure 2). 

 

Figure 2. Representation of the protein–protein interaction network linking NAGK and glycolysis-

related proteins. 
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A recent work showed that the main NOD2-ligand, the gut-derived postbiotic mu-

ramyl-dipeptide (MDP), needs to be phosphorylated by NAGK in order to activate NOD2 

[23]. We thus thought to determine whether the MDP-mediated activation of NOD2 in 

classical monocytes would impact the expression levels of NAGK and of the nine glycoly-

sis-related genes identified above. To this aim, we queried the NIH-run transcriptomics 

database Geodatasets (https://www.ncbi.nlm.nih.gov/gds) (accessed on 02/05/2024) and ex-

tracted data from the, up to now, only genomic study exploring the molecular profile of 

MDP-stimulated classical monocytes [24] (Ref: GSE10146). As presented in Table 5, we 

found that NAGK and eight of our nine genes of interest were significantly up-regulated 

following the MDP stimulation of classical monocytes. Moreover, in non-classical mono-

cytes (also named patrolling monocytes), the impact of MDP on NAGK and glycolysis-

related genes appeared to be either distinct (for LDHB, TPI1 and MDH1) or less pro-

nounced (for NAGK, PKM, PGK1, ALDOA, PGAM1, ENO1 and GAPDH). 

Altogether, these results indicate that NAGK belongs to a complex network of gly-

colysis-related proteins that are abundant in classical monocytes and might shape the met-

abolic status of classical monocytes under MDP-NOD2 activation. 

Table 5. Fold changes of mRNA levels obtained by RNA-seq analysis of MDP-stimulated vs. control 

cells in classical and non-classical monocytes. 

Gene Classical Monocytes Non-Classical Monocytes 

NAGK 1.53  1.28  

PKM 1.53  1.33  

PGK1 1.86  1.66  

ALDOA 1.70  1.33  

LDHB −0.8 NS 

PGAM1 1.6  1.5  

TPI1 NS 1.25  

MDH1 1.5 NS 

ENO1 1.68  1.58  

GAPDH 2.4  1.65  

Data were extracted from the Geodataset GSE10146 [24]. NS: not statistically significant. 

2.4. NAGK Is Potentially Involved in the Glycosylation of Key MS-Related Innate Immune 

Molecules 

One of the main functions previously assigned to NAGK is the recycling of N-acetyl-

glucosamine (Glc-NAC) molecules generated by the lysosomal degradation of glycosyl-

ated proteins [25–27]. As depicted in Figure 3 and previously demonstrated by others [25–

27], NAGK converts GlcNAC into N-acetylglucosamine 6-phosphate (GlcNAC-6-P), from 

which the enzymes phosphoglucomutase 3 (PGM3) and UDP-N-acetylglucosamine pyro-

phosphorylase (UAP1) generate Uridine diphosphate N-acetylglucosamine (UDP-Glc-

NAC) [25]. Since UDP-GlcNAC acts as a major glycosyl donor in a large range of glyco-

sylation processes (including the O- and N-glycosylation of proteins), NAGK is thus in-

volved in a crucial recycling mechanism, also called the UDP-GlcNAC salvage pathway 

[25–27]. Such a pathway supports the intracellular turnover of glycosylated proteins. In 

fact, it has been previously estimated that half of all amino sugars from endocytosed gly-

cans are recycled [26]. However, UDP-GlacNAC is also generated from glucose and glu-

tamine via the de novo hexosamine biosynthesis pathway (HBP). 
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Figure 3. Representation of the hexosamine biosynthesis pathway and UDP-GlcNAC salvage path-

way allowing the generation of UDP-GlcNAC for protein glycosylation (based on data previously 

published by others [25–27]). 

In any case, it appears highly likely that NAGK participates, at least to some extent, 

in the process of protein glycosylation in monocytes, dendritic cells and macrophages. To 

obtain a general overview of such glycosylated proteins, we queried the N-GlycositeAtlas 

database (http://nglycositeatlas.biomarkercenter.org/)(accessed on 2 December 2024) [28]. 

The N-GlycositeAtlas is to our knowledge the only glycoprotein database that compiles 

results obtained by mass spectrometry on a large range of human cells and tissues in over 

100 studies. We extracted data obtained from human blood-derived macrophages, the 

only immune cell type from which results are available in this database (Table S14). Inter-

estingly, the set of 121 glycosylated proteins identified in human macrophages includes 

key immune molecules previously involved in MS pathophysiology. These notably com-

prise the complement component C3 [29–31], the complement C3 receptor integrin alpha-

M [32], the immune checkpoint molecule “programmed cell death 1 ligand 1” (PD-L1, also 

named CD274) [33,34] and the human leucocyte antigen HLA-DR15 [35,36]. 

These results indicate that in mononuclear phagocytes, including classical mono-

cytes, NAGK may be involved in the glycosylation of key MS-related immune molecules. 

3. Discussion 

A recent milestone paper published by Harroud et al. [4] identified the regulatory 

SNP rs10191329 as the only variant exhibiting a significant correlation with MS clinical 

severity. Confirming this finding, an independent study showed that MS patients bearing 

the rs10191329A allele exhibit a higher rate of brain atrophy [37]. The identification of such 

a unique SNP not only bears potential interest for the stratification of MS patients but also 

provides key insights into MS pathophysiology. However, it appears crucial to determine 

which gene(s) is/are transcriptionally regulated by such a SNP. In their work, Harroud et 

al. [4] concluded that rs10191329 regulates the expression of two candidate target genes, 

namely ZNF638 and DYSF, which possibly shape the levels of “neurocognitive reserve” 

and CNS “tissue resilience” in MS patients. The arguments supporting such a conclusion 

may be subject to criticism. This holds particularly true with regard to the gene prioritiza-

tion strategy. The main prioritization parameter chosen by the authors is indeed the spa-

tial proximity of rs10191329A with DYSF and ZNF638. Such an argument appears rela-

tively weak since target genes are frequently located up to 2 Mbps from their regulatory 

SNP [38–40]. In addition, based on the expression patterns of rs10191329 proximal genes, 

the authors infered that rs10191329 likely regulates DYSF and/or ZNF638 in neural cells. 

Nevertheless, it is important to underscore that eQTL studies remain the gold standard 

for gene prioritization [41]. In this view, it is striking that across 60 eQTL datasets com-

piled in the OTG platform, rs10191329 does not associate with any expression quantitative 
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traits in neural cells or tissues. According to Harroud et al. [4], the “neurocognitive re-

serve” hypothesis is also supported by the previous demonstration that rs10191329 asso-

ciates with the trait “intelligence”. However, such an association has been found in only 

one study [42], reaching both a very small effect size (beta = −0.018) and a poor p-value 

(1.92 × 10−6) [43]. Along this line, while the authors demonstrated an inverse correlation 

between MS severity and the trait “years of education”, the impact of confounding factors 

such as lower income has not been sufficiently discussed. Indeed, as indicated in their data 

supplements, Harroud et al. [4] observed that, when adjusted to income, the link between 

the trait “years of education” and MS severity exhibited a dramatic drop in statistical sig-

nificance (in cohorts 1 and 2, p-value = 2.09 × 10−13 and 4.61 × 10−16, respectively, without 

adjustment for income vs. 0.011 and 0.03 following adjustment for income). Accordingly, 

a recent work demonstrated that in MS patients, a lower socio-economic status defined by 

lower income, lower education levels and higher risk of multimorbidities, inversely cor-

related with an increased rate of treatment escalation [44]. It thus appears that MS severity 

is impacted by socio-economic status as a whole, rather than “intelligence”, “years of ed-

ucation” or the “neurocognitive reserve”. Finally, favoring the CNS resilience hypothesis, 

Harroud et al. [4] argued that homozygous carriers of the rs10191329A allele display a 

significantly higher number of brainstem and cortical lesions as assessed by neuropathol-

ogy. Again, this observation does not formally demonstrate that rs10191329A carriers exhibit 

lower CNS tissue resilience. To reach such a conclusion, extended analyses would have been 

needed, notably, an assessment of the extent of demyelination/remyelination and axonal loss 

in patients harboring comparable levels of inflammation. In this regard, a recent neuroimaging 

study showed that rs10191329A carriers exhibit not only an increased rate of brain atrophy 

but also an increased volume of white matter lesions [37]. At this stage, it is thus extremely 

difficult to determine whether rs10191329A carriers may display a lower CNS tissue resilience 

or an increased immune aggressiveness of MS lesions. 

According to our re-analysis, the main target of rs10191329 is not ZNF638 or DYSF in 

neural cells but NAGK in monocytes. More specifically, MS patients bearing the 

rs10191329A allele are expected to exhibit a decreased expression of NAGK in immune 

cells, notably classical monocytes. While only poor evidence supports a role for DYSF 

and/or ZNF638 in MS pathophysiology, several pathways, possibly intermingled, might 

link a decreased expression of NAGK to MS severity. The first one is the NAGK-MDP-

NOD2 regulatory pathway. Multiple lines of evidence indeed suggest that NOD2 is an 

immunoregulatory receptor. Thus, inherited forms of the autoinflammatory disorder 

“Blau syndrome” (also named early onset sarcoidosis) are caused by NOD2 loss-of-func-

tion mutations [45,46]. Similarly, homozygous carriers of NOD2 loss-of-function muta-

tions exhibit a >40-fold increased risk of developing the autoimmune condition Crohn’s 

disease [47–49]. Finally, in distinct experimental paradigms, including the MS murine 

model  experimental autoimmune encephalomyelitis (EAE), the systemic administration 

of MDP was shown to foster immune tolerance via the activation of NOD2 in myeloid 

cells [50–53]. Of note, such a protective effect was found to rely, at least in part, on the 

MDP-induced conversion of classical monocytes into non-classical (patrolling) monocytes 

[24]. This point is of particular interest since classical monocytes were reported to exert 

pathogenic functions in EAE [54–56] and MS [54,57]. Overall, we propose that MS patients 

bearing the rs10191329A allele may experience increased clinical severity via an alteration 

of the NAGK-MDP-NOD2 regulatory pathway. 

Our data mining results also indicate that NAGK physically interacts with a dense 

network of proteins involved in glucose metabolism. Interestingly, the genes encoding 

such proteins are highly expressed by classical monocytes and harbor increased expres-

sion levels under MDP-induced activation of NOD2 [24]. While multiple metabolic alter-

ations have been reported in MS patients [58], our observations suggest that NAGK con-

tributes specifically to the control of glucose metabolism in monocytes. In particular, 

NAGK may shape the metabolic reprogramming that accompanies the MDP-induced con-

version of classical monocytes into non-classical (patrolling) monocytes. 
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Finally, the role of NAGK in the recycling of glycosylated proteins [25–27] is another 

potential pathway linking NAGK to MS severity. Supporting this view, the serum levels 

of GlcNAC, the main substrate of NAGK in the UDP-GlcNAC salvage pathway (Figure 

3), were shown to inversely correlate with clinical severity in MS patients [59]. It should 

be emphasized, however, that low GalNAC serum levels may impact nonimmune pro-

cesses, such as myelin repair [60]. Nevertheless, oral GalNAC was reported to treat EAE 

[61] and to exert measurable anti-inflammatory effects in MS patients [62]. In rs10191329A 

carriers, a decreased expression of NAGK is thus predicted to mimic the impact of low 

GalNAC serum levels and to induce qualitative and/or quantitative alterations of protein 

glycosylation in immune cells. 

4. Materials and Methods 

All bioinformatics and data mining analyses were performed at least 3 times between 

August 2023 and February 2024. 

4.1. Exploration of eQTL Datasets 

The Open Targets Genetics (OTG) platform was surveyed, and results linking the 

SNP rs10191329 with expression and/or protein quantitative traits were extracted. A total 

of 60 eQTL datasets generated by distinct consortia and obtained across 92 tissues and cell 

types were explored. 

4.2. Mining of Transcriptomic Datasets 

The NIH-run transcriptomics database Geodatasets 

(https://www.ncbi.nlm.nih.gov/gds) (accessed on 2 December 2024) was queried with the 

terms “classical monocytes” (or “conventional monocytes”) and “muramyl dipeptide”. 

This query returned only one study, referred to as GSE101496 [24], from which data were 

extracted. In other analyses, we mined the expression atlas “Human Protein Atlas” 

(https://www.proteinatlas.org/) ( accessed on 2 May 2024), which, to our knowledge, gath-

ers the largest sets of expression data obtained on human cells, notably via single-cell 

RNA-seq analyses [9]. When needed, we explored on HPA, the expression dataset dedi-

cated to immune blood cells [10]. We also queried the single-cell expression atlas provided 

by the European Molecular Biology Laboratory (https://www.ebi.ac.uk/gxa/sc/home)(ac-

cessed on 2 May 2024), which compiles 147 single-cell RNA seq datasets generated from 

human cells. Finally, for gene co-expression analyses, we surveyed the 2023 version of the 

co-expression database CoXpressdb (https://coxpresdb.jp/) (accessed on 2 May 2024) [11], 

which provides, from any queried gene, the list of top 100 most significantly co-expressed 

genes as calculated across 25,362 samples from 1324 studies. 

4.3. Mining of Proteomic Datasets 

Protein–protein interactions were extracted from the Biogrid database 

(https://thebiogrid.org/)(accessed on 2 December 2024) [22], which hosts ~1.93 million cu-

rated protein and genetic interactions in several species. We retained only protein–protein 

interactions obtained via experimental approaches (i.e., not inferred from in silico anal-

yses) and demonstrated in the human species. 

4.4. Enrichment Analyses 

Pathway enrichment analyses were performed on the web platform “Enrichr” 

(https://maayanlab.cloud/Enrichr/) (accessed on 2 May 2024) [12,13] by combining results ob-

tained from 5 distinct libraries of pathways: Reactome [17], BioPlanet [18], KEGG [19], Panther 

[20] and WikiPathways [21].Tissue enrichment analyses were also performed on Enrichr via 

the exploration of 3 cell type enrichment libraries that we selected on the basis of their high 

gene coverage (>10,000): Jensen Tissues [14], Human Gene Atlas [15] and CellMarker 
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Augmented 2021 [16]. When needed, as shown in Tables S5–S13, enrichment factors were cal-

culated, and statistical significance was assessed using the Fisher’s exact test. 

5. Conclusions 

The demonstration of an association between the SNP rs10191329 and MS severity is 

undeniably a milestone discovery that rightfully generates many expectations, including 

therapeutic ones. The transcriptional regulation of ZNF638 and DYSF in neural cells was 

initially identified as the main mechanism linking rs10191329 with MS severity. Here, us-

ing an alternative strategy for gene prioritization, we found that rs10191329 likely targets 

the immunometabolic gene NAGK in immune cells. We provide data mining results indi-

cating that NAGK may shape MS severity via three pathways: (i) the MDP-NOD2 regula-

tory pathway, (ii) the glycolytic pathway and (iii) the glycosylation pathway. All three 

pathways may essentially operate in classical monocytes, conferring to this cell type a key 

function in MS pathophysiology. Our findings are important and novel for at least three 

reasons. First, the present paper should stimulate research efforts aimed at assessing the 

role of monocytes in MS pathophysiology =. Second, treating patients with an aggressive 

form of MS is still challenging nowadays and requires aggressive treatments with non-

negligible side effects. Among the myriad of immune pathways that are potentially eligi-

ble for therapeutic interventions, we point to a specific mechanism, the NAGK/NOD2 

pathway, identified on the basis of robust genetic findings. This should be considered as 

a major asset for clinical translatability. Moreover, apart from the stimulation of NOD2 

via the systemic administration of NOD2 agonists, therapeutic strategies aimed at stimu-

lating NAGK expression could be envisioned. Finally, while the development of neuro-

protective treatments shows continuously increasing interest and mobilizes tremendous 

scientific efforts in MS research, our data indicate that the genetic inheritability of MS se-

verity may not be linked to CNS tissue protection and/or repair. On the contrary, to date, 

the only SNP which associates with MS severity appears to essentially set the intensity of 

neuroinflammation, not tissue resilience.  
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