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Abstract: Spatially enabled yield forecasting is a key component of farm Management Information 

Systems (MISs) for broadacre grain production, enabling management decisions such as variable 

rate fertilization. However, such a capability has been lacking for soft (fleshy)-tree-fruit harvest load, 

with relevant tools for automated assessment having been developed only recently. Such tools in-

clude improved estimates of the heat units required for fruit maturation and in-field machine vision 

for flower and fruit count and fruit sizing. Feedback on the need for and issues in forecasting were 

documented. A mango ‘harvest forecast engine’ was designed for the forecasting of harvest timing 

and fruit load, to aid harvest management. Inputs include 15 min interval temperature data per 

orchard block, weekly manual or machine-vision-derived estimates of flowering, and preharvest 

manual or machine-vision-derived estimates of fruit load on an orchard block level across the farm. 

Outputs include predicted optimal harvest time and fruit load, on a per block and per week basis, 

to inform harvest scheduling. Use cases are provided, including forecast of the order of harvest of 

blocks within the orchard, management of harvest windows to match harvesting resources such as 

staff availability, and within block spatial allocation of resources, such as adequate placement of 

harvest field bin and frost fans. Design requirements for an effective harvest MIS software artefact 

incorporating the forecast engine are documented, including an integrated database supporting 

spatial query, data analysis, processing and mapping, an integrated geospatial database for manag-

ing of large spatial–temporal datasets, and use of dynamic web map services to enable rapid visu-

alization of large datasets. 
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1. Introduction 

1.1. Need for Harvest Forecast 

Commercial orchards require management of irrigation, plant nutrition, disease and 

pests, and tree canopy architecture to meet agronomic needs, and documentation of labor 

and chemical usage to meet administrative requirements. As reviewed in a companion 

paper [1], the development of electronic Management Information Systems (MISs) for 

tree-fruit management lags behind that for broadacre cropping. The existing orchard 

management systems have focused on issues with regulatory requirements, e.g., chemical 

and labor usage, with capacities more recently developing around management decision 

support, e.g., when to spray chemicals based on weather and pest pressures inputs. 

Of the various management tasks involved in the production of soft tree fruit, the 

annual organization of harvesting is a major event. Harvesting and grading costs repre-

sent approximately 50% of total production costs for soft tree fruit [2], given the current 

need to hand pick most commodities. Summarizing the review of [3], harvest forecast is 

essential to the planning of on-farm resourcing (of labor and materials), transport and 
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marketing, with all of these areas having lead times of week if not months. Harvest fore-

casts are integral in some production systems, e.g., those involving processing, given the 

need to co-ordinate input to a central processing plant. Examples include wine grape [4] 

and juice citrus production [5]. The US hazelnut industry provides a (dry) tree-fruit ex-

ample, with a national crop forecast made by the United States Department of Agriculture 

(USDA) based on manual counts of two randomly selected trees in each of 180 randomly 

selected orchards [6]. New tools are also emerging for tree-fruit load estimation, ranging 

from in-orchard machine vision to relationships based on canopy size or vegetation indi-

ces obtained from satellite imagery [7, 8]. The growing requirement for point of origin 

traceability also creates a need for electronic databases for harvest data accessed through 

an information system [9]. 

Large mango farms in Australia each employ hundreds of workers for the short har-

vest season and must organize appropriate labor resources, materials such as packaging, 

and services such as transport. The harvest window is a few weeks in length, with fruit 

harvested either earlier or later than the optimum window, presenting different quality 

issues which lower the marketability of the fruit. As mango fruit are climacteric, with a 

low storability, timeliness of harvest and transport is critical. The downstream supply 

chain must organize ripening and marketing for domestic markets, and biosecurity treat-

ments, transport, and marketing for export markets. For example, retailer advertising is 

typically booked six weeks in advance, requiring a forecast of product availability. To 

support this decision making, forward knowledge of harvest timing and load is required. 

Indeed, the earlier and more accurate the forecast, the be�er the harvest can be organized, 

delivering be�er quality and more marketable fruit, and thus higher profitability. 

The forecast of tree-fruit harvest timing and load is a complex task, requiring evalu-

ation of multiple inputs. Inputs include flowering observations, temperature measure-

ments for the calculation of heat units, measurements of fruit maturity a�ributes to sup-

port estimation of the timing of fruit maturation, and fruit count and size measurements 

to support estimation of load [3]. These data types require collection at a range of frequen-

cies, from 15 min interval temperatures records to fruit counts made once or twice in a 

season. 

The current forecast systems used on Australian mango farms and by their marketing 

groups are relatively ‘informal’ systems, relying on nonsystematic manual estimates by 

growers, which are kept on paper or electronic spreadsheets. Manual estimation of flow-

ering level and fruit load can be time-consuming, resource intensive, and inaccurate. In 

consequence, orchard MISs for the forecast of harvest timing and load are relatively im-

mature [1]. 

1.2. Inputs Required for Hearvest Forecast 

Management of any farm requires the delineation of management units. In a tree-

fruit orchard, these land units are blocks of trees of similar management history, viz. 

planting date, cultivar, pruning, soil type, etc., and thus, ideally the trees will have a sim-

ilar physiological status. Homogeneity in time and extent of flowering and fruit load al-

lows for decreased sampling effort. In practice, however, priority is often given to factors 

such as accessibility or irrigation system design, rather than issues such as soil type and 

drainage, resulting in increased variation [10]. 

As covered in a recent review [3], harvest forecasting of a tree-fruit crop requires for-

ward estimation of optimum harvest time and the expected fruit load. The importance of 

temperature-to-rate-of-fruit-development is understood and utilized in forecast models, 

e.g., for banana [11]. Various approaches have been used in the forecast of fruit load, e.g., 

flower counts in strawberry [12] and vegetation spectral indices [13]. These inputs have 

been used in models for the optimization of harvest planning [14]. As a generalization [3], 

the harvest load of a tree-fruit crop can be forecasted early in the season based on correla-

tion to a UAV or satellite-assessed vegetation index (but this may be inaccurate if floral 

induction is poor), via correlation to canopy ‘surface’ area (but this does not consider 
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height and may perform poorly with fruit-wall production systems), or with input of am-

bient temperatures (e.g., if floral induction requires a low temperature period). A slightly 

later forecast can be made via correlation to the extent of flowering (but this will be an 

overestimate if pollination conditions, or fruit retention rates, vary from the ‘norm’). Fi-

nally, a late-season forecast can be made via direct count of the fruit on trees, after the 

early fruit development period in which fruit drop occurs. 

For mango specifically, harvest timing and load forecast for a given orchard can be 

achieved given knowledge of the criteria established in Anderson et al. [3]: 

(a) The cultivar specific heat unit (also known as the thermal time or Growing Degree 

Days, GDD) maturation requirement from flowering to harvest maturity; 

(b) The time at which a harvest-maturity fruit dry ma�er content (DMC) specification 

will be achieved, the time and intensity of flowering events, and orchard temperature 

data. 

While a forecast of harvest load for a given tree block can be achieved given 

knowledge of the following: 

(a) Fruit count; 

(b) Fruit size; 

(c) Fruit marketability (proportion of fruit that are marketable). 

Several sensor technologies and statistical methodologies have been developed that 

aid in the estimation of harvest timing and load (Table 1) [3]. In-field temperature can be 

remotely logged in real time using wireless sensors, fruit dry ma�er content can be as-

sessed nondestructively for fruits on trees using handheld near-infrared spectroscopy 

(NIRS), statistically valid sampling strategies provide a foundation to the manual estima-

tion of flowering and fruit count, machine vision can be used for flower and fruit count, 

and statistically valid sampling strategies and machine vision for fruit count and fruit siz-

ing are relevant to the estimation of harvest load. Other approaches for harvest-load esti-

mation use satellite-imagery-derived vegetation indices [15, 16] and UAV-derived canopy 

structure a�ributes [8]. Our research group has reviewed each of these aspects, i.e., the 

forecast of harvest timing based on GDD [17] and/or DMC [18], the forecast of fruit num-

ber [3, 19], and the forecast of fruit size at harvest [20]. 

Table 1. Inputs for a mango harvest timing and load forecast system, with methodology refer-

ences. 

Information Input Data Source 

Harvest timing 
flowering 

machine vision or manual estimates of the ex-

tent of flowering, per week [3] 

 GDD temperature (daily min and max) [17] 

 
fruit DMC NIRS measurement [19] 

flesh color destructive visual assessment [18] 

Harvest load  fruit count machine vision or manual estimates [3] 

 

fruit size machine vision or manual estimates [21]  

fruit marketability manual estimates 

fruit load 
satellite-derived vegetation index imagery 

and historical time series data [15] 

1.3. Aim and Structure 

The current study extends our earlier work on the forecast of the optimum harvest 

time based on the noninvasive measurement of fruit dry ma�er content. Given the avail-

ability of such data sources, it is timely that harvest information management systems be 

developed to translate this ‘data into information’. The aim of the current paper is to cod-

ify how such data can be brought together to create a ‘harvest forecast engine’ and how 
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such an engine could be used in an electronic MIS, managing data into information on 

both harvest load and timing. 

Industry practitioner input on the need for and issues in mango harvest-load forecast 

was sought (Section 3). A review was undertaken of the approaches and tools available 

for the forecasting of harvest timing, i.e., tools for the provision of data on temperature, 

flowering time, and dry ma�er content (Section 4) and for the forecasting of fruit load, i.e., 

for data on fruit numbers and fruit size (Section 5). This section includes farm data to 

illustrate the points raised. Consideration of the use of this data in harvest scheduling and 

other management tasks is presented in Section 6. 

The novelty of the current manuscript lies in the description of the structure of the 

‘harvest forecast engine’. Practical use of such a ‘harvest forecast engine’ requires integra-

tion into a Management Information System with functions for data management, ar-

chival, analysis, visualization, and interpretation [1]. The design requirements for an ef-

fective harvest MIS software artefact are presented in Section 7. While we do not a�empt 

to detail or evaluate the constructed artifact in the current manuscript, we have used out-

puts from a prototype system in illustrating the operation of the forecast engine. 

2. Methodology 

2.1. Data Sources 

As noted, our research group has been active in the development of sensor systems 

relevant to the forecasting of harvest timing and load (Table 1). This work has involved 

on-farm testing, e.g., on 37 orchards across the major mango producing regions of Aus-

tralia for assessment of machine vision technologies [21]. In the current paper, the logic of 

a harvest forecast engine is developed, with data to illustrate these discussions, which 

were obtained from equipment and protocols referenced in Table 1. 

2.2. External Feedback 

‘Industry’ input was sought on the need for, and proposed utility and operation of, 

the ‘harvest forecast engine’. Informal feedback over this period guided the development 

of the system. Feedback from growers, agronomists, and supply chain partners involved 

in these trials was acquired through semi-structured interviews based on the questions 

outlined in Appendix A, occurring over the period 2022–2024 (CQUniversity low risk eth-

ics approval number: 21660). The interviews occurred primarily as electronic one-on-one 

meetings with eight farm managers of medium (>20,000, <50,000 trees) and large (>50,000 

trees) farms, three agronomic advisors or researchers in tropical Australia, and three 

mango marketers. Further, our work on the development of sensor systems (Table 1) in-

volved on-farm data collection, with the sharing of data through a developmental elec-

tronic MIS platform to the host farms, generally within a day of collection. Informal feed-

back over this period guided development of the system. 

3. External Feedback 

The expressed needs for a documented harvest forecast (Table 2) were common 

across all interviewees, but the need increased with scale of production and the length of 

the supply chain. The issues raised in the context of making harvest forecasts (Table 2) 

were used to guide the proposed ‘forecast engine’. 
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Table 2. Examples of user feedback on the need for, and issues in the operation of, harvest fore-

casts. 

Topic Comments 

Need—on farm Resourcing:  

Boxes and tray liners are ordered months before harvest, so we need to anticipate fruit numbers and 

size. 

I need months of lead time to arrange harvest labour. 

I plan on 120 days from flowering to harvest but that can be out a couple of weeks either way. 

Operation: 

If I get an order early in the season, I need to know where to find mature fruit. 

If we know fruit sizes expected from a block, we can set the packline line drops up before sorting 

starts. 

The grade of the fruit depends on defect level. Ideally, we would know the proportion (of grade 1/ 

grade 2/reject) fruit before harvest. 

It’s not just about total weight, it’s when (week) and what (fruit number, size, quality). 

I have 22 harvest crews working in parallel through a block, each line needing 10 to 17 bins, but my 

bin runners only hold 6 bins each. I need them to place the bins right the first time. 

If you know your weekly fruit load you can set a daily volume target depending on the number of 

days (in the week) you operate. You adjust daily depending on volume picked on previous day. This 

lets you give the crew notice (whether there will be a weekend break or not). 

We need to decide whether there’s enough fruit left after a first harvest to justify a second harvest.  

The amount of fruit discarded in field during harvest or left on tree can vary considerably. 

Harvest never goes to plan–staff absent, rain or machine issues or other delays, like no transport avail-

able. But without a forecast you don’t have a plan. 

Need—post 

farm 

We spent (AUD)$0.9 M on marketing last year but it’s wasted if fruit isn’t available to deliver to mar-

ket, or if we supply more than the market is ready to handle. 

It’s not just about tonnage or number of fruit, fruit size is important. 

The (fruit) price drops if we supply more than we anticipated to market, and its hard to recover price. 

We pick with the aim of having the product in the hands of the consumer in 14 days, but with a stor-

age life of 28 days. We need to get the harvest date right. 

We need forecasts on a weekly basis from all our supplier farms. 

Forecast issues Nothing is ‘set and forget’, you need to be able to adjust values as the seasons progresses. For exam-

ple, nothing may come of a flowering event, it may not set fruit, or the fruit may drop. 

Things change between years. If the foliage is denser (hiding fruit), I underestimate on fruit count. 

Hanging time (the time fruit can be left on tree before ripening begins) gives you some flexibility in 

harvest timing. It varies with cultivar, ranging from 7 to 21 days. 

You need to factor in our capacity to harvest. 

Things get busy, any system has to be easy to use, easy to put data in, and easy to see. 

4. Harvest Timing 

4.1. GDD 

Reproductive development from flowering to ‘harvest maturity’ is a cultivar specific 

function of time and temperature. This index is referred to as ‘thermal time’, ‘heat units’ 

or ‘Growing Degree Days’ (GDD), with units accumulated daily. Simple calendar time 

could be used if seasonal temperatures did not vary between years, but in practice, the 

time from a given flowering to fruit harvest maturity can vary by weeks between locations 

with different temperature profiles. 

GDD units for mango reproductive growth are typically calculated using the average 

of the daily minimum (Tm) and maximum (TM) temperatures, minus a minimum base 

temperature value (Tb). Amaral et al. [17] implemented a set of equations (1 to 5) for the 

calculation of daily GDD, as proposed by Ome�o [22], which involve a maximum base 
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temperature value (TB). Working with Australian mango cultivars, the optimum Tb and 

TB was established to be 12 and 32 °C, respectively, and cumulative GDD targets were set 

for the fruit maturation of a suite of cultivars (Table 3). 

�� �� <  �� �ℎ�� ��� =  0  (1)

�� �� >  �� �ℎ�� ��� =  �� –  �� +  
(�� − ��)

2
 (2)

�� �� < �� �ℎ�� ��� =  
(�� − ��)�

2(�� − ��)
  (3)

�� �� >  �� ��� �� <  �� �ℎ�� ��� =  
2(�� − ��)(�� − ��) + (�� − ��)� − (�� − ��)�

2(�� − ��)
 (4)

�� �� <  �� ��� �� <  �� �ℎ�� ��� =  
(�� − ��)� − (�� − ��)�

2(�� − ��)
 (5)

Table 3. Mango cultivar GDD (Tb of 12, TB of 32 °C) requirement for fruit development from the 

reproductive development stage of 50% flower opening on panicle to harvest maturity, with ma-

turity defined by flesh color [17]. 

SN Cultivar Flesh Color GDD 

1 Honey Gold 9 1560 

2 Calypso 7 1540 

3 Keitt 13 1936 

4 R2E2  1600 

5 KP 7 1420 

In practice, this estimate provides a recommended earliest harvest date. Fruit can be 

harvested later, with decreasing shelf life and increasing postharvest quality issues. Fur-

ther work is required to document acceptable harvest windows, referred to as ‘hanging 

time’ by growers, by cultivar and growing condition, for use in harvest management sys-

tems. 

4.2. Temperature Measurement 

To achieve a GDD estimate, a record is required of current season temperatures to 

the current date and a forecast of temperatures through to fruit maturity. This forecast can 

be as simple as an average of daily temperatures over past years or as complex as the 

output of a current season climate model. The heat unit calculation can be updated daily 

using actual (orchard) season temperatures. 

For temperature measurements, farms lacking a weather station can access a local 

public monitoring resource, e.g., the Bureau of Metrology (BoM); however, these record-

ing locations can be >100 km from farms. Farms with a recording station often rely on a 

single station for temperature records. While it is obvious that temperatures and thus 

GDD accumulation will vary regionally, temperatures can also vary across a given farm 

(Figure 1) as a function of farm geography. The development of low-cost remote monitor-

ing technologies such as LoRa (Long Range radio) allows for multiple temperature re-

cording stations to be maintained on a given farm [17]. 
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Figure 1. Cumulative GDD from calendar day 212 at two locations 2.1 km apart on one farm (blue 

and orange lines), and at the nearest BoM station, 25 km away (red line). A GDD target of 1500 units 

from a flowering event at day 212 (horizontal green do�ed line) is reached on days 335 (1 Decem-

ber), 341 (7 December), and 354 (20 December), respectively. 

For the proposed harvest MIS, it is recommended that wireless temperature sensors 

be established according to Bureau of Meteorology specification (viz., enclosed in a white, 

sla�ed screen, mounted 1.5 m above grassed or mulched ground, and positioned at least 

10 m from tall objects) in each geographic zone of the farm, with orchard blocks within 

those zones linked to the output of respective sensors in the MIS database. Data from these 

sensors should be collected at 15 min intervals [17] to support the measurement of Tm and 

TM. These records can be accumulated over the years to produce a historical record for 

each location. This historical record can be augmented with data from the nearest farm 

sensor or from the nearest public resource, e.g., BoM (Equation (1)). The historical record 

can be used in the forecast from a given date and to fill in data gaps due to technical fail-

ures associated with sensors of associated data transfers (Equation (6)). 

�� =  ��� + ��� + ��� + ��� (6)

where the variables represent the following: 

S is the matrix of Tm and TM values for use in the calculation of GDD; 

O is a matrix of observed current season daily Tm and TM values; 

N is the matrix of observed current season and historical daily Tm and TM values of the 

nearest farm sensor; 

B is the matrix of current season daily Tm and TM values from the nearest BoM site; 

H is the matrix of historical (e.g., 10-year average) daily Tm and TM values; 

t1to4 are mutually exclusive periods within the season. 

4.3. Peak Flowering Dates 

A flowering date is required for GDD estimation in the forecast of harvest time. 

Mango reproductive development involves the conversion of a vegetative branch terminal 

apex, with the production of a panicle with hundreds of flowers. This process progresses 

through the stages of (i) swollen bud; (ii) ‘asparagus’ stage; (iii) panicle elongation phase; 

(iv) ‘Christmas tree’ stage with 50% of flowers on the panicle open; and (v) fruit set stage. 

A panicle will typically hold one to four fruits, with this number being cultivar dependent. 

In current international best practice, as seen in mango production systems dealing 

with large volumes of fruit and long supply chains, the percentage of canopy terminals in 

reproductive growth per tree is estimated manually in a slow (approx. 10 km/h) drive 
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through of several rows of a given orchard at up to weekly intervals. Dates of peak flow-

ering, also known as ‘maturity zones’ or ‘flowering events’ in the Australian mango in-

dustry, can be estimated from this time series assessment, for each orchard (Table 4, Figure 

2). The designation of a flowering event is tied to a user-defined minimum change in flow-

ering level, e.g., of at least 20% of terminals in reproductive growth (Figure 2), as, in gen-

eral, the selective harvest of fruit from a lesser change would not be economically viable. 

Table 4. Example of manual data collection on flowering for five orchard blocks (A to E) across 7 

weeks. (i) Raw data of weekly assessment of % of canopy terminals in reproductive growth based 

on a manual visual assessment from driving through several rows in each block. (ii) The cumulative 

values are normalized to the maximum flowering level achieved in each block. (iii) Manager input 

is required in denoting flowering ‘events’ (generally an event involving an increase of at least 20% 

in flowering), the percentage of total flowering within a given block associated to each event, with 

user manipulation required to spread harvest activity over the available time window. 

 

Block 

Week 

1 2 3 4 5 6 7 

(i) Raw data 

A 0 0 5 5 55 60 60 

B 10 50 65 65 85 90 90 

C 30 85 90 90 90 90 90 

D 10 50 65 65 65 65 65 

E 0 20 20 20 60 90 90 

(ii) Normalized data 

A 0 0 8 8 100 100 100 

B 20 56 72 72 94 100 100 

C 33 94 100 100 100 100 100 

D 15 77 100 100 100 100 100 

E 0 22 22 22 67 100 100 

(iii) Condensed data 

A     100   

B 20  52   28  

C 33  67     

D  77  23    

E  22   45  33 
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Figure 2. Time series of flowering assessments for an orchard: (a) machine vision count of panicles 

at the ‘50% flower opened’ developmental stage (blue line) and manual estimation of percentage of 

canopy terminals in reproductive growth (green line) for an orchard block (data of block E in Table 

4, where week 1 is 21 July); (b) machine-vision-based panicle count for the same block in the next 

production season (orange line). The period in the outline denotes a significant flowering period. X 

axis date format is mm/dd. 

While assessment of the percentage of terminals in reproductive growth via human 

visual assessment is a current industry practice, this a�ribute has not yet been assessed 

with machine vision. Panicle count, but not vegetative terminal count, has been reported 

using machine vision. Machine vision has been used in the detection and count of mango 

panicles at three developmental stages (elongation, Christmas tree, and fruit set) using 

imagery collected from a camera and a GNSS-equipped ground vehicle [23]. In this ap-

proach, panicle counts from images sourced at intervals equivalent to the tree spacing 

along the tree row have been used in the spatial visualization of flowering across orchard 

blocks, and the average counts for the number of panicle counts per frame for the three 

developmental stages have been used in time-series presentation [3] (Figure 2). Such a 

time series allows for the elicitation of the timing of flowering events. 
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4.4. Accumulation of Storage Reserves 

The GDD forecast of harvest time has the following weaknesses: (i) potential varia-

tion between the sensor measured temperature and fruit temperature, both across orchard 

and within canopy and (ii) variation in the time of flowering within each panicle (which 

consists of hundreds of flowers which progressively open over at least a week). To ‘fine 

tune’ the GDD-based estimate of harvest date, fruit a�ributes such as skin color, flesh 

color, or storage reserve level can be used as indicators of fruit maturity. However, skin 

color is not a reliable index for the mango cultivars of commercial relevance in Australia, 

which can have a well-developed ‘blush’ (skin color) by the time of harvest. Flesh color is 

a definitive index of fruit maturity, but assessment is destructive of the fruit, effectively 

limiting the number of fruit that can be sampled [24]. 

Flesh dry ma�er content (DMC) has been recommended as a maturity index for 

mango fruit [25]. It can be estimated destructively via weight loss on drying, or noninva-

sively for fruits on trees using a portable near-infrared spectrometer (e.g., F750, Felix In-

struments, Camas, WA, USA). Such instruments are Wi-Fi- and GNSS-enabled, enabling 

the upload of geo-tagged data. In brief, DMC reflects the accumulation of storage reserves, 

being soluble sugars and starch content, in a mango fruit. DMC of fruit at harvest is 

strongly correlated to juice soluble solid content in the ripened fruit and thus, eating qual-

ity. The DMC level associated with harvest maturity will vary with growing condition but 

can be established via association with flesh color [17] (Figure 3). 

 

 

Figure 3. Top row: A set of color cards and associated maturity score values (from 3 to 17) with 

associated CIE Lab values associated to flesh color at maturity for four mango cultivars. Bo�om row: 

Images of cut cheeks of Kei� cultivar fruit. The flesh color associated with harvest maturity (card 

13) of these fruit was associated with a dry ma�er content of 17% w/w. 

Once mango fruit are past the stone-hardening stage of development, fruit ‘drop’ 

(abscission) decreases greatly, and the rate of increase in DMC (% w/w) is generally linear 

(with exceptions, particularly around marked changes in water status, e.g., following rain) 

[26]. Thus, the rate of increase in the DMC estimated from at least two weekly observations 

allows for the forward prediction of a harvest maturity date given a DMC target associated 

with harvest maturity (Equation (7), with example data shown in Figure 4). 

∆� =  
(���� − ���)

∆���
 × 100 (7)

Where the variables have the following representations: 

x is the number of days to harvest maturity date; 

TDMC is the target dry ma�er content, associated with harvest maturity; 
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DMC is the value of dry ma�er content exceeded in x% of observations of the last meas-

urement date, where x is user defined (typically 90%); 

DMC is the rate of DMC increase (%/day) estimated from average dry ma�er content at 

two measurement dates. 

An example 

 

Figure 4. Example of spatial visualization of harvest timing data, in this case dry ma�er content 

(DMC) data. Dots represent measurements of individual fruit, with values incremented from date 

of measurement to date of visualization based on a measured rate of DMC increase. Dots are colored 

with reference to a user specified DM target (in this case 16%). Blue, yellow, and red dots represent 

values on and above target, within one unit less than target and >1 unit less than target. Blocks are 

colored in context of meeting a user specification, in this case 90% of measurements above the set 

target of 16%, with red and green indicating specification not achieved and achieved, respectively 

4.5. Proposed Workflow on Harvest Timing 

A recommendation on harvest timing can thus be achieved on the consensus of esti-

mated dates from: (a) flowering time and accumulated GDD, given dates of peak flower-

ing events and measurement of daily (minimum and maximum) temperatures, and (b) 

fruit DMC, given measurements on at least two dates prior to harvest. 

A proposed workflow is described in Figure 5. The date and extent of peak flowering 

events (maturity zones), as observed manually or through machine vision, are recorded. 

A recommended harvest date associated with these flowering events is estimated from 

temperature records and required GDD for a given cultivar and the associated Tb and TB 

values. Another harvest date recommendation associated with these flowering events is 

estimated from a minimum fruit dry ma�er (DM) harvest specification established for 

each mango cultivar and a rate of dry ma�er increase established in the weeks before har-

vest used to estimate optimal harvest date. A consensus between GDD and dry ma�er 

harvest time forecasts (examples presented in Table 5) requires the input of an orchard 

manager to consider harvest timing in context of farm harvesting capacity (as illustrated 

in Table 4 and detailed in the next section). This can involve a decision to shift harvest 

from the week of forecasted fruit maturity to a week with lower harvest load, to balance 

harvest resourcing. This decision may also be used to influence marketing, i.e., intended 

market and pricing. 
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Figure 5. Workflow for recommendation of time of mango harvest. The oval boxes denote inputs, 

rectangular boxes denote an action, and diamond boxes denote conditional statements. 

Table 5. Example forecasts of optimum harvest date for fruit of two flowering events in each of five 

mango blocks (A to E), using the methods of (i) Growing Degree Days (GDD) from time of flowering 

and (ii) achievement of a dry ma�er content (DMC) specification (in units of %FW), based on a linear 

rate of DMC increment, established per block. Dates are in dd/mm format. 

Block 
FE1 FE2 

GDD DMC GDD DMC 

A 4/10 1/10 16/10 21/10 

B 6/10 8/10 22/10 20/10 

C 6/10 9/10 24/10 27/10 

D 30/9 7/10 22/10 25/10 

E 24/9 2/10 8/10 6/10 

5. Harvest Load 

5.1. Fruit Number 

A first forecast of potential fruit load can be based on the extent of flowering propor-

tional to the maximum load associated with flowering of 100% of the canopy terminals for 

a given orchard condition (cultivar, canopy size, architecture, management history, etc.). 

Such an estimate represents a potential, based on the extent of flowering, which may not 

be realized if conditions cause fruit drop. This approach has also been reported in other 

soft-fruit tree crops, including apples [27] and almonds [28]. 

Fruit number data for a given orchard block can also be estimated with direct, man-

ual count, based on a sound sampling strategy. This count should be undertaken after the 

‘fruit drop’ period, generally at or after the ‘stone (endocarp) hardening’ stage of fruit 

development, i.e., from about six weeks before harvest. The estimate will involve manual 

count of the number of fruit per tree on a sample of trees in the orchard block, with the 

number of trees to be counted related to the square of the SD of this a�ribute [29]. Ideally, 

a preliminary sample of trees would be counted to evaluate SD; however, this imposes a 

workload cost. In compromise, an SD value based on prior knowledge (from blocks of 

similar appearance or from previous years) can be adopted and then iteratively adjusted 

based on actual counts. A systematic sampling procedure offers the practical advantage 

of ease of location of the sample trees, compared to, e.g., a random sampling protocol [3]. 
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Such a system can be implemented in a mobile device, with a download of orchard block 

boundaries and tree number per orchard block to enable calculations of tree spacing in 

systematic sampling. An example of a system in commercial operation employing this 

principle is Pronofruit [30]. 

Alternatively, the number of fruit per block can be assessed using machine vision. In 

an early demonstration (2013), machine vision using deep learning techniques (convolu-

tional networks) was used in an apple-fruit-load estimation method [31], with the tech-

nique shortly thereafter applied to mango-fruit-load estimation [19, 32]. In these systems, 

images of the canopy sides are collected using a camera system mounted to a vehicle mov-

ing through the inter-rows, with fruit tracked between frames and counted once no longer 

present in subsequent frames. Cumulative count for set lengths of the rows (generally set 

at the distance of tree spacing along the row, e.g., 3.5 m) can be displayed as a ‘heat map’ 

of fruit load, or a cumulative count for the orchard block can be displayed and tabulated, 

e.g., [21] and [19]. 

5.2. Fruit Size 

There is an allometric relationship between mango fruit lineal dimensions and fruit 

mass [20]. Fruit lineal dimensions can be collected manually, using calipers, and a statis-

tically robust sampling regime, with data capture aided with a mobile device. Alterna-

tively, lineal dimensions of fruits on trees can be estimated using machine vision for the 

subset of imaged fruit that are not partly occluded and are in the center of the field of 

view, to avoid perspective distortion [33]. These data can be presented as a size class fre-

quency histogram. Hectre [34] provides an example of commercial software for monitor-

ing fruit size distribution of fruit in field harvest bins using a mobile device and machine 

vision. 

Mango fruit mass increases linearly in the month leading up to harvest, except if 

growth is disturbed via a major change in tree physiology, e.g., in water stress or source–

sink balance [35, 36]. For nondisturbed conditions, size measurements (S) taken on two 

occasions (t1 and t2) can therefore be used to estimate rate of growth, m (e.g., in g/day), as 

follows: 

� =
��̅� − ��̅� 

�� − ��
     (8)

where ��̅� and ��̅� are the average size of fruit at t1 and t2, respectively. This rate can be 

used to forecast weight distribution at the forecast time of harvest (th), from data of the 

last measurement event, as follows: 

�� = ��� + �(�ℎ − ��) (9)

where St2 is the size distributions at t2, and Sh is the forecast size distribution at harvest. 

An example of a size profile forecast (made three weeks before harvest) is compared 

to the size distribution assessed of fruit at harvest in Figure 6. 
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Figure 6. Frequency (% of total fruit number) for fruit mass ranges equivalent to tray sizes for mango 

cultivar ‘Calypso’ population for the forecast and actual fruit size at harvest. Forecast size was based 

on a growth rate of 23.2 g/week (as estimated from the mass change between weeks 4 and 3) for this 

population. Fruit mass was calculated using fruit lineal dimensions. Data from Amaral et al. [36]. 

5.3. Fruit Quality 

A distinction can be made between ‘biological’ and ‘marketable’ yield. Biological 

yield is the total number of fruits on trees, characterized by fruit number and size. ‘Mar-

ketable yield’ is that proportion of biological yield that is saleable. Factors determining 

marketability include size, blemish level, and level of maturity. For example, less than six 

spots or a total area of 1 cm2 or more of pink spots on the mango skin, a symptom caused 

by a scale insect, is recognized as a defect in marketing chains, reducing fruit value [37]. 

As for total fruit number and fruit size, surveys can be conducted for fruits on trees 

to estimate the proportion of the crop impacted by a given a�ribute. Current industry best 

practice involves manual visual assessment of a sample of fruit in each orchard block, 

with paper or basic electronic recording. There is potential to implement machine vision 

solutions. For example, Scalisi et al. [38] report estimation of blush levels of stone fruit 

using a vehicle-mounted camera system. 

6. Data to Information 

6.1. Harvest Schedule 

As an early-in-season approximation of fruit yield, the % of terminals that enter re-

productive growth can be used in context of the maximum yield for this cultivar/can-

opy/growing condition, as associated with a 100% flowering event (Equation (10)). For 

example, if 40% flowering is recorded for a block with a prior maximum yield of 40 t/ha 

associated with 100% flowering, then the potential yield forecast is 16 t/ha. 

�� = � × ���� × �  (10)

where, for a given block, the variables have the following representations: 

Yf is the forecast yield (kg) associated with a given flowering event; 

F is the flowering extent (% of terminals) associated with a flowering event; 

Ymax is the maximum fruit yield per hectare (kg/ha), at 100% flowering; 

A is area (ha). 

However, as noted above, flowering can occur in waves (flowering events, FEs) of 

different magnitudes within a given orchard block. The forecast harvest date of each of 
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the events can be forecast based on GDD and on fruit DMC measurements. The % of can-

opy terminals involved in a flowering event can be normalized to the maximum achieved 

and used to partition the estimated total fruit load based on FEs, and thus harvest date 

(Equation (11)). The forecast of harvest load can be based on a machine vision or manual 

count of fruit per orchard block undertaken from fruit stone-hardening stage, i.e., after 

the fruit drop period, up to 6 weeks before harvest. 

�� =
���

�����
× �� (11)

where the variables have the following representations: 

Yi is the yield, as fruit number, per FEi; 

FEi is the extent of a given flowering event (% of terminals); 

i is the number of the FE; 

FEmax is the maximum flowering in the given season (% of terminals); 

FC is the block fruit count. 

For example, if FE1 was associated with flowering of 30% of all terminals, while by 

the end of the flowering period 90% of terminals had reproductive growth, and the block 

fruit count was 120,000 pieces of fruit, then the fruit count associated with FE1 can be 

approximated as 30/90×120,000 = 40,000 pieces of fruit (Equation (11)). This value is an 

approximation which ignores differential fruit drop between different FEs, but it repre-

sents the first level of the forecast. The forecast can be adjusted based on subsequent ob-

servations of fruit drop and corroborated with other observations, e.g., fruit size distribu-

tion. 

A workflow is presented in Figure 7. 

 

Figure 7. Workflow for estimating fruit load per week. 

The estimated Yi per block can be summed across blocks to achieve an estimate of 

expected total harvest for a given harvest week (Ycu). This value can be compared to the 

farms harvest capacity per week (HCw), as designated by the grower and defined by the 

number of harvest workers and harvest aid equipment available. If the forecasted harvest 
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load exceeds the harvest capacity, the farm manager can adjust the FE timing, e.g., har-

vesting a week late or early relative to forecast dates, to distribute workload. 

The output of such a workflow for a farm harvest is illustrated in Table 6. The differ-

ence between forecast and actual harvest can be ascribed to the following: (i) error in the 

estimation of the temporal flowering distribution; (ii) errors in the estimation of fruit 

count; (iii) errors in the estimation of average fruit weight; and (iv) fruit not harvested or 

discarded at harvest, i.e., fruit not reaching packhouse from orchard. 

Table 6. Example forecast data for five orchard blocks. Top panel (A): increment in flowering (% of 

terminal in reproductive growth) for a given week has been normalized against the maximum flow-

ering achieved in that block, i.e., a total of 100% for each block. Total fruit count, average fruit 

weight, and the calculated weight of fruits on trees is recorded for each block. Bo�om panel (B): 

harvest dates are forecast using heat units and the weeks of flowering events. The % flowering value 

was used to partition estimated fruit load (kg) to a given harvest week and summed to calculate the 

expected harvest volume per week. Forecasted harvest load is also expressed as a percentage of total 

expected harvest. Actual packhouse out-turn (shipments) data are also presented. 

(A) % Flowering 
Fruit 

Count 

Avg 

Weight 

(kg) 

Fruit 

Weight 

(kg) 

Calendar week 20 21 22 23 24 25    

Orchard A    60 40  451,870 0.47 212,379 

Orchard B   57  43  457,799 0.45 206,010 

Orchard C  52   48  385,563 0.46 177,359 

Orchard D 22  22   56 350,141 0.48 168,068 

Orchard E   41   59 363,475 0.49 178,103 

Orchard F   53   47 122,750 0.47 57,693 

(B) Harvest forecast (fruit weight, kg)    

Calendar week 40 41 42 43 44 45    

Orchard A    127,427 84,952     

Orchard B   117,425  88,584     

Orchard C  92,227   85,132     

Orchard D 36,975  36,975   94,118    

Orchard E   73,022   105,081    

Orchard F   30,577   27,115    

FORECAST 36,975 92,227 257,999 127,427 258,668 226,314    

% of total 4 9 26 13 26 23    

ACTUAL 45,975 126,123 199,798 101,752 241,765 191,459    

6.2. Selective Management 

The tabulated expected fruit load per week of the harvest period is useful in harvest 

resource planning, for issues from labor hire planning to transport logistics. In addition 

to this ‘quantitative’ estimate, ‘qualitive’ spatial information inherent in machine-vision-

derived estimates of the level of flowering and fruit load can also be useful in orchard 

management. Several examples are provided in this section, including the following: 

(i) Delineation of areas of early flowering and fruit set as areas for early selective har-

vest, to match market demands; 

(ii) Identification of under and over performing areas within a given block, for investi-

gation of causes; 

(iii) Agronomic management (pest, disease, nutrition, and irrigation management). 

In Figure 8, spatial variation in flowering is evident in panel A, which was reflected 

in spatial variation in fruit count made four months later (panel B). Of interest to farm 
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management, the following season saw a reversed trend in spatial distribution of flower-

ing (panel C) and fruit load (panel D). 

 

 

Figure 8. Example of machine vision data on panicle count (A,C) and fruit count (B,D) in two sub-

sequent seasons. Colors use a ‘heat’ scale (light blue, dark blue, yellow, and red for increasing lev-

els). Scale bar represents 50 m. 

Figure 9 illustrates a loss of fruit production due to a frost event, with crop saved in 

areas around five frost fans (left panel). In the second season (middle panel), areas of no 

production in year 1 became high yielding areas, suggesting a biannual yielding pa�ern 

had been introduced, and allowing for management intervention on the basis of this in-

formation. In the third season (middle panel), spatially uniform production was re-estab-

lished. 

 

 

Figure 9. Fruit density maps of a farm over three sequential production years. The location of frost 

fans are shown as stars. Dots represent machine-vision-based fruit count over 3.5 m of row, with 

every third row assessed. A color scale for counts shown in legend. Scale bar represents 500 m. 

Figure 10 illustrates a fruit count made before and after a first harvest event, showing 

spatial variation in the intensity of harvest. Figure 11 presents frequency distributions for 

fruit load per ‘tree’ (per 3.5 m of tree row) and for fruit size, before and immediately after 
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a harvest event. The distribution of fruit load per tree is shifted to lower values following 

harvest, as expected, but fruit size distribution is not visibly impacted, indicating that a 

selective harvest on the basis of fruit size did not occur. 

 

Figure 10. Fruit density maps of an orchard before and after a harvest event. Dots represent fruit 

count over 3.5 m of row, with color scale for counts shown in legend. Scale bar represents 100 m. 
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Figure 11. Frequency distribution of fruit count per 3.5 m of row before (A) and after (B) a harvest 

event. 

6.3. Field Bin Allocation 

Information on the spatial distribution of fruit load within an orchard block can also 

be used to inform bin placement, as described in our previous work [39]. In the Australian 

mango industry, fruit are harvested into polycarbonate harvest bins of 400 kg capacity. 

One harvest related task is the distribution of empty bins into the orchard, ahead of the 

harvest crews. In present practice, these bins are allocated based on a human ‘eyeball’ of 

fruit load. Information on the spatial distribution of fruit load can be used to calculate the 

required number of bins per row, or the required placement of bins within the row. Such 

an estimate requires a cumulative estimate of fruit load from the two sides of tree canopies 

facing an inter-row. When the cumulative count (Yi) is equal or greater than the bin ca-

pacity (b), a field bin is allocated to that spatial location, and the cumulative count re-

started (Equation (12), Figure 12). 

�� =  �

0                         �� � = 0 �� �� ≥ �

���� + ���       �� � > 0 ��� �� < �

�

���

 (12)
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where variables have the following representations: 

i is a counter of the data series; 

j is a counter from the ith position of the data series to achieve b; 

n is the size of series; 

Lj is the fruit count series from the left MV camera; 

Rj is the fruit count series from the right MV camera. 

 

Figure 12. Bin distribution based on fruit load measurement. In this example, bins allocated to the 

two blocks, HG1 and HG2, were 106 and 112%, respectively, of requirement, as judged from farm 

packhouse records. Scale bar represents 50 m. 

7. Criteria for an Electronic Harvest MIS 

7.1. Data Acquisition System 

Ease of data collection and entry was a major consideration for all potential users of 

a harvest forecast MIS. New tools, e.g., LoRa-enabled temperature recording, Wi-Fi-ena-

bled handheld NIRS devices, and machine vision estimates of panicle and fruit number, 

have been expressly developed to ease data collection. However, these technologies im-

pose hardware costs. Manual data collection remains an alternative approach. 

A GNSS-enabled mobile device app can be developed to aid manual data collection 

for the extent of flowering, fruit number, and fruit size and quality, with the workflow 

illustrated in Figure 13. 

 

Figure 13. Proposed workflow for a mobile-device app (‘ManGO’) for manual collection of flower-

ing data (% of terminals in reproductive growth), fruit number, and fruit size. The app must allow 

data collection in-orchard, i.e., off-line, with data upload when connectivity allows. 
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7.2. Harvest Forecast Engine as a Component of an Orchard MIS 

A mango harvest forecast engine has been described in this paper, combining the 

inputs of multiple sensor systems (Table 1) to achieve forward estimates of harvest timing 

and load. This engine can be associated to an orchard MIS (Figure 14). 

 

Figure 14. Proposed integration of data acquisition systems (DAS), harvest forecast engine (HFE), 

and orchard management information system (MIS). Inputs include fruit dry ma�er content meas-

urements, machine vision based estimates of flowering and fruit number, manually collected flow-

ering and fruit load data and orchard temperature data,. 

7.3. MIS System Requirements 

To operationalize a harvest forecast MIS (Figure 9), consideration is required of how 

data (spatial and nonspatial) are to be stored, managed, and transferred between the dif-

ferent components of the MIS [23, 24], and how data are best visualized, e.g., as tables, 

graphs, or maps, to inform decision making. As reviewed in [1], the evolution of farm 

MISs has seen a progression from ‘stand-alone’ desktop applications to cloud-based ap-

plications with mobile-device accessibility. A web-based system is therefore recom-

mended, with raster- rather than vector-based map rendering and implementation at the 

client rather than server side, for rapid visualization of large data sets. 

Issues with the development of a harvest forecast MIS (Table 7) were identified 

through (i) feedback from experts and growers involved in our data acquisition research, 

(ii) our previous literature review [1], and (iii) expanding our previous work on MIS de-

velopment [40]. 

Table 7. MIS requirements. 

# Requirement/Component Description 

1 Orchard structure Farm location, block name, and boundaries  

2 
Temperature sensor associa-

tion 
Association of temperature sensors to blocks 

3 
Authentication, data access, 

and security 

Access to and securing data at user and farm 

level 

4 User management 

Hierarchy of users required, e.g., owner, 

manager, and consultants, and permission 

across farms  

5 Crop management 

To handle multiple cultivars of mango with 

varying production windows 

Future expandability to other tree-fruit crops 
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6 Data standards 

Standard data format for compatibility and 

interoperability with the subsystems (ma-

chine vision imaging, manual data collec-

tion, dry ma�er data collection, and temper-

ature), e.g., geolocation data format and date 

format  

7 Database management 

Management of time-series data within a 

season with access to past season data 

Management of historical seasonal data 

8 Data transmission 

Capability to handle big spatial data includ-

ing images in terms of rapid upload/inges-

tion, fetching data from server to client side, 

and download. 

9 
Data visualization with 

query able web mapping 

Time-aware heat map visualization, e.g., of 

>50 K data values for a given farm, of ma-

chine vision data over online basemaps (e.g., 

Google/ESRI/Bing/hostable drone imagery) 

and presentation of data. 

10 
Visualization of machine vi-

sion images 

Display of machine vision images of flower 

and fruit at tree level 

11 User friendliness 

User experience in terms of interface interac-

tiveness and responsiveness in farm loca-

tions to be confirmed in terms of interactive 

and responsive map, table, and charts. 

12 RESTful APIs 

To enable query ability, interoperability, and 

automatability between the systems, and 

progressive development of the system and 

subsystems 

13 Communication module 
Email service to inform users regarding data 

updates 

14 Operationability Maintainability and scalability 

8. Conclusions 

Harvest time and load forecast is critical to orchard management. The need for accu-

rate forecast increases as farm size increases and supply chains lengthen, given difficulties 

in organizing harvest resources (labor, transport, etc.) and the marketing of large volumes 

of fruit. This manuscript has described and codified the logic of a mango harvest forecast 

engine and provided design features for the development of a harvest MIS software arte-

fact. Further, in addition to the quantitative data on harvest load, management value is 

also identified in the data on the spatial distribution and frequency distributions of fruit 

load per tree and fruit size. 

Implementation of such a forecast engine is enabled with sensor systems that have 

become available in recent years, reducing the manual effort required for data acquisition. 

Required inputs are the following: 

 Date of flowering; 

 Extent of flowering; 

 GDD- and DMC-based forecast of harvest timing for each flowering event; 

 Fruit count; 

 Fruit quality estimation; 

 Fruit size distribution. 
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This study has utilized in-field machine-vision-based estimation of flowering level 

and fruit count, but there is an opportunity to integrate other inputs, e.g., UAV- or satel-

lite-based imagery for an earlier-in-season, although potentially imprecise, forecast (based 

on parameters such as vegetation indices, tree crown area, and floral-induction chill 

units). 

An important requirement in a forecast engine is flexibility, allowing managers to 

adjust for such factors as a failed flowering event, e.g., due to poor pollination or to rainfall 

causing fungal disease of the flowers or a failed fruit set, e.g., due to a severe water stress 

event. 

The foundation is thus set for the development of a harvest forecast MIS. However, 

farm adoption of such a tool will depend on ease of farm implementation, which implies 

a need to integrate into a broader MIS dealing with other aspects of orchard management. 
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Appendix A 

Semistructured Interview Questions: 

 

How do you currently forecast time of harvest time, and number, size and quality of 

fruit at harvest? 

Which of these harvest-forecast functions is most and least important to you? (harvest 

time forecast, fruit number, size or quality forecast) 

Speaking of the software system used to display harvest forecast information: 

What aspects of this system do you find useful? 

What features do you find irrelevant/difficult to use? 

What features would you like to see added? 

What aspects of the GUI are good and bad? 

What are the barriers to the use of harvest forecast MIS? 
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