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Abstract: In this paper, mobile devices were used to estimate the received signal strength indicator 

(RSSI) of wireless channels with three wireless access points (APs). Using the RSSI, the path loss 

exponent (PLE) was adapted to calculate the estimated distance among the test points (TPs) and the 

APs, through the root mean square error (RMSE). Moreover, in this paper, the proposed adaptive 

PLE (APLE) of the TPs was obtained by minimizing the positioning errors of the PLEs. The training 

samples of RSSI were measured by TPs for 6 days, and different surge processing methods were 

used to obtain APLE and to improve the positioning accuracy. The surge signals of RSSI were re-

duced by the cumulated distribution function (CDF), hybrid Kalman filter (KF), and threshold fil-

tering methods, integrating training samples and APLE. The experimental results show that with 

the proposed APLE, the position accuracy can be improved by 50% compared to the free space 

model for six TPs. Finally, dynamic real-time indoor positioning was performed and measured for 

the performance evaluation of the proposed APLE models. The experimental results show that, the 

minimum dynamic real-time positioning error can be improved to 0.88 m in a straight-line case with 

the hybrid method. Moreover, the average positioning error of dynamic real-time indoor position-

ing can be reduced to 1.15 m using the four methods with the proposed APLE. 

Keywords: indoor positioning; RSSI; mobile device; adaptive path loss exponent; RMSE 

 

1. Introduction 

The global positioning service (GPS) has become a very important technology, espe-

cially in the military and commercial fields. Global positioning systems can be used to 

monitor and manage traffic congestion, parking, street lighting and urban noise in real 

time. However, satellite signals fade near buildings or due to other factors [1–4]. Hetero-

geneous networks can be used for environmental monitoring, military surveillance and 

target tracking [5]. The 5G system provides device to device (D2D) communication capa-

bilities to obtain real-time location information to cope with the increase in road traffic [6–

8]. Indoor or outdoor positioning services, such as the location-based service (LBS), are 

widely used for software computation [9]. GPS can be widely used, especially outdoors 

[10]. Contrastingly, indoors, radio waves from satellites are blocked, and indoor environ-

ments are susceptible to interference from multipath effects and fading caused by moving 

objects. Therefore, indoor positioning system technology is becoming more important 

[11–14]. 

Indoor positioning technologies include Bluetooth, RFID, Wi-Fi, ZigBee and UWB. 

UWB technology can achieve be�er accuracy, at centimeter level, the iBeacon protocol can 

incur an error of 1 to 2 m, whereas Wi-Fi accuracy ranges from 2 to 3 m [15]. The fine 

timing measurement (FTM) method can provide be�er location information for mobile 
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device positioning [16]. The round-trip time (RTT) allows the receiver to measure the time 

it takes the signal to travel to and from nearby wireless access points. The measurement 

signal timestamp is recorded in nanoseconds, with an error within 1 to 2 m [16]. The RSSI 

signals from different wireless access points and different transmission distances cause 

signal fading. When the received signal is fading, the distance between the receiving point 

and individual wireless access points is estimated, and the coordinates of the receiving 

point are calculated by using a triangulation algorithm. The signal is subject to different 

shadow fading effects [17], and the radio channel method can locate the long-term evolu-

tion (LTE) system [18]. 

The positioning algorithms can be divided into ranging methods, such as the angle 

of arrival (AOA), time of arrival (TOA), time difference of arrival (TDOA), round trip time 

(RTT) and RSSI, and the currently implemented method for positioning in Wi-Fi wireless 

networks is non-ranging positioning signal fingerprints. The AOA method calculates the 

position of the receiving point by using an antenna array to receive the angles of the di-

rectional antennas from two or more transmi�ing points. The disadvantage is that there 

are large errors in non-viewing angle environments, requiring the configuration of the 

antenna array. The TOA method calculates the distance between each transmi�er and the 

receiver by using the time required by each transmi�er signal to reach the receiver. Its 

disadvantage is that time synchronization must be maintained between the receiver and 

the transmi�er. Otherwise, the signal transmission speed can reach the speed of light, even 

if it is 1us. A difference of seconds will cause an distance error of 300 m, necessitating 

extremely high requirements for time synchronization. The TDOA method measures the 

time difference between receiving points and different transmi�ing points. If there are 

three transmi�ing points, two sets of TDOA hyperbolas can be obtained to calculate the 

position of the receiving point. The disadvantage is that the transmi�ing points must 

maintain time synchronization with each other. 

The RSSI method involves the receiving point receiving wireless signals from differ-

ent wireless access points. Different levels of signal fading occur due to different trans-

mission distances. Therefore, the distance between the receiving point and individual 

wireless access points can be estimated by the degree of received signal fading, followed 

by the use of the triangulation algorithm to calculate the coordinates of the receiving point. 

The disadvantage is that it is easily affected by factors such as people walking in the envi-

ronment and indoor blockings, resulting in additional fading of the signal. The signal fin-

gerprint method is divided into two stages: the offline stage and online stage. First, using 

a mobile device to select measurement points within the experimental range allows for 

the measurement of a large amount of RSSI information from surrounding APs for later 

use in the offline stage to establish a radio map. In the online stage, the mobile device 

measures the RSSI value at an unknown location and compares it with the radio map of 

the previous stage to estimate the current location. The disadvantage is that any changes 

in the environment may change the signal fingerprint corresponding to each measure-

ment point. 

Due to the high complexity of the indoor environment, wireless signals have multi-

path propagation and multi-path reflections that make the strength and quality of wireless 

signals difficult to predict [19]. The factors causing signal loss in the channel propagation 

of wireless signals are the propagation path loss model, the large scale propagation model 

and the small scale propagation model [20]. After the wireless signal is sent out from the 

transmi�er, it spreads in all directions in space. In different environments, the power of 

the received signal is inversely proportional to the square of the distance [21–23]. In the 

free space propagation model, there is no additional loss between the transmi�er and the 

receiver. 

The strength of the received signal is a random variable affected by the shadowing 

effect caused by various obstacles in the signal propagation. The shadowing effect causes 

the received signal power to follow a log-normal distribution. The factors affecting small-

scale fading are both multipath fading and the Doppler effect. Multipath fading occurs 
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when the signal from the transmi�er propagates to the receiver. When the path is non-

line-of-sight, the wireless signal is affected by different obstacles, causing the signal to 

produce reflection, refraction, sca�ering, diffraction, etc. It causes the receiving point to 

receive the signal of each path. Since the signal of each path is affected by different obsta-

cles, it presents different fading and delays. 

However, this paper used RSSI with a different calculation method compared to cu-

mulative distribution function (CDF), hybrid, Kalman filtering (KF) and threshold filter-

ing (threshold) with testing samples and APLE. This paper used the CDF method to filter 

the RSSI data of each AP, trying to find the RSSI of each AP in the entire sample, based on 

CDF statistics ranging from 15% to 85%. RSSI is used as the threshold for signal screening 

to remove the strongest and weakest parts of the signal and replace them with the previ-

ous RSSI. This paper was also processed by the KF to reduce the estimated distance errors 

caused by surge signals. A threshold based on the average and standard deviation of the 

RSSI was used. This threshold directly removed the RSSI values that did not meet the 

conditional expression from the samples. Based on the threshold and KF, the original RSSI 

of each TP was filtered through the threshold filter. This filtered out the surge signal and 

the RSSI was replaced with the RSSI from the previously filtered signal. Then, the KF was 

used to smooth the filtered RSSI. 

2. System Model 

Figure 1 shows the flow chart of signal measurement, where the mobile device 

measures APs, with three values being obtained at each measurement point: delay time, 

total number of measurements and file name. The delay time is set in per second to collect 

the BSSID and RSSI of all APs in the environment and then filter out the RSSI of the three 

APs. The Wi-Fi frequency band is divided into two frequency bands: 2.4 GHz and 5 GHz, 

tested at n testing points through mobile devices. Each method reads the data of the test-

ing samples individually and extracts the data, such as RSSI, BSSID and the reference AP 

coordinates. 

 

Figure 1. Flow chart of signal measurement. 

Figure 2 shows that there are n testing nodes, TP1, TP2 … TPn, and three reference 

points of wireless access points AP1, AP2 and AP3. Table 1 shows that there are 300 sam-

plings, and PLE (n) is from 1.2 to 3. The locations for AP1, AP2 and AP3 are as follows: AP1 

(0.84 m, 1.76 m), AP2 (3.50 m, 6.88 m) and AP3 (6.08 m, 1.76 m). The testing points for each 

are shown in Table 1. 

In Table 2, the reference signal strength of RSSI is represented by P(d0), where the 

reference distance, �0, is 1 m. This is used to estimate the TPn of each node RMSE, with n 
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ring from 1 to 9. P(d0) functions on both 2.4 GHz and 5 GHz frequencies, corresponding 

to 3 APs. We set d0 = 1 m away from the APs to measure the P(d0) corresponding to each 

TP. 

 

Figure 2. The 3 reference points (AP1, AP2 and AP3) and 9 testing points (TP1–TP9). 

Table 1. Parameters values used in this paper. 

Parameters Values 

Samplings (N) (Unit: samples) 300 

Location (x0, y0) (Unit: m) 
AP1:(0.84, 1.76), AP2: (3.50, 6.88), 

AP3: (6.08, 1.76) 

Testing points (x0, y0) (Unit: m) 

TP1: (3.5, 6.05), TP2: (3.5, 3.93), TP3: (3.5, 1.22) 

TP4: (5.0, 6.05), TP5: (5.0, 3.93), TP6: (5.0, 1.22) 

TP7: (1.5, 6.05), TP8: (1.5, 3.93), TP9: (1.5, 1.22) 

PLE (n) 1.2~3 

Table 2. P(��) for all TPs and APs (unit: dBm). 

 P(��) (dBm) AP1 AP2 AP3 

TP1 −26.885 −26.18 −26.6617 

TP2 −26.885 −26.18 −26.4383 

TP3 −26.885 −26.18 −28.9133 

TP4 −26.885 −29.3857 −28.54 

TP5 −28.7283 −31.58 −28.6617 

TP6 −34.0117 −31.58 −29.5483 

TP7 −26.885 −37.3267 −26.4383 

TP8 −26.885 −31.58 −26.4383 

TP9 −39.7367 −31.58 −32.54 

With a random variable, the propagation path loss model can be expressed as 

��(d) (dB) = PL����(d0) + 10� × log �
�

d0
� +Xσ, (1)

where Xσ represents shadowing fading with a log-normal distribution with a zero mean, 

and its standard deviation, σ, ranges from 4 to 10 dB. 

The estimated distance between the mth testing point of TP� and the jth AP is de-

noted as APj. �m
j
(�m

j
) is the received power at the mth testing point of TP�, and can be 

expressed [24–26] as 
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��m
j

(�) = 10
P�d0���m

j
(�m

j
)

��� , (2)

where ��m
j

 is the estimated distance between the mth testing point of TP� and the jth AP, 

APj. P(d0) is the received power at the distance d0 from AP�. �m
j
(�m

j
) is the received power 

at the mth testing point of TP� from jth wireless access point AP�. The symbol n repre-

sents the path loss exponent of the wireless channel. 

The Kalman filter (KF) is a recursive algorithm widely used in path navigation and 

indoor positioning [27]. In the prediction stage, the estimated value and the covariance 

matrix of the previous stage are used to predict the estimated value of the current stage, 

expressed as 

x�k = Fx�k-1, (3)

and 

Pk = FPk-1��+Q, respectively, (4)

where x�k  is the estimated value, at time k, x�k-1  is the estimated value of the previous 

stage, Pk is the covariance matrix, F is the transformation matrix, and Q is the estimation 

error matrix. 

In the update stage, the measured value of the current stage is used to update the 

estimated value of the prediction stage to obtain an estimated value expressed as 

Kk = PkHk(HkPk��
�+R)

-1
, (5)

x�k = x�k+Kk(zk − Hkx�k), (6)

and 

Pk = (I − KkHk)Pk, (7)

respectively, where zk is the measured value at time k, R is the measurement error matrix, 

Hk is the measured parameter matrix, and I is the identity matrix. 

In the prediction stage, Equation (3) shows that x�k-1 is set to APj, the starting value 

of the signal, and F is the unit matrix. Pk-1, in Equation (4), is the covariance of the APj 

signal, serving as the estimated covariance matrix of the next sample. 

The PLE is used to measure the distance between TPm and APj, with as n ranging 

from 1.2 to 3. This is done to determine the RMSE of each PLE and select the smallest error 

value as the adaptive PLE (APLE) of TPm. The RMSE distance is expressed as 

�m,RMSE

j
(n) = �

1

N
∑ (�

m,i

j
(n) − �m

j
)
2

N
i=1 , (8)

where N is the total number of the measurements. The symbol �m
j

 is the actual distance 

between the mth testing point, TPm and the jth wireless access point, APj. The APLE can 

be obtained from the minimum distance error, �m,RMSE

j
(n), for the channel between the 

mth testing point TPm and the jth wireless access point APj by the following equation: 

�m,ad

j
 = arg min

n
�m,RMSE

j
(n), (9)

where �m,ad

j
 is the APLE for the channel between the mth testing point of TPm and the jth 

wireless access point, APj. 

The triangulation positioning algorithm establishes a wireless channel model in the 

environment to substitute the received signal strength in determining the distance be-

tween the testing device and each AP. This substitution is aimed at reducing the number 

of positioning points to no more than two, through the signals provided by three APs. The 

minimum positioning error was achieved by calculating the distance using the three APs 

that intersect at a single point. 
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The RSSI is used to estimate the distance between the position and the wireless access 

point. The triangulation algorithm is used to minimize the positioning error [12]. The es-

timated distance of the testing position (x0, y
0
) is expressed as 

��� = �(�� − ��)� + (�� − ��)�, (10)

where (x0, y
0
) is the estimated coordinate of the testing node, (xk, yk

) are the coordinates 

of the k reference APs and ��� is the estimated distance between the testing node and the 

kth AP node. When the reference node is 3, the equations can be derived based on Equa-

tion (10) as follows: 

���
� − ���

� = ��
� − 2���� + ��

� − 2���� − ��
� + 2���� − ��

� + 2����, (11)

and 

���
� − ���

� = ��
� − 2���� + ��

� − 2���� − ��
� + 2���� − ��

� + 2����. (12)

To express the coordinates of the testing node, the least squares estimates are ob-

tained as follows: 

b� = �
x�0

y�
0

�  = �-1w, (13)

where 

�-1 = �
2(x2 − x1) 2(y

2
− y

1
)

2(x3 − x1) 2(y
3

− y
1
)
�

-1

, (14)

and 

� = �
d�1

2
− d�2

2
+x2

2+y
2
2 − x1

2 − y
1
2

d�1

2
− d�3

2
+x3

2+y
3
2 − x1

2 − y
1
2
�. (15)

According to Equation (13), the estimated coordinates and actual coordinates of the 

mth testing point are calculated, and the positioning error is calculated according to the 

RMSE method expressed as 

em =�
1

N
∑ (x�i − x�m)2+(y�

i
− y�

m
)2N

i=1 , (16)

where x�m and y�
m

 are the actual coordinates of the mth testing point, TPm , and x�i and 

y�
i
 are the estimated coordinates. 

The positioning error calculated by Equation (16) was compared. The sample posi-

tions of the signals generated by each AP were different. Therefore, the sample position 

of the signal is determined by using both the previous samples and a fixed PLE changed 

into APLE. The final RSSI was converted into an estimated distance, and the estimated 

coordinates were calculated by Equation (13), with reference to the coordinates of the AP. 

3. Surge Processing 

During the time a signal is received or transmi�ed, it changes rapidly due to envi-

ronmental obstruction, the movement of people and other factors. These signals cause a 

significant increase in the estimated distance value, resulting in a significant increase in 

positioning errors. Figure 3a,b show the basic signal of 2.4 GHz and 5 GHz in RSSI. Figure 

3a shows the RSSI data for AP� at TP�, at 2.4 GHz, representing a total of 6 days of signal 

collection. Figure 3b depicts the signal at 5 GHz. Although the signal received by AP� at 

the testing point is stable compared to the 2.4 GHz signal, there are some small amplitude 

differences. The signal can be removed through signal fading. 
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(a) (b) 

Figure 3. (a) Signal processing at 2.4 GHz; (b) signal processing at 5 GHz. 

This paper used the CDF method to filter the RSSI data for each AP. The RSSI values 

closer to the 15% and 85% range were determined based on the CDF statistics of each AP 

in the entire sample. The strongest and weakest parts of the signal were removed and 

replaced with the previous RSSI. The results are shown in Figure 4(a) and (b), which illus-

trates the comparison between the 2.4 GHz and 5 GHz data for AP� at TP�, using CDF 

signal filtering and the original signal, respectively. 

  

(a) (b) 

Figure 4. RSSI of CDF filtering results: (a) 2.4 GHz; (b) 5 GHz. 

This paper also used the KF to reduce the estimated distance errors. The RSSI for APj 

at each TP in the sample obtained a smoother signal and removed the influence of the 

signal by using the KF. Figure 5 shows the comparison of the RSSI data for AP� at TP� 

using signal samples after applying the KF and the original data. This greatly reduced 

both the part of the surge signal and the distance estimation error of APLE. 
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Figure 5. KF signal compared with the original signal. 

By using positioning samples, a threshold was used on the average and standard 

deviation of the sample. The threshold range was determined based on the average and 

standard deviation. It directly removed the RSSI values that did not meet the conditional 

expression. Based on the RSSI of the sample, the parameter “α” adjusts the sampling range 

as expressed below: 

|�j(n) − �j,avg| < α·σj (17)

where α > 0, �j(n) is the RSSI data, �j,avg is the average data, and σj is a derivation da-

tum. 

The PLE of the three APs is set to 2 to calculate the estimated distance values based 

on the RSSI after signal processing. The actual distance between the TP and AP was cal-

culated using Equation (17) as a measurement of performance comparison. 

In Figure 6, the distance estimation between AP� and TP� was compared with the 

original signal through various processing steps. The abnormal RSSIs between 50 and 100 

samples were removed to reduce the distance error. The RSSIs have been filtered by CDF 

signals and the threshold methods, resulting in a distance error of 1.13 m, while the dis-

tance error through KF is 1.27 m, and the distance error of the original signal is 4.02 m. 

 

Figure 6. Comparison of estimated distances for signal processing. 

The signal processing is further modified based on a threshold and a KF to filter the 

signal. This involves passing the signal through the threshold and replacing the original 

RSSI of APj for each TP with the RSSI of the previous filtered signal. To smooth the filtered 

RSSI by the KF and to calculate individual estimated distance error values through differ-

ent PLEs, Equation (16) was used. Using Equation (17), the minimum error value as the 

D
is

ta
n

ce
 (

m
)
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TPm APLE of APj can be found. Figure 7 used the hybrid method to process the RSSI data 

from TP� and AP� in 2.4 GHz and compared the APLE using the threshold method. 

 

Figure 7. Comparison of APLE distance between hybrid and threshold methods. 

4. Experimental Results 

This paper used two different signal bands, 2.4 GHz and 5 GHz. A mobile device sent 

out Wi-Fi scans at 9 testing points, every second. The mobile device then received the 

results and sent data to the cloud. Figure 8 shows the positioning flow chart, which in-

cludes 4 types of surge processing. Each type reads the data of all testing samples individ-

ually and extracts data such as RSSI, BSSID and the coordinates of the reference AP. The 

surge processing uses the CDF, KF and threshold methods to reduce RSSI surge signals. 

The simple positioning skips the surge processing block and directly uses fixed PLE or 

APLE to calculate the estimated coordinates. CDF was performed on individual APs in 

the entire set of testing samples. The sample locations of surge signals were different for 

each AP. Once the sample location of the surge signal was found, the previous sample was 

used to fill it. The fixed PLE and APLE were used to convert the filtered RSSI into the 

estimated distance. The estimated coordinates were calculated with the coordinates of the 

reference AP. The APLE calculated the estimated distances of the three APs and, finally, 

used the aforementioned distances to calculate the estimated coordinates and combined 

them with the coordinates of the actual measurement points to obtain the positioning er-

ror. 

 

Figure 8. Positioning flow chart. 
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Figure 9 is a real-time positioning area where the coordinates of three APs are set. In 

this area, the starting point is first set to the TP coordinates, and the RSSI received by the 

mobile device was transmi�ed through the WebSocket protocol. The mobile device was 

used to receive the three APs, and the RSSI data of the AP were sent to Matlab R12 soft-

ware for real-time positioning calculation. The real-time positioning parameters are 

shown in Table 3 for calculating the estimated distance and positioning coordinates. Any 

position beyond the positioning area will replace the current positioning coordinates with 

the last positioning coordinates. 

 

Figure 9. Real-time positioning of testing point coordinates. 

Table 3. Parameters used in this paper. 

Parameters Values 

Samplings (N) (Unit: samples) 300 

Location (x0, y0) (Unit: m) 
AP1:(1.36, 1.2), AP2: (3.5, 6.88),  

AP3: (6.16, 1.2) 

Testing points (x0, y0) (Unit: m) 

TP2: (3.36,4), TP3: (3.36,1.4), 

TP5: (4.96,4), TP6: (4.96,2), 

TP8: (2.16,4), TP9: (2.16,2), 

PLE (n) 2 

Tables 4 and 5 show comparisons of positioning errors em (m) for different methods, 

at 2.4 GHz and 5 GHz, respectively. The APLEs are obtained through the four surge signal 

reduction methods: the CDF, hybrid, KF and threshold. Table 4 shows that the average 

positioning error obtained by CDF in the PLE training method is lower than that achieved 

by other methods. Table 5 shows that the average positioning error obtained by using the 

CDF is lower compared to other methods. 

Table 4. Comparisons of positioning errors em (m) for different methods at 2.4 GHz. 

Training Method

Testing Method 

CDF Hybrid KF Threshold 

2 nad 2 nad 2 nad 2 nad 

CDF 2.92 2.18 3.02 2.95 2.95 2.66 2.95 2.84 

Hybrid 2.92 2.28 3.01 3.07 2.88 2.8 2.94 2.95 

KF 2.85 2.26 2.94 2.88 2.87 2.63 2.87 2.77 

Threshold 2.66 2.08 2.72 2.55 2.67 2.36 2.68 2.46 

  



Electronics 2024, 13, 895 11 of 16 
 

 

Table 5. Comparisons of positioning errors em (m) for different methods at 5 GHz. 

Training Method

Testing Method 

CDF Hybrid KF Threshold 

2 nad 2 nad 2 nad 2 nad 

CDF 1.89 1.52 1.93 1.84 1.93 1.79 1.93 1.84 

Hybrid 1.9 1.38 1.9 1.77 1.9 1.76 1.9 1.77 

KF 1.91 1.37 1.93 1.92 1.93 1.93 1.93 1.92 

Threshold 1.92 1.26 1.92 2.12 1.92 2.19 1.92 2.12 

The testing point transmi�ed 2.4 GHz RSSID and RSSI information to Matlab R12 

software through the triangulation positioning algorithm to obtain the estimated point. 

The positioning procedure was performed every 3 seconds, producing 110 positioning 

data points every one minute and 30 seconds. The APLE is calculated based on the first 10 

data points to enable real-time positioning for the remaining 100 data points. 

After using the hybrid, KF and threshold methods for signal processing, real-time 

positioning was performed. Figure 10a–d show a lower estimated error value compared 

to the simple method, in which the adaptive PLE was used. In Figure 10, the positioning 

has been changed to TP�. The signal is processed according to the simple, hybrid, KF and 

threshold methods. 

  

(a) (b) 

  

(c) (d) 

Figure 10. Real time positioning error comparisons at TP3 for the (a) simple method; (b) hybrid 

method; (c) KF method; (d) threshold method. 
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Figure 11 shows the dynamic real-time positioning path. There are two types of the 

actual path (RP). On is the straight line is the RP and the other is U line is the RP. The 

arrow direction represents the positioning walking direction. The straight line is the arrow 

direction from left to right. The U line is the arrow direction from up to down. The starting 

point is the first RP coordinate, followed by a waiting time for the mobile device to trans-

mit the AP information for positioning calculations. 

 

Figure 11. Dynamic real-time positioning path. 

Using the RP path to perform dynamic real-time positioning and the RSSI from three 

APs, the triangulation positioning algorithm obtained the EP coordinates. In this process, 

the PLE used the APLE from Table 4 and the P(d0) from Table 2 to perform positioning 

operations. The hybrid and threshold methods also require se�ing a threshold value, 

which is recorded every second. The data collected within 1 min is set as the threshold 

value. The remaining positioning data is positioned after signal processing. 

Figure 12 removed the starting point and calculated the positioning error from the 

estimated coordinates and RP coordinates across 25 sets of data. The positioning error of 

Figure 12 (a) is 0.96 m, Figure 12 (b) is 0.95 m and Figure 12 (c) and (d) are 1.4 m and 1.29 

m, respectively. In Figure 13, the first time was set as the starting point and was ignored. 

The positioning coordinates of the remaining 15 sets of data, as well as the coordinates of 

RP, were estimated to calculate their relationship. The positioning error in Figure 13 (a) is 

0.93 m, in Figure 13 (b) it is 0.88 m, while the positioning errors in Figure 13 (c) and (d) are 

1.46 m and 1.77 m, respectively. 

Table 6 shows the comparison of experimental results for the positioning error of the 

proposed four methods. From Table 6, it is observed that the best positioning testing point 

is TP3. The positioning error, em, for TP3 is 0.73 m, 0.41 m in the CDF method, 0.89 m and 

0.62 in the hybrid method, 0.72 m and 0.18 m in the KF method and 0.72 m and 0.15 m in 

the threshold method for n = 2 and n = nad, respectively. The average positioning error is 

1.985 m and 0.9975 m for n = 2 and n = nad, respectively. Therefore, with the proposed 

APLE the position accuracy can be improved by 50% compared to the free space model 

for six TPs. 

Table 6. Comparison of dynamic real-time positioning, em (m) by TP�, TP�, TP�, TP�, TP� and TP�. 

Training Method

Testing Method 

CDF Hybrid KF Threshhold 

2 nad 2 nad 2 nad 2 nad 

TP2 2.59 0.95 3.04 0.86 1.12 0.76 1.73 0.42 

TP3 0.73 0.41 0.89 0.26 0.72 0.18 0.72 0.15 

TP5 2.65 1.16 2.81 1.48 2.56 0.8 2.15 0.65 

TP6 1.92 2.25 1.82 2.29 1.86 2.02 1.87 2.09 
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TP8 2.7 1.01 3.23 0.64 1.51 0.84 1.52 0.58 

TP9 2.3 1.09 2.74 0.92 2.22 1.06 2.2 1.01 

Avg. 2.15 1.15 2.42 1.08 1.67 0.94 1.70 0.82 

 

  

(a) (b) 

  

(c) (d) 

Figure 12. U line by dynamic real-time positioning for (a) CDF method; (b) hybrid method; (c) KF 

method; (d) threshold method. 
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(c) (d) 

Figure 13. Straight line by dynamic real-time positioning for (a) CDF method; (b) hybrid method; 

(c) KF method; (d) threshold method. 

5. Conclusions 

This paper uses the triangulation positioning algorithm for indoor positioning to find 

a PLE suitable for each AP in the wireless channel model, and compares the positioning 

errors. Each TP in the area is affected by other factors during the measurement stage, re-

sulting in the generation of surge signals. The methods used to remove surge signals are 

the CDF, KF and threshold. The experimental results show that these methods can effec-

tively remove both the surge signal and the estimated distance error. In the indoor posi-

tioning experiment, the estimated distance between AP and each TP is limited to 6.5 m. 

However, the PLE of the (TPs) was calculated by minimizing the error of the APLE, as 

proposed in this paper. The training samples of RSSI were measured by TPs for 6 days, 

and different surge processing methods were used to obtain the APLE and to improve the 

positioning accuracy. In this paper, the RSSI is used by the CDF, hybrid, KF, and threshold 

filtering methods, integrating training samples and the APLE. The maximum average po-

sitioning error was around 2 m. Finally, the dynamic real-time indoor positioning pro-

posed here was performed, measuring the RSSI of the three APs. The RSSI data were im-

mediately transmi�ed to the computer for positioning operations, and the estimated po-

sitioning points were plo�ed on the map. Using the dynamic real-time positioning error 

resulted in an improved in accuracy of more than 50%. 
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