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ABSTRACT 
 

Pregabalin (Lyrica) is an analog of the gamma-aminobutyric acid neurotransmitter,   approved for 
the treatment of epilepsy, generalized anxiety disorder, neuropathic pain, and fibromyalgia. The 
possibility for abuse and/or dependence on pregabalin has risen recently. Pregabalin is controlled 
in many countries including Saudi Arabia. However, unofficial use of this substance is also on the 
increase. The purpose of this study is to assess the potential neurotoxic effects associated with 
overdose prolonged pregabalin supplementation. Forty male Wistar rats were divided into Group 
(1) normal control received distilled water, Group (2) received pregabalin (150mg/kg), Group (3) 
received pregabalin (300 mg/kg), and Group (4) received pregabalin (600 mg/kg). pregabalin 
consumption in different doses resulted in significant dysregulation in neurotransmitter release, 
upsurge oxidative stress markers via enhancing lipid peroxidation and depleting antioxidant 
markers. Also, pregabalin doses evoked brain tissue inflammation through elevating TNF-α, IL-1β, 
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and MCP-1, Moreover promoted brain tissue apoptosis by activating caspase -3 and suppressed 
Bcl2. Pregabalin effects on the aforementioned parameters were dose-dependent. These findings 
could highlight the potential neurotoxic effect of prolonged abuse of pregabalin supplementation 
through dysregulating brain neurochemical, inflammatory, oxidant/antioxidant, and apoptotic 
mediators. 
 

 
Keywords: Pregabalin; abuse; neurotransmitters; oxidative stress; euphoria; apoptosis. 
 
1. INTRODUCTION 
 
Pregabalin[(S)-3-(aminomethyl)-5-methyl exanoic 
acid]is an alkylated analog of the inhibitory 
neurotransmitter gamma-aminobutyric acid 
(GABA) designed to diffuse across the blood-
brain barrier and act as a central 
neuromodulating agent [1]. It is one of the 
newest antiepileptic drugs used to treat partial 
epilepsy and also manage generalized anxiety 
disorder; neuropathic pain, fibromyalgia, and 
post-herpetic neuralgia [2]. A substantial off-label 
use has been materialized, such as hypnotic-
dependent insomnia [3], withdrawal of 
benzodiazepines [4], and alcohol dependence 
[5]. 
 
Pregabalin (Trade name Lyrica

®
) exerts its 

mechanism of action via selective binding to the 
alpha2-delta subunit of presynaptic voltage-gated 
calcium channels in the central nervous system 
[6]. This potent binding of pregabalin at the 
calcium channel of neurons causes inhibition of 
calcium-dependent release excitatory 
neurotransmitters leading to attenuation of post-
synaptic excitability [7] related to pain pathway, 
including glutamate, noradrenaline, and 
substance P [8] and increases neuronal GABA 
levels without direct effect on GABAA or GABAB 
or GABA uptake or degradation [9]. 
 
The recommended daily dose of pregabalin is 
150-600 mg divided into two or three smaller 
doses, and the defined daily dose by the World 
Health Organization is 300 mg [1]. Upon oral 
administration, Pregabalin has rapidly absorbed 
and its bioavailability reaches approximately 
90%. Although pregabalin is not very lipophilic 
but able to cross the blood-brain barrier(BBB)and 
a steady-state is attained within 24-48 hours with 
repeated administration and less than 2% of 
pregabalin is metabolized and it is excreted 
virtually unchanged in the urine and half-life of 
pregabalin is 6.3 hours [10]. 
 
Pregabalin is considered well-tolerated. 
Consequently, Pregabalin was classified as 
Schedule V of the Controlled Substances Act 

[11]. But, similar to other compounds structurally 
related to neurotransmitter GABA, there were 
arising concerns regarding pregabalin addictive 
liability. Several case reports were addressing its 
recreational misuse [12]. Pregabalin misusers 
reported entactogenic, euphoric, and dissociative 
feelings when administered in doses exceeding 
therapeutic dosages [13]. The routes of abuse of 
pregabalin include oral, intravenous, nasal 
insufflation, rectal ("plugging"), smoking, and 
"parachuting" (emptying the content of the 
capsule into a pouch) [14]. The WHO report 
describes diaphoresis, tachycardia, 
hypertension, tremors, diarrhea, anxiety, auditory 
hallucinations as symptoms of pregabalin 
withdrawal [1]. 
 

Pregabalin abuse for recreational intention has 
also been associated with several adverse 
effects which involve the central nervous system 
including dizziness, confusion, psychosis 
somnolence, ataxia, cognitive disorders, CNS 
depression, and coma [15]. Moreover, those 
neurotoxic effects were reported to be dose-
dependent [13]. However, the magnitude of the 
abuse potential and the mechanism behind it are 
not fully known. 
 

The current study aims to investigate the 
potential neurotoxic effect of chronic abuse of 
high doses of pregabalin and to explore the 
underlying biochemical aspects that are related 
to oxidative stress, inflammation, and apoptosis 
in brain tissue. 
 

2. MATERIALS AND METHODS 
 

2.1 Animal 
 

A total of forty, four weeks old male albino rats 
(200 g ± 50 g) were recruited in this study. Rats 
were obtained from the Animal House Colony of 
King Fahd Medical Research Center, Jeddah. 
Rats were kept on a cycle 12:12 light/dark, in a 
controlled temperature room (25+2°C). Rats had 
access to food and water ad libitum at King Fahd 
Medical Research Center Animal Facility 
Breeding Colony. Rats were housed as one per 
clean plastic cage to prevent the potential harm 
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caused by aggressive and violent behavior 
arising from prolonged pregabalin administration 
at a high dose.  
 

2.2 Chemicals 
 

Pregabalin 150 mg /capsule was purchased from 
Pfizer Pharmaceutical Industries (Rabigh, Saudi 
Arabia).  
 

Three pregabalin doses were used in this 
study:150, 300, and 600 mg/kg/day. The doses 
were given orally by intra-gastric gavage for 90 
consecutive days to evaluate chronic abuse of 
pregabalin [16-17]. 
 

These doses are approximately equivalent to 
1500 mg,3000 mg, and 6000 mg in humans 
which are the most commonly mentioned 
concentrations used by addicts in different 
studies and case reports known to produce the 
euphoric and dissociative effects desired by 
addicts, and as reported by abusers in case 
reports for recreational uses [16-17] according to 
the conversion equation[18]: 
 

Human equivalent dose (mg/kg) = animal dose 
(mg/kg) × (animal Km / human Km). 
 
Km is the average body weight (kg) of species 
divided by its body surface area (m2). 
 

2.3 Study Design 
 

Rats were randomly divided into four groups w 
(n=10).group 1 received 1ml distilled water, 
group 2 received pregabalin in distilled water 
(150 mg/kg/day), group 3 received pregabalin in 
distilled water (300 mg/kg/day), group 4 received 
pregabalin in distilled water (600 mg/kg/day) for 
90 consecutive days. 
 

At the end of the experimental period, all animals 
were euthanized and sacrificed by decapitation. 
Brains were excised, washed with ice-cold saline 
(0.9%), and homogenized with 0.1 M phosphate 
buffer saline at pH 7.4, to give a final 
concentration of 10% w/v for the biochemical 
assays. 
 

2.4 Biochemical Analysis 
 
2.4.1 Brain monoamines neurotransmitters 
 
Brain serotonin, dopamine, and norepinephrine 
were determined using high-performance liquid 
chromatography (HPLC) system, Agilent 
technologies 1100 series equipped with a 
quaternary pump (Quat pump, G131A model). 

Separation was achieved on the ODS-reversed 
phase column (C18, 25 x 0.46 cm i.d. 5 µm). The 
mobile phase consisted of potassium phosphate 
buffer/methanol 97/3 (v/v) and was delivered at a 
flow rate of 1 ml/min. UV detection was 
performed at 270 nm, and the injection volume 
was 20 µl. The concentration of the 
neurotransmitters was determined by the 
external standard method by using peak areas. A 
linear standard curve was constructed where 
sample concentration was obtained directly from 
the curve [19]. 
 
2.4.2 Oxidative stress markers 
 
Lipid peroxidation malondialdehyde (MDA) was 
determined in brain tissue according to Ohkawa 
[20]. Brain reduced glutathione (GSH) was 
evaluated as per Ellman [21] and superoxide 
dismutase  (SOD) activity was estimated in brain 
tissue as previously described by Nishikimi [22]. 
The determination of catalase (CAT) was carried 
out following Clairborne [23]. 
 
2.4.3 Inflammatory mediators and apoptotic 

markers 
  
Brain inflammatory cytokines: tumor necrosis 
factor-alpha and interleukin one beta ( TNF-α, IL-
1β ), inflammatory chemokine monocyte 
chemoattractant protein (MCP-1), and apoptotic 
markers caspase 3 (Cas3 ) and B- cell 
lymphoma (Bcl2 ) were determined by an 
enzyme-linked immunosorbent assay using 
ELISA kits (Invitrogen Corporation Camarillo, CA, 
USA) and microtiter plate reader(Fisher Biotech, 
Germany) according to the manufacturer’s 
instructions. 
 
2.4.4 Statistical analysis 
 
The obtained data were presented as Mean ± 
SE. The homogeneity of variance for each 
variable was analyzed using the Levine test. 
One-way analysis of variance (ANOVA), followed 
by Duncan's multiple rank test was performed 
using the mSTAT-c computer program to 
determine the statistical significance between the 
different groups. The difference was considered 
significant at P =0.05. 
 

3. RESULTS 
 
3.1 Brain Monoamine Neurotransmitters 
 
Rats treated with pregabalin at different doses 
(150, 300 and 600 mg) showed a significant 
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decline in both dopamine (-49%, -81% and -91% 
respectively) and adrenaline (-56%, -80% and -
97% respectively) as compared to the control 
group. whereas, a significant upregulation in 
serotonin levels was observed following 
pregabalin dose administration by 1.75, 2.98, 
and 4.17 folds versus the control group Fig.1. 
 

3.2 Oxidative Stress Markers 
 
Administration of pregabalin at doses (150, 300 
and 600 mg/kg) induced a significant increment 
in brain tissue MDA level by (4.5, 8.8 and 12.4 
folds, respectively) as compared to the control 
group. While significantly attenuated brain tissue 
antioxidants level of  GSH ( -37.7 %, -68.2% and  
-84.7% , respectively) ,SOD activity (  -37.9% , -
58.8% ,and  -79.7% ,respectively) and CAT level 
( -38.4%, 61.5% , and  -84.7% , respectively) in 
comparison with the control group                      
Fig. 2. 
 

3.3 Inflammatory Mediators 
 
The present data revealed a significant upsurge 
in brain tissue inflammatory mediators in a dose-
dependent manner as evidenced by a significant 
elevation in brain tissue  TNF-α, IL-1β and MCP-
1 levels (109.7%, 125.3%, and 59.1% 
respectively) after pregabalin (150mg/kg) 
treatment as compared to the control group.  
This elevation reached (228.1%271.5% and 
104.1% respectively) by increasing pregabalin 
dose to 300mg/kg and (378.3%,479.7% and 
164.5% respectively)following administration of 

pregabalin (600 mg/kg) as compared to control 
group Fig. 3. 
 

3.4 Apoptotic Markers 
 

The data showed a significant elevation in brain 
tissue Caspase 3 levels (2.4 folds, 4.5 folds, and 
6.4 folds) after administration of pregabalin three 
doses (150mg/kg, 300mg/kg, and 600mg/kg 
respectively) as compared to the control group.  
While there was a significant gradual decrease in 
Bcl2 levels in brain tissues (0.6 folds, 0.3 folds, 
and 0.08 folds) after administration of pregabalin 
(150mg/kg, 300mg/kg, and 600mg/kg 
respectively) versus the control group Fig. 4. 
 

The changes in all the aforementioned 
parameters were dose-dependent and became 
more observable by increasing the dose of the 
drug. 
 

4. DISCUSSION  
 

Pregabalin misuse/abuse represents a growing 
trend that is causing significant patient harm. 
Multiple case reports of its abuse potential and 
dependence, including withdrawal symptoms, 
have been published [6,24]. Toxicity may occur 
after an overdose or at prolonged therapeutic 
doses following accumulation resulting in 
adverse effects, especially on the CNS. The 
current study was conducted to highlight the 
neurotoxic effect of long-term administration of 
overdoses of pregabalin and signal the 
biochemical aspects that might trigger these toxic 
effects. 

 

 
 

Fig.1. Effect of different doses of pregabalin on brain tissue Dopamine, Serotonin and 
noradrenaline (n=10, Mean ± SEM) 

a
 significant from the control group,

 b 
significant from 

pregabalin (150 mg/kg), c significant from pregabalin (300 mg/kg) 



 

Fig. 2. Effect of different doses of pregabalin on brain tissue Malondialdehyde level (MDA), 
reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT),(n=10, Mean ± 
SEM) 

a
 significant from control group,

 

 

Fig. 3. Effect of different doses of pregabalin on brain tissue Tumor Necrosis Factor 
(TNF-α), Interleukin-1beta, MonocyteChemoattractant Protein
significant from the control group,

 

Fig. 4. Effect of different doses of pregabalin on brain tissue Caspase
(Bcl2) , (n=10, Mean ± SEM) a significant from control group ,

mg/kg) ,
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Effect of different doses of pregabalin on brain tissue Malondialdehyde level (MDA), 
reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT),(n=10, Mean ± 

significant from control group,
 b 

significant from pregabalin (150 mg/kg),
from pregabalin (300 mg/kg) 

Effect of different doses of pregabalin on brain tissue Tumor Necrosis Factor 
1beta, MonocyteChemoattractant Protein-1(MCP-1), (n=10, Mean ± SEM) 

significant from the control group,
 b 

significant from pregabalin (150 mg/kg),
pregabalin (300 mg/kg) 

 

Effect of different doses of pregabalin on brain tissue Caspase-3, B
significant from control group , b significant from pregabalin (150 

mg/kg) ,
c
 significant from pregabalin (300 mg/kg) 
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The current results showed that prolonged 
administration of high doses of pregabalin 
resulted in a significant decline in dopamine and 
norepinephrine. These results were in the same 
line with the study of Taha et al. [16] which 
indicated a significant suppression in dopamine 
and norepinephrine following pregabalin 
administration in high doses. 
 
Pregabalin binds potently to the alpha�2�delta 
protein in the brain [25] which is associated with 
voltage�gated calcium channels. This potent 
binding has been shown to reduce 
depolarization�induced calcium influx at nerve 
terminals, with a consequential reduction in the 
release of several excitatory neurotransmitters, 
including dopamine, glutamate, noradrenaline, 
substance P, and calcitonin gene-related peptide 
CGRP [26]. On the other hand, our data 
demonstrated a significant elevation in brain 
serotonin level after prolonged administration of 
pregabalin in high doses. Jellestad et al. [27] 
reported that Pregabalin with its serotonergic 
action has a liability to cause serotonin syndrome 
which is caused due to excess serotonin 
concentration in the central nervous system 
and/or peripheral nervous system leading to 
cognitive, autonomic, and somatic effects. 
Gabapentin, an analog of pregabalin, has been 
shown to increase serotonin levels in the CNS 
[28] via inducing alterations in central serotonin 
metabolism [29]. Gabapentin inhibited the central 
release of serotonin, and its efflux from blood 
platelets, thus rendering the transmitter less 
susceptible to degradation and increasing its 
availability after stimulation [28]. 
  
In the present study, the long-term administration 
of pregabalin supratherapeutic doses instigated 
brain oxidative stress and provoked the levels of 
lipid peroxide. Also, significantly abrogated 
antioxidant defenses as brain SOD, GSH, and 
CAT activities which scavenge free radicals and 
prevent their injurious effects, rendering brain 
tissues vulnerable to free radicals attack. These 
results were in agreement with the study of 
Kamel [30] who reported a significant elevation in 
brain lipid peroxidation associated with a 
reduction SOD and CAT following chronic oral 
pregabalin administration for 90 days. Also, Taha 
et al [16] demonstrated a significant induction in 
oxidative stress with a prolonged high dose of 
pregabalin. The disturbance in 
oxidants/antioxidant balance could be partially 
attributed to the inhibition of CGRP induced by 
pregabalin where CGRP deletion is associated 
with enhanced oxidative stress and a loss of 

endogenous antioxidant expression [31]. Also, 
another study by Pen-Silva et al [32] revealed 
that increased serotonin increases oxidative 
stress in heart valves through an MAO-A-
dependent mechanism. MAO-dependent 
generation of reactive oxygen species (ROS) 
may be important for the understanding of 
mitogenic actions of serotonin which includes 1-
activation and translocation of mitogen-activated 
protein kinases [33] and the phosphatidylinositol 
3-kinase pathway [34] 2-activation of cell cycle 
proteins [35] and 3- transactivation of other 
mitogenic receptors such as the platelet-derived 
growth factor receptor [36]. 
 
Inflammation is a defense mechanism that 
protects the body from the damage caused by 
endogenous or exogenous stimuli [37]. ROS are 
reported to be centrally involved in the 
progression of many inflammatory diseases and 
present functions in signaling and mediation of 
the inflammation [38]. In the present study 
treatment with an overdose of pregabalin for the 
long term induced an elevation in brain tissue 
inflammatory mediators (TNF-α, IL -1β and MCP-
1). This increase in inflammatory markers may 
be attributed to the elevation in oxidative stress 
induced by pregabalin abuse. It is known that 
oxidative stress increases the gene expression 
and synthesis of pro�inflammatory cytokines, 
mediated by activation of the transcription factor 
nuclear factor�κB, activator protein 1 which 
translocates to the nucleus augmenting the 
expression of pro�inflammatory genes such as 
IL�1β, TNF�α [39] TNF –α, in turn, stimulates 
the production of ROS by sensitizing infiltrating 
leukocytes and MCP-1 [40-41]. 
 
The current results indicated a significant 
elevation in apoptotic markers following high 
doses of pregabalin as manifested by increased 
Caspase 3 associated with a decline in Bcl2 
these results were per Taha et al. [16]. 
Prolonged administration of high-dose pregabalin 
has been reported to enhance the p38-
MAPK/JNK/ERK signaling in the cerebral cortex 
[42]. Mitogen�activated protein kinase (MAPK) 
signaling pathways organize a great constitution 
network that regulates several physiological 
processes, like cell growth, differentiation, and 
apoptotic cell death. Due to the crucial 
importance of this signaling pathway, 
dysregulation of the MAPK signaling cascades is 
involved with oxidative stress and DNA damage 
[43]. Activation of p38 MAPK induces stimulation 
of the mitochondrial apoptosis pathway and 
regulates the equilibrium between BCL2 and 
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BAX expression in mitochondria. 
Phosphorylation of p38 MAPKs promotes the 
release of cytochrome c from mitochondria 
through inhibition of BCL2 and shifting of 
BCL2:BAX ratio, producing successive activation 
of apoptotic proteases caspase-9, and caspase-3 
[16]. 
 
5. CONCLUSION 
 
Chronic abuse of high doses of pregabalin could 
induce neurotoxic effects via deregulating 
neurotransmitters release, instigating oxidative 
stress marks, depleting antioxidant defense, 
inducing inflammatory and apoptotic mediators. 
The pregabalin-induced neurotoxic effects were 
dose-dependent. Further studies should address 
the extent of abuse which increases the liability 
towards adverse toxic effects. 
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