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Abstract: Water contamination with synthetic dyes is an escalating problem worldwide. Herein,
Co3O4-decorated reduced graphene oxide (Co3O4-rGO) is reported as an effective heterogeneous
photocatalyst for the decomposition of organic dyes. The synthesis of Co3O4-rGO was confirmed via
spectroscopic techniques including XRD, XPS, TEM, and FTIR. After characterization, the prepared
Co3O4-rGO composite was tested as a photocatalyst for the degradation of methylene blue and
methyl orange. The photocatalytic efficiency of Co3O4-rGO was >95% after 60 min, corresponding
to 200 mg/L as the initial concentration of each dye. The photodegradation of MB and MO was
confirmed by BOD and COD measurements. Experimental parameters like the re-usability of Co3O4-
rGO, the effect of catalyst dosage, and the effect of dye concentration on photocatalytic activity were
also investigated. The photocatalytic activity of Co3O4-rGO for the degradation of MB was 2.13 and
3.43 times higher than that of Co3O4 and rGO, respectively. Similarly, the photocatalytic activity
of Co3O4-rGO for the degradation of MO was 2.36 and 3.56 times higher than that of Co3O4 and
rGO, respectively. Hence, Co3O4-rGO was found to be an efficient and reusable photocatalyst for the
decomposition of selected dyes in the aqueous medium.

Keywords: methylene blue; methyl orange; Co3O4-rGO; photodegradation

1. Introduction

Recently, catalysis in general and photocatalysis employing semiconductors as het-
erogeneous catalysts and sunlight as a source of energy in particular have received con-
siderable attention due to a wide range of applications [1–5]. The photocatalytic reactions
are comprised a series of oxidation and reduction reactions mediated by positive holes
and electrons formed in the valence band and conduction band of semiconductor catalysts
under irradiation with ultraviolet or visible light [6–9]. Among the photocatalytic redox
reactions, the UV–visible light-assisted decomposition reactions of organic pollutants like
dyes are the most reported. The overexploitation of limited resources and rapid indus-
trial development due to human activities have increased water pollution globally [10].
Although many traditional methods like membrane filtration, adsorption, biological and
chemical coagulation, and precipitation are used for the abatement of aqueous pollution,
these techniques are not successful in the complete removal of pollutants from the en-
vironment [11–14]. These methods transform the pollutants from one phase to another.
Therefore, the abatement of pollution due to organic dyes via photocatalytic reactions has
received much attention from researchers worldwide.

ZnO and TiO2 have been mostly used as single-component semiconductor photocat-
alysts for the photodegradation of dyes and other organic pollutants [15,16]. However,
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the practical applications of these semiconductor metal oxides are limited due to certain
characteristics. The characteristics that limit their practical applications include insufficient
absorption of visible light, poor photostability, and lower separation efficiency of photo-
induced charges. Thus, researchers have focused on the development of multi-component
visible light-active photocatalysts with enhanced charge separation efficiency [17–23]. The
literature has shown that dopants, co-catalysts, and carbonaceous materials have been
widely used for the development of multi-component photocatalysts with enhanced photo-
catalytic activity [24,25]. Hence, the immobilization of cobalt oxide on reduced graphene is
reported in this study for the development of an efficient Co3O4-rGO photocatalyst. Cobalt
oxide is a suitable semiconductor for the development of an effective photocatalyst due to
its narrow band gap (~2.7 eV), exciting magnetic properties, fascinating catalytic properties,
high chemical and thermal stability, and ease of preparation. The photocatalytic activities
of Co3O4 can be enhanced by supporting them on the surface of graphene oxide. The
synergistic effects of graphene oxide suppress the recombination of photoinduced charges,
resulting in the enhancement of photocatalytic performance. It has been reported by many
researchers that linking semiconductor metal oxides to graphene oxide suppresses the
recombination of charge carriers formed by the absorption of photons and subsequently
results in a significant enhancement in the photocatalytic performance. The graphene
oxide in the metal oxide-graphene oxide composite acts as an electron mediator. As a
result, the photoinduced charge carriers (h+/e−) are effectively separated. The effective
separation of these photon-induced charge carriers causes an enhancement in the pho-
tocatalytic performance of the composite [26,27]. Therefore, we immobilized the Co3O4
particles on the surface of rGO to obtain an efficient, visible light-driven photocatalyst for
the decomposition of selected synthetic dyes. The contribution of synthetic dyes to water
pollution is very significant. The wastewater contaminated with synthetic dyes originates
from different industries like the paint, tannery, paper, printing, and textile industries.
Wastewater contaminated with synthetic dyes is very toxic for life. Methylene blue and
methyl orange are typical cationic synthetic dyes used in various industries [28,29]. In
this study, we report the photodegradation of methylene blue and methyl orange in the
presence of Co3O4-rGO under the irradiation of visible light.

2. Results and Discussion
2.1. Characterization of Co3O4-rGO

The formation of Co3O4-rGO was confirmed via XRD as the initial characterization
technique. XRD analyses of rGO and Co3O4 were also carried out for comparison. Figure 1
shows the XRD patterns of the samples. The XRD pattern of rGO comprised peaks at 2θ,
24.2◦, and 42.8◦, which are related to the (002) and (100) planes of rGO. Similarly, the XRD
pattern of Co3O4 comprised diffraction peaks at 2θ, 36.34◦, 38.56◦, 44.8◦, 59.35◦, 65.23◦,
77.34◦, and 78.4◦, which correspond to the (2 2 0), (3 1 1), (2 2 2), (4 0 0), (5 1 1), (6 2 0),
(5 1 1), (5 3 3), and (6 2 2) planes of Co3O4 (JCPDS Card No. 42-1467). The XRD pattern of
Co3O4-rGO matches well with the XRD patterns of rGO and Co3O4, which confirms the
successful formation of the Co3O4-rGO composite [30–33].

The average crystallite size of Co3O4-rGO was calculated at 43.5 nm using the Debye–
Scherrer equation (Equation (1)). The hkl planes and corresponding angles of diffraction (2θ)
in XRD patterns were used for the calculation of lattice parameters of the cubic structure
of the unit cell using Equation (2) via the non-linear method of analysis. The “Solver”
add-in software of MS Excel was used for this purpose. The lattice parameters for the cubic
structure were calculated as a = b = c = 11.98 Å.

d =
0.98 × 1.54

β Cos θ
(1)

1
d2

hkl
=

h2 + k2 + l2

a2 (2)
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The formation of Co3O4-rGO was further confirmed using XPS analysis. Figure 2
shows the XPS spectra of Co, O, and C, which confirms the existence of Co, O, and C in the
prepared sample. Figure 2a displays the XPS spectrum of Co(2p), in which two peaks can
be observed. The first peak at 780.3 eV is ascribed to Co(2p3/2), while the second peak at
795.8 eV is ascribed to Co(2p1/2). These peaks confirm the +3 oxidation state of Co in the
composite [30]. The high-resolution deconvluted XPS spectrum for the O 1s region given in
Figure 2b showed three peaks at binding energies of 529.7 (OI), 531.0 (OII), and 532.0 (OIII)
eV, which are assigned to typical metal–oxygen bonds on the Co3O4 surface with low
oxygen coordination. The latter two signals are typical peaks of O-Co linkages. Figure 2c
depicts the deconvoluted C1s XPS spectrum, indicating three signals at 284.0, 288.3, and
294.0 eV. The existence of three signals suggests three different electronic environments.
The peak observed at 288.3 eV is a typical peak for graphene oxide [34–36].
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The morphology of Co3O4-rGO was investigated by transmission electron microscopy.
The transmission electron micrographs of the sample are given in Figure 3. It can be
observed that the rGO in the Co3O4-rGO composite is a thin, flat flake with a crumpled
morphology. The existence of crumpled sheets and thin multilayers is associated with the
exfoliation process in sonification and reduction. A slight aggregation of Co3O4 nanopar-
ticles can be observed, which confirms that Co3O4 nanoparticles have been successfully
anchored to the surface of rGO. The attachment of Co3O4 to the rGO suppresses the aggre-
gation of Co3O4 particles; hence, the rGO is a suitable substrate for the improvement of the
dispersion, stability, and photocatalytic performance of Co3O4-rGO [37,38].
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Figure 3. TEM analysis; (a) rGO, (b) Co3O4, and (c) Co3O4-rGO.

The FTIR spectra of Co3O4, rGO, and Co3O4-rGO are given in Figure 4. The observed
peak at 3404 cm−1 is due to the stretching vibration of O-H, and the peak at 1740 cm−1

showed the stretching vibration of the (C=O) carboxyl group. A broad band in the range of
1475–1543 cm−1 is indexed to C-O as a vibration corresponding to rGO and also surface-
decorated Co3O4 via the C-O bond. The absorption band at 1023 cm−1 is due to C-O
stretching vibration, while at 1623 cm−1, it corresponds to the C=C bond. The O-H band
was moved to 3424 cm−1 for the Co3O4-rGO composite, and the band of the skeletal
vibration of C=C was shifted to 1627 cm−1 [25,39]. The band appearing at 565 and 661 cm−1

in the FTIR spectrum of Co3O4 has been indexed to the Co-O vibration mode. These peaks
have been shifted to 600 and 678 cm−1 in the presence of rGO [30].
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Figure 4. FTIR spectrum of (a) Co3O4-rGO, (b) Co3O4, and (c) rGO.

The band gap energy of Co3O4-rGO was calculated using the UV–visible DR spectrum
as given in Figure 5. Using 470 nm as the absorption edge and the equation given in
Figure 5, the band gap energy of Co3O4-rGO was calculated at 2.63 eV, which is comparable
to reported data [7].
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2.2. Photocatalytic Efficiency of Co3O4-rGO

The photocatalytic efficiency of the as-prepared Co3O4-rGO photocatalyst was as-
sessed through the investigation of the photodegradation of methylene blue (MB) and
methyl orange (MO) dyes. The photocatalytic experiments were carried out using a dye so-
lution of 50 mL with an optimum value of 0.1 g of the photocatalyst under irradiation with
UV–visible light. Before the evaluation of photocatalytic activity, two blank experiments
were performed.

In the first blank experiment, 50 mL of 200 mg/L of MB or MO solution was taken in a
Pyrex glass beaker. A sample of 0.5 mL was taken from the beaker, and its absorbance was
noted after dilution. The dye solution was then stirred under UV–visible light for 1 h to
detect any degradation due to photolysis. After stirring for one hour, a sample was taken
and analyzed. It was found that there was no change in the concentration of the dye due to
stirring under irradiation. Hence, there was no degradation of either dye due to photolysis.

In the second blank experiment, 0.1 g of the catalyst (rGO, Co3O4, or Co3O4-rGO)
was added to the MB or MO dye solution (50 mL, 200 mg/L), and the reaction mixture
was stirred for half an hour under dark conditions. This blank experiment was performed
for the estimation of the removal of dye due to adsorption. After half an hour, a sample
was taken, and its absorbance was measured. The analyses of the data showed that there
was about 14, 20, and 32% removal of each dye due to adsorption on rGO, Co3O4, and
Co3O4-rGO, respectively. The elimination of MB and MO due to sorption is shown in
Figure 6a.
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After two blank experiments, the reaction mixture was stirred under UV–visible
irradiation for the evaluation of the photocatalytic activity of each sample. The absorbance
measured after stirring for 30 min in the dark was considered the initial absorbance for the
evaluation of the photocatalytic activity. The photodegradation of MB and MO over rGO,
Co3O4, and Co3O4-rGO is given in Figure 6b. About 98, 62, and 45% photodegradation
of methylene blue was observed in 60 min of reaction using Co3O4-rGO, Co3O4, and rGO



Catalysts 2024, 14, 96 7 of 16

as photocatalysts, respectively. Similarly, the photodegradation of methyl orange was
92, 57, and 42% over Co3O4-rGO, Co3O4, and rGO as photocatalysts, respectively. The
photodegradation data demonstrated that the incorporation of Co3O4 in reduced graphene
oxide sheets increased the photocatalytic ability of the composite toward the degradation
of MB and MO dyes.

The photocatalytic degradation of the selected dyes was confirmed via COD and BOD
measurements as well. About 80% and 68% reductions in COD and BOD were detected in
the 50 mL (200 mg/L) solution of MB/MO after treatment with Co3O4-rGO for 60 min. The
decrease in COD and BOD of the dye solutions indicates that Co3O4-rGO can be employed
as an efficient catalyst for the photodegradation of the dyes.

The re-usability of Co3O4-rGO in the photodegradation of MB and MO was also
investigated. For this purpose, the spent Co3O4-rGO was washed with ethanol and distilled,
followed by drying at 80 ◦C overnight. The regenerated Co3O4-rGO was employed as a
catalyst in separate photodegradation experiments of MB and MO for 30 min. The spent
Co3O4-rGO was recycled three times. The results indicated that there was no significant
loss in the photocatalytic activity of Co3O4-rGO. The obtained results confirmed that
Co3O4-rGO can be re-used in the photodegradation of MB and MO.

2.3. Optimization of Catalyst Dose

The unnecessary use of a catalyst can be avoided by employing the optimum dosage
of the catalyst. The optimization of catalyst dosage was accomplished by performing
photodegradation experiments using a 50 mL (200 mg/L) solution of MB or MO with
different catalyst dosages in the range of 0.05–0.2 g Co3O4-rGO under similar experimental
conditions. The obtained results are given in Figure 7. The data given in Figure 7 show that
photocatalytic activity initially increased with catalyst dosage and then decreased. Initially,
the photocatalytic activity increased with catalyst dosage because the number of active sites
of the catalyst increased with catalyst dosage. However, higher catalyst dosages caused
a decrease in photocatalytic activity. This is because photons cannot penetrate effectively
through the scattering of photons and the turbidity of the reaction mixture. Hence, 0.1 g
was selected as the optimum catalyst dose in this study [40,41].
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2.4. Mechanism and Kinetics of Photodegradation

Figure 8 explains the mechanism of photodegradation. Photodegradation is based on
the excitation of both the dye and the photocatalyst. The irradiation of the dye solution
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results in the excitation of the dye molecules. The excited electrons then flow to the
conduction band of Co3O4 via rGO sheets. Similarly, the excitation of Co3O4 results in
the formation of positive holes and electrons in the conduction band and valence band,
respectively. The intermediate work function of rGO (−4.42 eV) between the conduction
band (−3.40 eV) and valence band (−6.65 eV) of Co3O4 causes a flow of electrons to the
rGO. Hence, the positive holes and electrons are separated, resulting in a decrease in the
rate of their recombination. These separated positive holes and electrons then undergo a
series of reactions and produce OH radicals [42–45].

The reactions are given below (CG: Co3O4-rGO).
CG + hν → CG

(
h+)+ CG

(
e−

)
(Reaction 1)

H2O + CG
(
h+) → H+ + OH (Reaction 2)

CG(e−
)
+ O2 → O−

2 (Reaction 3)

H+ + O−
2 → HO2 (Reaction 4)

HO2 → O2 + H2O2 (Reaction 5)
H2O2 → OH (Reaction 6)
OH + Dye → Degradation products (Reaction 7)

As indicated in the above-mentioned reactions, positive holes, electrons, and hydroxyl
radicals are the main species responsible for the photodegradation of dyes; therefore, the
formation of these charge carriers was confirmed via scavenging experiments. For this
purpose, separate photodegradation experiments were performed in the presence of EDTA,
BQ, and t-BuOH. These species were added to a reaction mixture to arrest positive holes,
superoxide anion radicals, and hydroxyl radicals, respectively. The photocatalytic activity
of Co3O4-rGO towards the degradation of MB decreased from 98% to 67, 61, and 49%
in the presence of EDTA, BQ, and t-BuOH, respectively. The decline in photocatalytic
performance in the presence of EDTA is due to the non-availability of positive holes for the
photodegradation reaction. Similarly, the decrease in photocatalytic performance in the
presence of BQ and t-BuOH is due to the non-availability of superoxide anion and hydroxyl
radicals, respectively [46,47].
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Based on reaction 7, the rate of reaction can be written as

Rate = −d[Dy]
dt

= kr[OH][Dy]n (3)
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For the same catalyst dosage and continuous irradiation of the reaction mixture, the
rate of formation of OH radicals or the concentration of OH radicals will remain the same;
hence, the rate expression is modified as follows (where k is the apparent rate constant).

Rate = −d[Dy]
dt

= k[Dy]n (4)

Considering the first order reaction (n = 1), the rate expression is written as

ln
[Dy]o
[Dy]t

= k t (5)

[Dy]t = [Dy]o e−k t (6)

The photodegradation data of MB and MO, as given in Figure 6b, were analyzed
using a non-linear method of analysis according to the kinetics Equation (6). For non-
linear analyses, the Excel “Solver” add-in optimization software was used. The non-linear
analyses of the photodegradation data are given in Figure 9. The rate constants and
correlation coefficients are given in Table 1. The rate constants given in Table 1 show that
the photocatalytic activity of Co3O4-rGO for degradation of MB is 2.13 and 3.43 times
higher than that of Co3O4 and rGO, respectively. Similarly, the photocatalytic activity of
Co3O4-rGO for the degradation of MO is 2.36 and 3.56 times higher than that of Co3O4 and
rGO, respectively.
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Table 1. Rate constants determined using non-linear analyses.

Photocatalyst
MB MO

k R2 k R2

rGO 0.0094 0.995 0.0085 0.995

Co3O4 0.0152 0.992 0.0128 0.994

Co3O4-rGO 0.0323 0.983 0.0303 0.985

2.5. Effect of Dye Concentration

In wastewater treatment, the concentration of the dye is a very vital parameter because
the concentration significantly affects the efficiency of the method used for its removal. To
study the effect of dye concentration, photodegradation experiments involving methylene
blue and methyl orange were carried out with various dye concentrations such as 100, 200,
and 300 mg/L in the presence of a Co3O4-rGO photocatalyst. The dependence of photocat-
alytic efficiency on the concentration of dyes was examined for the photo-degradation of
MB and MO separately using 0.1 g of the Co3O4-rGO photocatalyst. The results obtained
from the degradation of MB and MO are shown in Figure 10. The rate constants determined
using kinetics analyses are given in Table 2. The degradation data given in Figure 10 and
the rate constants given in Table 2 show that the photocatalytic efficiency of the catalyst
decreased with an increase in dye concentration. The decrease in photocatalytic activity
with an increase in the concentration of the dyes is due to the following reasons [48–50]:
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Table 2. Effect of dye concentration on the rate constant of Co3O4-rGO-catalyzed photodegradation
of dyes.

Concentration (mg/L)
MB MO

k R2 k R2

100 0.0432 0.991 0.0363 0.991

200 0.0323 0.983 0.0303 0.985

300 0.0206 0.987 0.0151 0.988

(1) As dyes impart an intense color to the solution, the penetration of photons is
hindered due to the intense color.

(2) The ratio of dye molecules to OH radicals increases with an increase in the concen-
tration of dye.

Finally, the photocatalytic activity of Co3O4-rGO reported in this study was compared
with the photocatalytic activities of various graphene-based photocatalysts used for the
degradation of various dyes reported in the previous literature. Table 3 shows a comparison
of the photocatalytic activities of various graphene-based catalysts for different dyes. It
can be concluded that the graphene-based catalyst reported in this study is effective for the
photodegradation of methylene blue and methyl orange dyes.

Table 3. Graphene-based photocatalysts reported in the literature for degradation of various dyes.

No Graphene-Catalyst Dye Activity

1 Ag [51] MB
RhB Almost complete degradation in 70 min using 10 mg/L of dye solution

2 BiOBr [52] RhB Almost complete degradation in 5 h using 20 mg/L dye solution

3 MoS2 [53] MB A 99% degradation in 60 min using 10 mg/L dye solution

4 CeO2 [54] RhB An 85% degradation in 2 h using 10 mg/L dye solution

5 ZnO [55] MO A 92% degradation in 3 h using 5 mM dye solution

6 Cu2O [56] MO A 70% degradation in 5 h using 5 mg/L dye solution

7 TiO2 [57] MO A 90% degradation in 5 h using 10 mg/L dye solution

8 CoFe2O4 [58] MO A 78% degradation in 30 min using 10 mg/L dye solution

9 Au [59] MB (10 mg/L) Almost complete degradation in 10 min using 10 mg/L dye solution

10 Co3O4 (this work) MB
MO Complete degradation in 60 min using 100 mg/L dye solution

3. Experimental Process
3.1. Reagents

The chemicals used in this study include sodium nitrate (Merck, Rahway, NJ, USA),
graphite powder (Merck), sulfuric acid (Scharlau, Hamburg, Germany), potassium per-
manganate (Merck), hydrogen peroxide (30%, commercial grade), cobalt nitrate (Merck),
sodium borohydride (Merck), sodium hydroxide (Merck), methylene blue (Sigma-Adrich,
Saint Louis, MO, USA), and methyl orange (Sigma-Adrich).

3.2. Synthesis of Co3O4-rGO

In the first step, graphene oxide (GO) was synthesized. For this purpose, 2 g of sodium
nitrate and 4 g of graphite were added to 100 mL of concentrated sulfuric acid. After
stirring for 30 min in an ice-cold bath, 14 g of potassium permanganate was slowly added
while stirring, keeping the temperature below 20 ◦C. After 4 h of stirring, a thick paste
was formed. Then, 200 mL of distilled water was added while stirring. As a result, the
temperature rose to 98 ◦C, and a yellowish suspension was formed. The reaction was
stopped through the addition of hydrogen peroxide, and the obtained product, designated
as graphene oxide (GO), was washed and dried.



Catalysts 2024, 14, 96 12 of 16

In the second step, Co3O4-rGO was synthesized. For this purpose, a 60 mL solution
containing 0.043 g of cobalt nitrate was added to a 60 mL suspension containing 0.08 g of
previously prepared graphene oxide, followed by ultrasonication. Then, 0.28 g of sodium
borohydride was added to the above mixture. A total of 0.1 M sodium hydroxide solution
was added slowly until pH reached 11. After 60 min, black precipitates were obtained
via centrifugation and washed multiple times with triply distilled water and ethanol. The
precipitates were desiccated in a vacuum oven at 98 ◦C.

Reduced graphene oxide (rGO) was also synthesized for comparison. For this purpose,
70 mg of sodium borohydride was added to a suspension of already-prepared graphene
oxide. After sonication and stirring, the rGO was collected, washed, and dried.

3.3. Characterization of Co3O4-rGO

The successful synthesis of Co3O4-rGO was verified using various characterization
techniques, such as XRD, XPS, TEM, and FTIR. The XRD analyses were carried out with a
Bruker X-ray diffractometer (Bruker D8, Bremen, Germany). A ESCALAB 250XI (Thermo
Fisher Scientific, Waltham, MA, USA) photoelectron spectrophotometer was employed for
XPS analyses. A JEM 2100 JEOL (Tokyo, Japan) electron microscope was employed for the
TEM studies of the prepared samples. A Bruker VRTEX70 (Bremen, Germany) model was
used for FTIR analyses.

3.4. Photocatalytic Activity of Co3O4-rGO

The photocatalytic performance of synthesized Co3O4-rGO was assessed via the
decomposition of methylene blue and methyl orange dyes. A UV–visible photometer
was used to estimate the extent of the decomposition of selected dyes. To acquire the
adsorption/desorption equilibrium in the photocatalytic experiment, a 50 mL solution of
dye was stirred in the dark at a speed of 400 revolutions per minute after adding 0.1 g of
Co3O4-rGO. A sample of the reaction mixture was taken and analyzed. The reaction mixture
was then stirred under solar irradiation. A total of 0.5 mL of the sample was removed from
the mixture after a regular interval of 15 min and examined. For further analysis and to
confirm the degradation of dye, COD and BOD measurements were employed. COD and
BOD measurements were carried out on two samples, namely an untreated dye solution
and a dye solution treated with Co3O4-rGO, for 60 min.

For COD measurement, a 10 mL sample was taken in a reflux flask, and 1 mL of
mercury sulphate solution (0.1 g HgSO4 in 5 mL of concentrated sulfuric acid) was added
to it. Then, 5 mL of potassium dichromate solution (6.13 g/L) was added, followed by the
addition of 15 mL of silver sulfate–sulfuric acid solution (10 g/L sulfuric acid). The content
was digested by refluxing for 2 h. After cooling to room temperature, a few drops of ferroin
indicator were added to the mixture, which was titrated against the ferrous ammonium
sulfate solution (9.8 g/20 mL sulfuric acid and 100 mL distilled water). The same procedure
was repeated for the blank experiment, using distilled water instead of the sample. COD
was calculated using the following equation:

COD =
8 × 1000 × M(Vb − Vs)

VSample (mL)
(7)

M: Molarity of ferrous ammonium sulfate solution;
Vb: Volume of ferrous ammonium sulfate solution consumed in the blank experiment;
Vb: Volume of ferrous ammonium sulfate solution consumed in the blank experiment;
Vs: Volume of ferrous ammonium sulfate solution consumed in a sample experiment.
The BOD was estimated by measuring dissolved oxygen. Specialized BOD bottles

were filled with samples. The dissolved oxygen concentration was measured using a DO
meter. The BOD bottles were incubated at 20 ◦C in the dark for 5 days. After incubation
for 5 days, the dissolved oxygen concentration was measured again using a DO meter.
The BOD was calculated by dividing the difference between the initial and final dissolved
oxygen concentrations.
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The BOD was estimated by measuring dissolved oxygen. Specialized BOD bottles
were filled with samples. The dissolved oxygen concentration was measured using a DO
meter. The BOD bottles were incubated at 20 ◦C in the dark for 5 days. After incubation
for 5 days, the dissolved oxygen concentration was measured again using a DO meter.
The BOD was calculated by the difference between the initial and final dissolved oxygen
concentration.

4. Conclusions

The results and observations reported in this study indicate the importance and
significance of the photocatalyst developed for the degradation of dyes. The general
conclusions are extracted as follows:

1. The successful synthesis of Co3O4-rGO was confirmed through characterization with
XRD, XPS, TEM, and FTIR analyses.

2. The fabricated Co3O4-rGO composite showed efficient catalytic performance in the
photodegradation of MB and MO. The photocatalytic activity of Co3O4-rGO was
higher than the two-fold and three-fold catalytic activity of Co3O4 and rGO, respec-
tively. The increase in the initial concentration of MB and MO resulted in a decrease
in the photocatalytic performance.

3. About 98, 62, and 45% photodegradation of methylene blue was observed in 60 min of
reaction using Co3O4-rGO, Co3O4, and rGO as photocatalysts, respectively. Similarly,
the photodegradation of methyl orange was 92, 57, and 42% over Co3O4-rGO, Co3O4,
and rGO as photocatalysts, respectively.

4. About 80% and 68% reductions in COD and BOD were detected in the 50 mL
(200 mg/L) solution of MB/MO after treatment with Co3O4-rGO for 60 min. The
decrease in COD and BOD of the dye solutions indicates that Co3O4-rGO can be
employed as an efficient catalyst for the photodegradation of the dyes.

5. The enhanced photocatalytic efficiency of Co3O4-rGO was attributed to the behavior
of rGO as an electron reservoir that captures the photoexcited electron from Co3O4.

6. The Co3O4-rGO was found to be an efficient and reusable photocatalyst for the
degradation of methylene blue and methyl orange.
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