

International Journal of Pathogen Research

Volume 12, Issue 6, Page 172-178, 2023; Article no.IJPR.110590 ISSN: 2582-3876

Understanding the Association between Selected Agama agama Characteristics and Intestinal Parasitic Infection in Otuoke, Nigeria

Chinonye Oluchi Ezenwaka ^{a*}

^a Department of Biology, Faculty of Science, Federal University Otuoke, Bayelsa State, Nigeria.

Author's contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/IJPR/2023/v12i6266

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/110590

Original Research Article

Received: 21/10/2023 Accepted: 26/12/2023 Published: 28/12/2023

ABSTRACT

Lizards (*Agama agama*) are the most widely distributed reptiles and has shown to be a means of transport and reservoir host to a number of protozoan and helminth parasites. The aim of this study is to determine the association between parasitic infection of *Agama agama* and selected characteristics (age and sex). The observational study was carried out at Otuoke community where 50 *Agama agama* comprising both male and females were randomly obtained. The lizards were sacrificed and their feaces were collected from their intestines and studied in the laboratory for parasite presence using light microscope. The results showed the identification of four parasites in the lizards namely; nematode (*Strongyluris brevicaudata* and *Parapharyngodon colonensis*), cestode (*Oochoristica truncate*), trematode (*Mesocoelium monas*) and Conoidasida (*Toxoplasma gondii*). There was no association between age (described as length of the animal) and prevalence of parasitic infection. Also, there was no association between weight and prevalence of the parasitic infection. This study has shown that although parasites are present in *Agama agama*, there was no gender, age and weight variations or dependence of the rate of their infection.

^{*}Corresponding author: Email: chyladyn@yahoo.com;

Keywords: Infection; lizard; intestinal parasites.

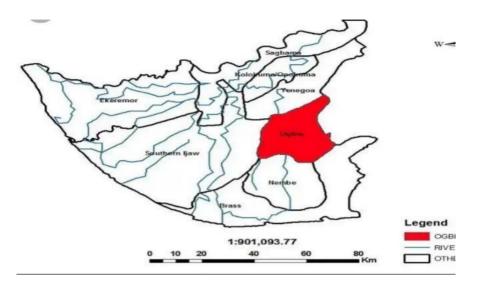
1. INTRODUCTION

Agama, derived from Sranan Tongo meaning represents a genus of small-to-"lizard." moderate-sized, insectivorous Old-World lizards, With at least 37 species distributed across Africa, primarily in sub-Saharan regions, these reptiles vary in size, typically reaching 12 to 30 centimeters when fully grown [1]. Lizards, one of the most widely distributed reptiles globally, demonstrate remarkable adaptability across various habitats [2]. However, this study revolves around the Agama agama lizard, a species known to be a means of transport and reservoir host for helminth and protozoan parasites, thereby raising significant concerns [3]. In Nigeria, comprehensive investigations by Robert et al., [2], Akinboade and Johnson [4], and Wekhe and Olayinka [3] have identified the prevalence of protozoan parasites such as Eimeria oocvsts. Plasmodium. and Haemogregarina species, with Eimeria oocvsts being the most prevalent (68.7%).

Lizards, owing to their poikilothermic nature, thrive across tropical climates globally, featuring diverse sizes, shapes, and colors. While most lizard species pose no harm to humans, their intriguing characteristics and the threat they pose when cornered have fueled interest in keeping them as pets, including species like bearded dragons, iguanas, anoles, and geckos. In Africa, commonly found lizard species include Geckos, Agama lizards, Chameleons, Monitor lizards, and Alligator lizards.

In addition to being fascinating animals, lizards including Agama agama play a crucial role in maintaining the balance of ecosystems by serving as biological controls for insects and arthropod pests [5]. However, because of their of insects, they are susceptible diet to gastrointestinal tract infections, some of which can be zoonotic and pose a risk to human health. Among this group of lizards, the Agamidae family, and specifically the Agama agama species, have become the most well-known. These lizards are typically native to West African countries, particularly the sub-Saharan region. Because they live in social groups, they are known to be gregarious animals, with a male approximately females. leader. six and subordinate males [6].

Regrettably, despite playing important ecological roles, Agama agama lizards have been linked to the transportation and reservoir hosting of a number of helminth and protozoan parasites, some of which have the potential to infect humans (zoonotic significance). Contact with objects contaminated by infected saliva or feces increases the risk of human infection, as does unintentional ingestion of parasite eggs. Ascaris species, Capillaria species, and Raillietiella species are among the gastrointestinal parasites in Agama agama lizards that have been linked to human transmission, according to several research done in Nigeria [7]. However, there is still a lack of knowledge about the frequency of gastrointestinal parasites in Agama agama from Bayelsa State, Nigeria, and the risks associated with their transmission to people and commercial poultry flocks.


As an overview, this study focuses on exploring the significance of Agama agama lizards, providing vital insights into their health and potential implications for ecosystems, human health, and the poultry industry. By examining their role as carriers of zoonotic parasites and expanding our understanding of the relationship between these reptiles and various parasites, this study aims to address critical gaps in scientific knowledge, ultimately contributing to the health and well-being of both natural and human environments.

2. MATERIALS AND METHODS

2.1 Study Area

Otuoke is a suburb in Bayelsa state in Ogbia local government area, which is located in the Niger Delta region of Nigeria. Its population is made up primarily of farmers and fishermen. There are fewer than 10,000 people living in Otuoke overall [8]. In Ogbia, the year-round weather is oppressive, with the wet season being warm and cloudy and the dry season being hot mostlv clear. The average and annual temperature fluctuates between 71°F and 87°F; it is rarely lower or higher than 64°F or 90°F. The entire Ogbia community agreed that Otuoke should become the center because it is the only community in the kingdom with access to both roads and water.

Ezenwaka; Int. J. Path. Res., vol. 12, no. 6, pp. 172-178, 2023; Article no.IJPR.110590

Map 1. Showing Ogbia local government area

2.2 Study Design

The observational study was conducted on 50 *Agama agama*. These lizards were randomly hand-picked between January to August, 2022 at different locations within the study area. The *Agama agama* was kept in a ventilated container and was transferred to Biology laboratory in Federal University Otuoke, Bayelsa state for dissection and examination of parasites.

2.3 Laboratory Examination for Parasitic Infection

A preparation of chloroform was used to euthanize fifty (50) lizards. The organs were removed and placed in separate petri dishes filled with reptile saline. In order to prevent the parasites from being killed, the dissecting board, knife, scissors, and picker were cleaned with disinfectant (spirit) and then rinsed under running water. The weight of the lizard was taken using digital weighing scale and the length was measured using transparent meter rule, then the lizard was placed on the dissecting board, the lizard was dissected open longitudinally and the intestine was harvested and was excised into different petri dish containing saline solution. The feces were pressed out from the intestine and was introduced into a specimen container, it was emulsified with a saline water, sieved into a container, then introduced into a centrifuge tube, and was centrifuged under 3500rpm for 10minutes. After centrifugation, the precipitate was filtered out from the sediment, the sediment was dropped on a slide with a drop of iodine and was covered with a cover slip, it was then view with microscope under the magnification of X40 for parasitological examination [9-12].

2.4 Statistical Analysis

The proportion was determined for descriptive assessment of the prevalence of the infection based on studied characteristics (length and sex). For inferential statistics, the correlation between each of the investigated characteristics and the prevalence of parasitic infections was ascertained using chi-square analysis. The test was considered significant at p-value < 0.05.

3. RESULTS

3.1 Parasites Identified

Table 1 below shows that five different helminth species were found in the lizard's intestine. Among the helminth parasites discovered were two nematode species: There were found to be *Strongyluris brevicaudata, Parapharyngodon colonensis, Oochoristica truncate, Mesocoelium monas, and Toxoplasma gondii,* among other cestode species. The intensity of intestinal parasites was extremely high.

Table 2 showed that the number of male infected was 18 and prevalence of 90%, while in female 23 was infected with the prevalence of 76.7%. There was no significant association (p-value = 0.229) between sex and prevalence.

Parasites	Scientific nomenclature	
Nematode	Strongyluris brevicaudata	
	Parapharyngodon colonensis	
Cestode	Oochoristica truncate	
Trematode	Mesocoelium monas	
Conoidasida	Toxoplasma gondii	

Table 1. Parasites identified

Table 2. Overall prevalence of infection based on sex

Sex	No. examined	No. Infected (%)	χ²	p-value
Male	20	18 (90)		
Female	30	23 (76.7)		
Total	50	41(82)	1.445	0.229

Table 3 shows if infection is dependent on age (described in size), here 13 small *Agama agama* were infected with the prevalence of 46.4% while 15 adult were infected with the prevalence of 53.6%. There was no significant association (p-value = 0.083) between size and prevalence.

Table 4 shows if infection is dependent on weight, here 11 Agama agama weighing \geq 25g were infected with the prevalence of 50%; 8 Agama agama weighing between 25-35g were infected with the prevalence of 75%; and 11 Agama agama weighing \geq 36g were infected with the prevalence of 55%. There was no significant association (p-value = 0.472) between weight and prevalence.

4. DISCUSSION

My study's findings indicated a prevalence of 28% in Agama agama from the Otuoke community in the Ogbia local government area of Bayelsa state, Nigeria. *Toxoplasma gondii*, *Strongyluris brevicaudata, Mesocoelium monas, Oochoristica truncate, and Parapharyngodon colonensis* were the parasites that were isolated from Agama agama. Nematodes, particularly S. brevicaudata and P. colonensis, were the most common of the five parasite species found. Acanthocephalan was not found during the investigation. Of the five parasites discovered in a study of reptile species by Borkovcova and Kopriva [13], nematodes were the most frequently found, followed by trematodes and cestodes; no acanthocephalans were found. It has been demonstrated that exposure to helminthes with direct life cycles, their large size, and their diverse plant diet all contribute to the diversity found in helminth infrahigh communities [14]. Thus, it seems that saurian reptiles' diet and helminth acquisition are related [15].

My research indicates that because they are the more active sex, male lizards had a higher prevalence of infection than female lizards. Males are more vulnerable to parasite infection than females, presumably because testosterone suppresses the immune system, at least while the organism is reproducing [16,17]. Males maintain high testosterone hormone levels early in the mating period [18], which increases their

Table 3. Prevalence of infection	based on size
----------------------------------	---------------

Size	No. examined	No. Infected %	χ²	p-value
Small	18	13 (46.4)		
Adult	32	15 (53.6)		
Total	50	28(100)	3.004	0.083

Weight (g)	No. examined	No. infected(%)	X ²	p-value
≥25	22	11(50)		
26-35	8	6(75)		
≥36	20	11(55)	1.502	0.472

aggression and increases their capacity to seize and hold onto territory. A significant amount of energy and metabolites are needed for the development of eggs in pregnant females, which cannot be used for parasite defense. As a result, it appears that both sexes devote more energy to procreation than to parasite defense [19]. Due to their tendency to obstruct the lizards' already narrow intestine, cestodes have a low worm burden because their length reduces the intestine's carrying capacity.

The lizard's size was utilized to calculate its age. The most parasitized lizards, according to my research, were adults. This is consistent with research by Ribas et al. [20] and Amo et al. [19], which found a positive correlation between the adult size of the lizards they studied and the prevalence of helminthes infection. Because they interact more with other adults, expose themselves to vectors, and occupy more favorable places like basking spots or refuges. adults were expected to be more infected than young lizards. Additionally, older lizards were thought to have more time and probability to come into contact with the parasites On the other hand, dominant older male lizards frequently confine younger ones to less than ideal areas. Additionally, Ribas et al. [20] demonstrated that lizard body size was positively correlated with the total mass of nematodes. The findings also suggest that as people age, they lose their immunity to infection. However, in a study involvina a partenogenetic whiptail lizard (Cnemidophorus nativo), the host body size had no discernible effect on the infection rate [21].

Lizards typically have a lifespan of five to twenty vears. Their mean intensities did not differ significantly. This implies that the presence and quantity of parasite transmission stages, or encysted forms (in the case of parasites with a direct life cycle) or its vector (in the case of parasites with an indirect life cycle), within the host's habitat are dependent on the amount of rainfall. In Nigeria, May, June, and July are included in the wet season. In the rainforest belt, A. agama breeds year-round; however, in drier savanna regions, the breeding season falls during the rainy season [22]. In May and June during this study, the highest and lowest amounts of rain were recorded, respectively. Both sexes of Strongyluris brevicaudata were found to exhibit high intensity in May, which decreased by June and then increased once more in July to reach its highest peak in the case of the males, but further decreased in the case of

the females. Observing the structure of the egg. which is covered by two distinct transparent and inelastic membranes, 115 X 88 microns, making them weather-tolerant, could help explain these variations in intensity [23]. Conversely, P. colonensis showed a consistent decline in prevalence over the course of the three months. Throughout the three months, S. brevicaudata exhibited a generally high prevalence, with July recording the highest mean discussion. These parasites don't seem to be affected by the season and appear to have better seasonal adaptations. Thick-shelled eggs of S brevicaudata contain embryos at the time of deposition [24]. Amo et al.'s [19] analysis of the prevalence of infection in adults revealed no monthly variations. They proposed that infections happened at the beginning of the breeding season, when lizards were busier.

5. CONCLUSION

In conclusion. this study revealed that nematodes specifically, Stronavluris brevicaudata and Parapharyngodon colonensis were the most common parasitic infections in Agama agama lizards, with a 28% prevalence. The higher infection rate in male lizards was explained by the immune-suppressive effects of testosterone during the reproductive stage. Larger and more active adult lizards displayed higher levels of parasitization. The aging process of lizards was observed to cause a loss of immunity, and although precipitation seemed to affect the spread of parasites, there were differences in the degree of infection between months, suggesting that S. brevicaudata is a parasite that is consistently prevalent due to its weather-adaptability. The study's overall findings emphasized the intricate interactions between various elements that affect the dynamics of parasitic infections in Agama agama lizards.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

 Maurice B, Robert B. Agama. International Wildlife Encyclopedia (3rd ed.). New York: Marshall Cavendish Corp. 2002;30. Available:https://eol.org/pages/815935/arti cles#cite_note-6 Accessed October 26, 2023.

- Robert B, Amadi N, Amuzie CC, Ugbomeh AP. Endo-Helminth Fauna of the Rainbow Lizard (Agama Agama). Journal La Lifesci. 2020;1(5):22-34. Available:https://doi.org/10.37899/journallal ifesci.v1i5.244
- 3. Wekhe SN, Olayinka FO. The role of Agama agama in thetransmission of coccidiosis in poultry. Nigeria Veterinary Journal. 2009;20:34-36.
- 4. Akinboade O, Johnson A. Effect of Temperature on the Oviposition Capacity of Enaoraed Adult Females and Hatchability of Eggs of Dog Ticks: Rhipicephalus sanguineus and Heamaphysalis leachi leachi (Acari: Ixodidae). African Journal Biomedical Research. 2011;14.
- Vasconcelos S, Pina S, Herrera JM, Silva B, Sousa P, Porto M, et al. Canopy arthropod declines along a gradient of olive farming intensification. Scientific Reports. 2022;12(1):17273. DOI: 10.1038/s41598-022-21480-1
- Wagner P, Wilms T, Bauer A, Böhme W. Studies on African Agama V. On the origin of Lacerta agama Linnaeus, 1758 (Squamata: Agamidae). Bonner Zoologische Beiträge. 2009a;56(4):215– 223.
- Adeoye GO, Ogunbanwo OO. Helminth parasites of the African lizard Agama agama (Squamata: Agamidae), in Lagos, Nigeria. Revista de Biología Tropical. 2007;55(2):417-25. DOI: 10.15517/rbt.v55i2.6021
- Jibueze J Otuoke. Where there is no opposition. The Nation; 2015.

Available:https://thenationonlineng.net/otuo ke-where-there-is-no-opposition/ Accessed October 26, 2023.

 Hayat ZM, Kumar PD, Hamida K, Muhammad R, Riadul MH, Ehteshamul I, et al. Time-Temperature Model for Bacterial and Parasitic Annihilation from Cow Dung and Human Faecal Sludge: A Forthcoming Bio-Fertilizer. Researchgate; 2016.

DOI: 10.4172/2155-9597.1000284

 Adedokun AA, Onosakponome EO, Abah AE. Intestinal parasites and salmonella typhi infection among food-handlers in Port Harcourt metropolis. Nigeria Journal of Advances in Medicine and Medical Research. 2020;32(18):1-9. Available:https//doi.org/10.9734/JAMMR/2 020/v32i18306491

- 11. Wokem GN, Onosakpkonome EO. Soil transmitted Helminthes nSapele Local Government, Delta State. Nigerian Journal of Parasitology. 2014;35(1-2):143-148
- 12. Onosakponome EO, Adedokun AA. Nyenke CU. Comparative Study of the of Co-Infection Incidence of Soil Transmitted Helminths and Helicobacter pylori among Women of Reproductive Age and School Aged Children Living in Slum Settlements in Rivers State. Journal of Advances in Medicine and Medical Research, 2021:33(24):60-69, Available:https//doi.org/

10.9734/JAMMR/2021/v33i2431224

- Borkovcová M, Kopriva JK. Parasitic helminths of reptiles (Reptilia) in South Moravia (Czech Republic). Parasitology Research. 2005;95:77-8. DOI: 10.1007/s00436-004-1258-6
- Martin JE, Llorente GA, Roca V, Carretero MA, Montori A, Santos X, Romeu R. Relationship between diet and helminths in *Gallotia caesaris* (Sauria: Lacertidae). Zoology. 2005;108(2):121-130. Available:https://doi.org/10.1016/j.zool.200 5.03.002
- Sanchis V, Roig JM, Carretero MA, Roca V, Llorente GA. Host-parasite relationships of Zootoca vivipara (Sauria: Lacertidae) in the Pyrenees (North Spain). Folia Parasitology. 2000;47:118-122.
- Uller T, Olsson M. Prenatal exposure to testosterone increases ectoparasite susceptibility in the common lizard (*Lacerta vivipara*). Proc Roy. Soc. London. 2003;270:1867-1870.
- Roberts ML, Buchanan KL, Evans MR. Testing the immunocompetence handicap hypothesis: A review of the evidence. Animal Behaviour. 2004;68:227–239. DOI: 10.1016/j.anbehav.2004.05.001
- Tokarz RR. Males Distinguish between Former Female Residents of Their Territories and Unfamiliar, Nonresident Females as Preferred Mating Partners in the Lizard Anolis sagrei, Journal of Herpetology. 2008;42(2):260-264. Available:https://doi.org/10.1670/07-1931.1
- 19. Amo L, Fargallo JA, Martinez-Padilla J, Millan LPJ, Martin J. Prevalence and intensity of blood and intestinal parasites in a field population of a mediterranean lizard (*Lacerta lipid*). Parasitology Resources. 2005;96:413-417.
- 20. Ribas SC, Rocha CFD, Teixeira-Filho CFD, Vicente J. Helminths (Nematoda) of the

lizard *Cnemidophorus ocellifer* (Sauria: Teiidae): Assessing the effect of rainfall, Body size and sex in the nematode infection rates. Ciência & Cultura. 1995:47:88-91

- 21. Menezes VA, Carlos F, Rocha D, Dutra GF. Reproductive Ecology of the Parthenogenetic Whiptail Lizard Cnemidophorus nativo in a Brazilian Restinga Habitat. Journal of Herpetology. 2004;38(2):280–282. Available:http://www.jstor.org/stable/15662 26
- 22. Enge KM, Krysko KL, Talley BL. Distribution and ecology of the introduced African Rainbow Lizard, Agama Agama Africana (Sauria: Agamidae), In

Florida. Florida Scientist. 2004;67(4):303-310.

Available:Http://Www.Jstor.Org/Stable/243 21176

- 23. Hallmann K, Griebeler EM. Eggshell Types and Their Evolutionary Correlation with Life-History Strategies in Squamates. PLoS One. 2015;10(9):e0138785. DOI: 10.1371/journal.pone.0138785
- 24. Seguel ME, Ramírez-Rivera S, Concha F, Espinoza M, Hernández S. Predation and epibiosis on egg capsules of the *Shorttail fanskate*, *Sympterygia brevicaudata*. Journal of Marine Biology and Oceanography. 2022;57(Special):20–28. Available:https://doi.org/10.22370/rbmo.20 22.57.Especial.3314

© 2023 Ezenwaka; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/110590