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ABSTRACT

This paper considers a rectangular Volterra dislocation loop lying beneath and parallel to a free
surface in a semi-infinite material. The paper utilizes the displacement field of an
infinitesimal dislocation loop to obtain the strain field and then integrate over a finite rectangular
area. For the loop, it can have three non-zero Burgers vector components. The stress field
is also obtained from Hooke’s law for isotropic materials. Analytical and numerical verifications of
the strain and stress fields are performed. In addition, the effect of the free surface on
stresses is displayed versus depth from the surface. Verification includes satisfaction of the zero-
traction boundary condition, the stress equilibrium equations and the strain compatibility
equations.

Keywords: Rectangular dislocation loop; half medium; strain/stress field; numerical/analytical
verification.
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1. INTRODUCTION

Dislocation loops are defects in the material,
associating the collapse of a large number of
point defects into lower energy defect structures.
A rectangular dislocation loop is a closed loop
composed of four straight dislocation lines.
Dislocation lines have to end on free surfaces,
grain boundaries, or form a closed loop inside a
material. They cannot end inside the crystal [1].
In this work, the development of the strain field of
a \Volterra-type rectangular dislocation loop
parallel to the free surface of half medium, and
having three non-zero  Burgers vector
components, is focused on.

Several dislocation problems in terms of material
type, geometry and size have been developed
for decades. In the early years, research on
infinite isotropic materials was studied by
different researchers. Development of the elastic
fields of infinite screw and edge dislocations in
an infinite isotropic medium were provided [2-4].
Furthermore, integral equations for finding the
displacement field (the Burgers equation) and the
stress field (the Peach-Koehler equation) of a
closed dislocation loop (of any shape) in an
infinite isotropic material have been provided by
Hirth JP et al. [2].

A couple of researchers have studied different
kinds of dislocation loop problems applying
various techniques. Initially [5-6], researched the
prismatic circular loop. The circular glide loop
was initially investigated by Keller JM [7] Kroner
E [8], which was later corrected in [9-10].
Khraishi TA et al. [11] Khraishi TA et al. [12]
corrected some earlier work in a more recent
study of the displacement and stress fields of
glide and prismatic circular dislocation loops. The
displacement field of a rectangular dislocation
loop of the Volterra type in an infinite medium
was obtained by Khraishi TA et al. [13], which
contains a solid angle term. The above
references in this paragraph all focused on an
infinite material.

One application for dislocation loops is its use in
the “collocation point” method that is used to
resolve traction-free surface problems in a semi-
infinite material simulated with the 3-D DDD
method via a surface mesh of
rectangular/triangular dislocation loops [14-18].
Siddique AB et al. [19] extended the collocation-
point method to deal with curved free surfaces.
For circular dislocation loops, they were used for
modeling pile-ups around rigid cylindrical
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particles [20] and for modeling Frank sessile
loops which are caused by irradiation damage in
some metals [21-23].

As for studies involving dislocations near a free
surface, Yoffe EH et al. [24] developed the
elastic fields of a dislocation terminating on a free
surface (for any Burgers vector). Groves PP et al.
[25] studied the effects of free surfaces on a
dislocation loop. Maurissen Y et al. [26]
Maurissen Y et al. [27] obtained the correction
terms of the stress field of a dislocation half-line
and segment parallel and perpendicular to a free
surface in a semi-infinite elastic medium.
Comninou M et al. [28] presented the
formulations for the elastic fields of an angular
dislocation in an isotropic half-space. Gosling TJ
et al. [29] determined the stresses due to an
arbitrary dislocation in a semi-infinite medium as
a line integral along the dislocation. Jing et al.
[30] found the displacement field of a rectangular
dislocation loop parallel to a free surface.

In this paper, the strain components of a
rectangular dislocation loop parallel to a free
surface are obtained. Also, analytical and
numerical verifications for the strain field are
performed. The verification is to ensure that the
Strain  Compatibility Equations are satisfied.
Then, the stress field, obtained via Hooke’s law
using the strain developed herein, is verified
using the Equilibrium Equations and the zero-
traction condition on the free surface. Moreover,
plots reflecting the effect of the free surface
correction term are presented at different depths
beneath the surface.

2. METHODOLOGY

¢ Development of the strains of the sub-

surface rectangular dislocation loop

The dislocation problem under consideration is
shown in Fig. 1. The figure shows a
rectangular dislocation loop (also described as a
“finite-sized dislocation loop”) in a semi-infinite
isotropic  medium and which is below
the free surface. This Volterra-type dislocation
loop has three Burgers vector components b,, b,
and b, . Also, it has a dimension 2a in
the x-direction and a dimension 2b in the y-
direction. The line sense of the dislocation
loop is shown by the arrow around the
dislocation loop. The goal of this problem is to
obtain the strain components at an arbitrary
material field point P. Note that in this paper, x;
and x are used interchangeably, so are x, and y,
and so are x; and z. Analogously for x'; and x',
and so on.
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Fig. 1. A rectangular dislocation loop with an arbitrary Burgers vector, below a free surface.
Also, an image dislocation loop with opposite Burgers vector is shown above the surface. An
infinitesimal dislocation loop used in the integration is also shown

To find the total strain field due to the subsurface
rectangular dislocation loop, one can sum up the
three contributions of the total strain field as in
the following:
e=¢€"+e™ ¢ (1
Where the superscript ‘inf’ refers to the strain
solution of a rectangular dislocation loop in an
infinite medium, not in a half medium as shown in

Fig. 1. The superscript ‘imag’ refers to the strain
solution of an image dislocation loop with an

opposite Burgers vector laying above the surface.

And the ‘s’ superscript refers to surface
correction term which ensures the zero-traction
condition on the free surface, i.e. the image loop
by itself does not annul all the stress traction
components on the surface.

Let's focus on the correction term in the above
equation first. Bacon and Grove provided an
equation for the displacement surface correction
term of a subsurface infinitesimal dislocation loop
with area dS [25]:

duf = —kxz(1 = 28;3)[Ass (%),i,-_ &) TU

)
where, k =b;dS/4n(1—-v) , A;;j=2v+4(1-
v)8;; , dS=dxydx, , R®=(x;—x)%+ (x,—
x3)? + (x3 + x3). §; jis the i f* component of the
Kronecker delta.

Equation (2) can be written explicitly as follows:
When

i=1:

=1

g =S8 (), ]

i=1:
=2

duj = _zi?f_ﬁ Zv (%),12 - (%),123]

i=1
=3
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i=2:
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__x3byds 1\ (%3
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i=2:
j=3:

_ x3bgds 1 _(x3
du; = 4m(1-v) 2v (R),zs (R),z33] ®
When
i=3:
=1

_ xé by dS _ 1 —
dug = 222 [ Qv+a-v) ()
X3k, 313 9)
i=3:
=2
=3 - (3,

,32

23R, 323 (10)
i=3:
j=3:

_ x3bgds _ N _
dug = 222 [ Qv+a-v) (7).
X3R, 333 (11)

To find the strain field for the correction term of
an infinitesimal loop, the tensorial small strain
definition is applied:

S
de: 5 :l aduf.{_%
L 2 an ax;

As for the strain surface correction term in
equation (1) for the finite rectangular loop, it can
be obtained with integration via:

(12)

€=, de (13)
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Where A is the area of integration. For the infinite
term in equation (1), the elastic fields of a
rectangular dislocation loop have been obtained
in [31]. Hence, the development of the infinite
term in equation (1) is not repeated here for
brevity. If one has the solution for the infinite term
in equation (1), one can easily obtain the image
term which has an opposite Burgers vector and
opposite ‘Z’ value to infinite term. If one has the
expressions for the three terms contributing to
equation (1), then the fotal strain field
can be easily determined from the sum of these
terms.

3. RESULTS AND DISCUSSION

Based on the above, the strain field of a
rectangular dislocation loop has been obtained
with integrations and other manipulations all
performed using the strong symbolic engine of
the mathematical software Mathematica. Such
results are provided in the Appendix. If one is
interested in the stress field (which is not shown
herein explicitly like the strains for brevity sake),
one can use Hooke’s law for isotropic materials:
O-i]' = Aekk6ij+ 2[16,:1' (14)
Ev
a+v)(1-2v)’ n= 2(1+ ) Here, 6
ifh component of the Kronecker delta, u is shear
modulus, €, is the dilatation or the volumetric
strain, and E is Young’s modulus.

is the

where 1 =

3.1 Strain Compatibility
Verification

Equations

The equations of compatibility can be written in
indicial notation as [32]:

€ijkl — €jLik— Eikjrt Exij=0 (15)
This equation can be expanded over the
repeated indices and written explicitly as six
different/unique equations:

0%exy

0%exy |, 0%€yy
= 1
dy? + dx2 dxdy ( 6)
0%exy | 0%€y, _ 0%€ex, (17)
0z2 9x? 0x0z
0%€,, | 0%eyy 0%y (18)
dy? z2 ~ ~ azay
0%exy |, 0%€y; _ 0%y, | 0%exy (19)
0ydz 0x2 0x0y 0x0z



0%eyy | 0%y _ 0%eyy | 0%ey, (20)
dx0z dy? 0yoz dxdy
0%€,, | 0%exy _ 0%€y, | 0%€y, 21)
9xdy 9z2 9yoz 0x0z

These equations should be satisfied at every
material point in the solid. To verify the
developed strain solution, one can see if
equations (16-21) are identically zero using
either analytical or numerical methods. For the
analytical method, the equations are so
humongous that Mathematica is not able to
reduce them to 0. However, for any given line in
space along the x-, y- or z-directions,
Mathematica identically converts the
compatibility equations to zero. Hence analytical
verification of the compatibility equations is
feasible.

Alternatively, numerical verifications can also be
shown by plotting equations (16-21) along any

i T-H-r--’
|

Fig. 2.1. Plot of equation (16)
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plane in the material to see if the equations give
a zero result. Fig. 2 shows such plotting for b, #
0. The figure shows that the compatibility
equations are satisfied. Note that given the
combination of Burgers vector components and
compatibility equations a total of eighteen plots
are minimally generated. Therefore, only three
plots for one of the Burgers vector components
are shown here for brevity.

3.2 Equilibrium Equations Verification

To verify the strain field developed in this paper,
one can use equation (14) to obtain the stress
field and see if the obtained stress field can
satisfy the equilibrium equations. The partial
differential equations of static equilibrium in a
solid material can be written in indicial notation
as:

_90ij_
Oijj = ox;

0 (22)

Fig. 2.3. Plot of equation (20)
For these plots, the following values were chosen: a = b = 100b,, 7z =c= 10b,, by =b, =0,b,=1,v=103,
u=G6=100,z=11b,, —4a <x < 4a, —4b <y < 4b
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If the last equation is expanded on the repeated
indices then the resulting three equations are:

00y aaxy ""i _

ox ay 9z 0 (23)
doyx | 9oyy 0oy,

ox ay + 9z 0 (24)
90z | 0%y | 002z _ (25)

ox ay 0z
This is keeping in mind the symmetry of the
stress tensor, i.e. g;;=0;;. These equations
should be satisfied at every material point of a
solid in equilibrium. To verify the stress solution
given by equation (14), one can see if equations
(23-25) are identically satisfied either using
analytical or numerical methods. For the
analytical method, the equations are all reduced
to zero by utilizing Mathematica. Analogously, if
one considers any line in space, the three
equilibrium equations also equate analytically to
zero. Hence, analytical verification of the
equilibrium equations is feasible.
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Alternatively, numerical verification can also be
made by plotting equations (23-25) along any
plane in the material to see if the equations show
a zero result. Fig. 3 shows such plotting for b, #
0. The figure shows that the equilibrium
equations are satisfied. Note that given the
combination of Burgers vector components and
equilibrium equations a total of nine plots are
minimally generated. Therefore, only three plots
for one of the Burgers vector components are
shown here for brevity.

3.3 Free-Traction Condition on the Free
Surface

Another way to verify the strain field developed
herein is to plug the obtained strain field solution
into equation (14) to get the stress solution and
check if the stress solution satisfies the free-
traction condition on the free surface. The stress

traction T at the free surface can be written as:

N
=on

T

(26)

Ann - —400

Fig. 3.1. Plot of equation (23)

5. x 1075 [

-5.x1071% 45

Fig. 3.2. Plot of equation (24)

Fig. 3.3. Plot of equation (25)
For these plots, the following values were chosen: a = b = 100b,,, zZ=c= 10by, by = b, =0, b, =1,v =0.3,
u=100,z= 11by, —4a<x<4a, —4b<y<4b
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Which should be 0 at the free surface. Here, g is
given by equation (14). The unit normal vector at
the free surface is {0 0 -1}, see Fig. 1. In this
case, oy, 0y, and g,, components should all be
zero at the free surface. To make sure that these
three stress components are zero on the surface,
one could use equation (14) and specify z= 0 in
it and see if it reduces to 0 for each of the three
stress components. Unfortunately, since the final
solutions of stress field obtained by equation (14)
are too long, Mathematica was not able to
analytically simplify these stress components at z
= 0 down to 0 value even if one waited more than
24 hours for the simplification result.
Alternatively, if one considers arbitrary lines
along the x and y directions on the free surface,
these stress components did reduce to zero
identically. In addition to the analytical
verification, surface plots of the three stress field
components on the free surface were generated.

a;;_total

Fig. 4.1. Plot of the equation for o,
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This is a numerical verification as all such three
stress values should be zero. The plots in Fig. 4
are done for b, # 0.

3.4 Nomralized Plots for the Stress Field
of a Subsurface Rectangular
Dislocation Loop

Note that by taking the developed total strain
solution (the three parts of it) and substituting
them into equation (14), one can then separate
the stresses into three parts and write an
equation similar to equation (1):
o=0"+0'™I +¢° (27)
As equation (27) shows, total stress field for the
subsurface rectangular dislocation loop involves
three terms which are the infinite term, the image
term and the surface correction term.

oxztotal

4.x107"% &
2.x107"8}
o}
=dsirlel
—4.x107 181
-1000

Fig. 4.2. Plot of the equation for o,

_oyztotal
‘, R | -'-'k-"'-"""

Fig. 4.3. Plot of the equation for o,
For these plots, the following values were chosen: a = b = 100b,, zZ=c= 10by, by =b, =0, b, =1,v =103,
n=100,z=0, —10a < x < 10a, —10b <y < 10b
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To investigate the stress field of a rectangular
dislocation loop in an isotropic  half
medium at different z depths, one can plot
separately the total stress and its parts
along the x and y directions. Fig. 5 shows the
effect of depth on the different stresses
(total stress, infinite term, image term and
stress correction term). Fig. 6 shows the effect of
depth on the stress correction term. For the plots
in Figs. 5 and 6, the following values were
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chosen: a=b=100b, , z =c=400b, , b, =
b,=0,b,=1,v=03,u=1, —10a < x < 10a,
y =0.

For the plots in Fig. 7, the following values were
chosen: a=b=100b, , z =c =400b, , b, =
by=0,b,=1,v=03,u=1, —10b <y < 10b,
x = 0. Similar to Figs. 5 and 6, these figures also
show the effect of depth on the stress correction
term but for b, # 0.
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As the plots in Fig. 5 show, the correction term
nearly dominates the total stress value of a
dislocation loop at the surface, while the effect of
the infinite term is much lesser. However, as the
material point in question gets further away from
the free surface, the infinite term gradually
dominates the total stress value while the effect
of the surface correction term on the total stress
gets weaker. Indeed, at high depths closer to the

Fig. 5.6. o,, for z/c=0.75

oyycarr

22 (2=0) 22 (2=0.125¢)
H H

- P 7=0.25¢) — — 27 (z=0.5¢)
p v

VT (2=0.625¢)

20T 7=0.9¢)

Fig. 6.2. g,,, surface correction (varying z), b,#0

dislocation loop in the half medium, the total
stress value is almost all due to the infinite term.
Fig. 6, which focuses on the stress correction
term only, shows a similar trend for this term as it
is usually highest on the surface and diminishes
close the dislocation loop. Note that some stress
components are not drawn here since they are
identically equal to zero along a line parallel to x
with y=0 and b,#0. Fig. 7 is similar to Figs. 5 and
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6 but is done along a line parallel to the y-axis
with x=0 and b,#0. This figure also shows that
the stress correction term diminishes fast from
the free surface. In Fig. 7, the stress correction
terms for o, and o, are identically zero along a
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H
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Fig. 6.3. o,, surface correction (varying z), b,#0
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line parallel to the y-axis with x=0 and b,#0 and
hence are not plotted here. Moreover, the plots
of stress components for b, are not shown here
for brevity since the plots are similar to the ones
of stress components for b,.
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4. CONCLUSIONS

In conclusion, the strain field of a subsurface
rectangular dislocation loop parallel to the free
surface in a half medium has been obtained in
this paper. The developed strain field is verified
using different fundamental equations of
continuum mechanics. Firstly, the strain
solution is verified using the Strain Compatibility
Equations, which are the equations
relating the different strain components’ spatial

distribution. As the results show, the strain
solution developed herein satisfies the
Compatibility Equations. Secondly, one

can also verify the strain field by plugging the
strain solution into Hooke’s Law to obtain the
stress field. Then, one can check if this
stress field satisfies the Equilibrium Equations
and the zero-traction condition on the free
surface. As the results show, the stress
field obtained in this manner does indeed
satisfy the Equilibrium Equations and the
free-traction condition. The last conclusion
from this work regards the decay rate
of the surface effects on the total stress. The
surface  effects  diminish  quickly = away
from surface as one gets closer
and to the subsurface dislocation
loop.

the
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APPENDIX

Considering the Burgers vector component b,:

_ Q2? Q2? Q3(Q1*+p1(p1°p2-6Q1°2))
€xx = Yxin bye(=3p1 ( 25/2B1 45/2132) Q3z+3pl ( 15/2B1 35/282) Q4z+ VA2B13 -
Q4(Q1*+p1(p1°p2-6Q1°2))  Q3(Q2*-p1(-p1°p2+6Q2°2)) n Q4(Q2*-p1(-p1°p2+6Q2%z))

VA1B13 VA4B23 VA3B23

Q3(—c3z+cz(Q1%2-322)—(Q1%2-22)%-c?(Q1?+322)) |, Q4(-c3z+cz(Q1%2-32%)—-(Q1%>-2%)?~c?(Q1%2+32?))
+ —
A23/2B12 A13/2B12
Q3(c3z—cz(Qz2—3z2)+(Q22—z2)2+c2(Q22+3z2))+Q4(c3z—cz(Q22—3z2)+(Q22—z2)2+c2(Q22+3z2))) bxcv( Q3 "
A43/2B22 A33/2B22 2Kim “B1 ©  A23/2
4 (p1 +Q1) Q3 Q3 +(—p12+Q22) Q3 Q4

A13/2) = ) A43/2 A33/2) B22 (\/Azl- \/AS))’

byc K2 Q3 byc K2 Q4 3byc plz Q3 3bycplz Q4
€yy = — - + - + - - + - +
3’3’ 4K1m ( A23/2 A4—3/2) 4Kim ( A13/2 A33/2) 4K1m ( A25/2 A4—5/2) 4Kim ( A15/2
A35/2)
6 = bxcK3 p12Q3 bycK3 p12Q3  bycK3(—p12+Q1%)Q3 | bycK3(-p1%2+Q22)Q3  byc p1(p1%p3+p4Q22)Q3
22 7 5A23/2B1K1im = 2A43/2B2Kin 2vVA2B12K17 2VA4B22K1m 4A43/2B22K1m
bycK3p1?2Q4 . bycK3p1?Q4 | b,cK3(-p124+Q12)Q4  b,cK3(-p12+Q22)Q4 | byc p1(p1%p3+p4Q22)Q4
2A13/2B1K1m = 2A33/2B2Kim 2VA1B12K1m 2vVA3B22K1m 4A33/2B22K1m
byc p1Q3(p12p3+3Q1%(c+2z))  byc p1Q4(p12p3+3Q12(c+22)) + b,cQ3(-3Q1*+p1(p1?p5+6Q12z))

4A23/2B12K1m 4A13/2B12K1m 4VAZB13K1m

bxcQ4(-3Q1*+p1(p1%p5+6Q1%2))  bycQ3(—-3Q2*+p1(p1?p5+6Q22z2)) " bxcQ4(—-3Q2*+p1(p1?p5+6Q222))

4VA1B13K1m 4/A4B23K1m 4/A3B23K1n
3b,c p13Q3z 1 1 3byc p13Qaz 1 1

4(m—mv) (=2z57281 T ae57287) 4(m—mv) (= 257281 T 2552820

€. = byc ( Q1 Q2 +3p1le 3])1QZZ) bxc ( Q1 Q2 +3p1le+3p1Q22) bxcv( Q1 +

xy T aKkim b A13/2 A33/Z A15/2 A35/2 4K1im ~  A23/2  A43/2 1 A25/2 A45/2 2K1m “A13/2
bycv , Q1

33/2) 2K17r(A23/2 43/2)

_ bxcp1Q1Q3(3A2- Q32) | bycp1Q2Q3(3A4-Q32) bycp1Q1Q4(3A1-Q4%)  byc p1Q2Q4(3A3-Q42) . 3ab,c p1?Q3z
xz 2A23/2B12K1m 2A43/2B22K1m 2A13/2B12K1n 2A33/2B22K17 4-A25/2B1K1n
3abycp1?Q3z  3abycp1®Q4z  3abycpl®Q4z  3bycpl®Q3xz | 3bycp1?Q3xz | 3bycpl®Qéxz  3bycp1?Qéxz
4A45/2B2Kin  4A15/2B1Kim  4A35/2B2Kim  4A25/?B1Kim W 4A45/2B2Kim | 4A15/2BI1Kim  4A35/2B2Kim
abyc Q3(3A2-Q32)(p6(c?+Q1%)— z3) abyc Q4(3A1-Q42)(p6(c?+Q1%)—z3) bxc Q3(3A2-Q3%)x(p6(c2+Q1%)-2z3)

4A23/2B13K17 4A13/2B13K1n 4A23/2B13K1m
byc Q4(3A1-Q4?)x(p6(c?+Q1%)—z3)  abyc Q3(3A4—Q3%)(p6(c?+Q22)-z3) = abyc Q4(3A3—-Q42)(p6(c?+Q22)—z3)
4A13/2B13K1n - 4A43/2B23K1n + 4A33/2B23K1n -
byc Q3(3A4-Q32)x(p6(c?+Q22)-2z3) = byc Q4(3A3-Q4?)x(p6(c?+Q22)-23),
4A43/2B23K1m + 4A33/2B23K1m ’
3byc pl 1 1 3byc pl 1 1 byc , p6 -2¢-3z 3p1%z 3p12
€z = Txin (3A33/2 - 3(A3—4-ax)3/2) T 2Kim (3A4-3/2 - 3(A4—4ax)3/2) 4K1m (A13/2 A33/2  A15/2 A35/2) -
byc p6 -2¢-3z 3p1%z 3p1 z
4K1m (A23/2 A43/2  p25/2 A45/2)

Considering the Burgers vector component by

_ 3byc , K2Q1 K2Q2

p1Q1z | p1Q2z 3byc . K2Q1 K2Q2
Exx_4K1n(3A13/2 3A33/2 )~ ¢

+ p1Qiz plQZZ)
A15/2 A35/2 4K1m “3A23/2 ' 3A43/2

A25/2 A4—5/2

+

+

bycQ1(Q3*-p1(-p12p2+6Q322))  bycQ2(Q3*-p1(-p1%p2+6Q322)) | bycQ1(Q4*+p1(p1?p2-6Q4?z))

Eyy =7 4C13K1my/C1+Q12 - 4VA4C13K1n + 4C23K1my/C2+ Q12 +
bycQ2(Q4*+p1(p1%p2-6Q4?z))  bycQ1(c3z—cz(Q32-322)+(Q3%-2%)?+c?(Q3%+322))
4VA3C23K1n - 4C12K17(C1+Q12)3/2 -
bycQ2(c3z-cz(Q3%-322)+(Q3%-2z%)2+c2(Q3%+32%))  bycQ1(-c3z+cz(Q4*-322)-(Q4?-2z%)2-c?(Q4?+322))
4A43/2C12K17 - 4C22K1m(C2+Q12)3/2 -
by cQ2(-c3z+cz(Q4?-32%)—(Q4?-2%)2-c?(Q4%+32%))  bycv , Q1Q32 Q2Q3? Q1(p12-Q32%) Q2(p12-Q3?) Q1Q4?
4A33/2C22K1n axir az32ct T aaifzcr VAzC12  JAsc1z  A13/2c2
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Q2Q4? Q1(p12-Q4?) Q2(p12—Q42)) 3byc plQZZ( Q32 Q42 ) 3byc plle( Q32
A33/2C2 VA1C22 VA3C22 4(m-mv) “A45/2C1  A35/2C2 4(m-mv) “C1(C1+Q12)5/2
Q4? ):
C2(C2+Q12)5/27?
€z =
_ by, cK3p12Q1 by, cK3p12Q1 _ by, cK3p12Q2 bycK3p12Q2 | bycK3Q1(—p12+Q3?%) by, cK3Q2(-p1%2+Q3?) _
2C1K17m(C1+Q12)3/2  2C2K1m(C2+Q12)3/2  2A43/2C1Kim  2A33/2C2Kim 2C12K17,/C1+Q12 2VA4C12K1m
byc p1Q1(p1?p3+p4Q3?) _ byc p1Q2(p1%p3+p4Q3?) _ by K3Q1(-p1?+Q4?) _ by K3Q2(—p1%+Q4?)
4C12K1m(C1+Q12)3/2 4A43/2C12K1m 2C22K1m,/C2+Q12 2vVA3C22K1m
byc p1Q1(p12p3+3Q4%(c+22)) | byc p1Q2(p12p3+3Q4?(c+22)) __byc Q1(-3Q3*+p1(p1%2p5+6Q322)) _
4C22K1m(C2+Q12)3/2 4A33/2C22K1n 4C13K1m/C1+Q12
byc Q2(-3Q3*+p1(p1°p5+6Q322)) | byc Q1(-3Q4*+p1(p12p5+6Q42z)) | byc Q2(—3Q4*+p1(p1°p5+6Q422)) _
4VA4C13K1m 4C23K1m,/C2+Q12 4VA3C23K1m
3byc p13le( 1 1 ) 3byc p13Q22( 1 1 ):
4(m-mv) “C1(C1+Q12)5/2  (C2(C2+Q12)5/2 4(m-mv) “A45/2C1  A35/2¢2”’
€xy =
_ byc Q3(Q1%+Q32-p1(—c+22)) " byc Q3(Q2%+Q3%-p1(-c+22)) " byc Q4(Q12+Q4?—p1(—c+22)) _
4A25/2K1m 4A45/2K1m 4A15/2K1m
byc Q4(Q2%+Q4?—p1(-c+22)) bycv Q3 Q3 bycv Q4 Q4 .
5/2 - (= 3/2 + —3/2) + (= 3/2 + _3/2)’
4A3 Kim 2K1m A2 A4 2K1m Al A3
e = bycp1 (- 1 1 )_bycpl (— 1 n 1 )+ byc ( p6 p7 _3plzz+3p122) _ byc ( p6
XZ 7 2Kim A13/2 7 A33/2 2K1m A23/2 ° A43/2 4Kim “A13/2 © A33/2  A15/2 © A35/2 4K1m “A23/2
p7 3p122+ 3p12z, .
A43/2 A25/2 A45/2)’
€yz =
bbycp1Q1(3p12+2Q12+3Q3?%) | bbycp1Q2(3p12+2Q22+3Q3%) b byc p1Q1(3p12+2Q12+3Q4?)
2C12K17m(C1+Q12)3/2 2A43/2C12K1m 2C22K17(C2+Q12)3/2
bbycp1Q2(3p1%+2Q22+3Q4?) | bycp1Q1(3p12+2Q1%+3Q3%)y | byc p1Q2(3p12+2Q22+3Q3%)y _
2A33/2C22K1m 2C12K1m(C1+Q12)3/2 2A43/2C12K17
bycp1Q1(3p1%2+2Q1%2+3Q4?)y  byc p1Q2(3p12+2Q22+3Q4?)y 3b byc p12Qiz 3b byc p12Qiz 3b byc p12Q2z
2C22K1m(C2+Q12)3/2 2A33/2C22K1m 4C1K1m(C1+Q12)5/2 ~ 4C2K1m(C2+Q12)5/2 = 4A45/2C1Kim
3b byc p12Q2z 3byc p12Qlyz 3byc p1%Qlyz 3bycp12Q2yz  3byc p12Q2yz

4A35/2C2K1m  4C1K1m(C1+Q12)5/2  4C2K1m(C2+Q12)5/2 ' 4A45/2CiKim  4A35/2C2Kirm
b byc Q1(3p12+2Q1%+3Q3%)(p6(c?+Q32)-2z3) b byc Q2(3p12+2Q22+3Q3%)(p6(c2+Q3%)-z°%)

4C13K1m(C1+Q12)3/2 4A43/2C13K1m
byc Q1(3p1%+2Q1%+3Q3%)y(p6(c?+Q3?)-z3)  byc Q2(3p12+2Q2%+3Q3%)y (p6(c?+Q3?%)-z3)
4C13K1m(C1+Q12)3/2 - 4A43/2C13K1n -
b byc Q1(3p12+2Q1%+3Q4?)(p6(c2+Q4?H)-2z3) b byc Q2(3p12+2Q22+3Q4?)(p6(c?+Q4a?)—z3)
4C23K1m(C2+Q12)3/2 - 4A33/2C23K1m +
byc Q1(3p1%+2Q1%+3Q4?)y (p6(c2+Q4?)-z3) | byc Q2(3p1%+2Q22+3Q4%)y(p6(c?+Q4?)-23)
4C23K1m(C2+Q12)3/2 + 4A33/2C23K1m ’

Considering the Burgers vector component b,:

EXX
3abyc p12Q3z  3ab,cp1?Q3z . 3ab,cpl?Q4z | 3ab,cp1?Q4z . 3b,cp1?Q3xz  3b,cpl1?Q3xz 3 byc p1?Qéxz
4A25/2B1K1m  4A45/2B2Kim  4A15/2B1Kim  4A35/2B2Kim ~ 4A25/2B1Kim  4A45/2B2Kim  4A15/2B1Kim

3b,cp1?Q4xz |, ab,c Q3(p8+2cQ1%2+3Q12z) 4 abyc Q3(p8+2cQ1?+3Q1%z)  ab,c Q4(p8+2cQ1%2+3Q12%z)

4A35/2B2K1m 2vVA2B13K1m 4A23/2B12K17m 2VA1B13K1m

abzc Q4(p8+2c¢Q1%+3Q1%z)  b,c Q3x(p8+2cQ1%+3Q1%z)  b,c Q3x(p8+2cQ1%+3Q1%z) . b,c Q4x(p8+2cQ1%+3Q1%z) "
4A13/2B12K17n 2VA2B13K1m 4A23/2B12K17 2VA1B13K17w

b,c Q4x(p8+2cQ1?+3Q1%z) = ab,c Q3(p8+2¢Q22+3Q22z) . ab,c Q3(p8+2cQ22+3Q22z)  abyc Q4(p8+2cQ22+3Q22z)
4A13/2B12K1m 2VA4B23K1m 4A43/2B22K1m 2vA3B23K1m

abyc Q4(p8+2cQ22+3Q22z) | b,c Q3x(p8+2cQ22+3Q22z) = b,c Q3x(p8+2cQ22+3Q22z)  b,c Q4x(p8+2cQ22+3Q22z)
4A33/2B22K1n 2vVA4B23K1m 4A43/2B22K1m 2vVA3B23K1m

b,c Qax(p8+2cQ22+3Q22z)  ab,cp1Q3(3A2-Q3%)v  ab,cp1Q3(3A4-Q3%)v = ab,c p1Q4(3A1-Q4?)v
4A33/2B22K1m 2A23/2B12K1m 2A43/2B22K1m 2A13/2B12K1m

ab,c p1Q4(3A3—-Q4?)v . b,cp1Q3(3A2-Q3%)xv  b,cp1Q3(3A4-Q32%)xv  b,cp1Q4(3A1-Q4%)xv | b,c p1Q4(3A3-Q4?)xv,

2A33/2B22K1m 2A23/2B12K1m 2A43/2B22K1m 2A13/2B12K17 2A33/2B22K1mr =’
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_ 3b b,c p12Qiz 3b byc p12Qiz 3bb,c p12Q2z  3b byc p12Q2z 3b,c p12Qlyz
€yy = T ACIKIn(C1+Q1D)5/2 | 2C2KIm(C2+Q15)5/2  4A45/2CiKim | 4A35/2C2Kim | 4CIKIm(C14Q12)5/2 +
3b,cp1?Qlyz 3b,cp12Q2yz . 3b,cp12Q2yz , bbyc Q1(p8+2cQ3243Q32z) = bb,c Q1(p8+2cQ32+3Q32z)
4C2K1m(C2+Q12)5/2  4A45/2C1Kin | 4A35/2C2Kin 4C12K17(C1+Q12)3/2 2C13K17,/C1+Q12
bbzc Q2(p8+2cQ32+3Q32z) |, bbyc Q2(p8+2cQ32+3Q32z) . byc Q1y(p8+2cQ32+3Q32%z) |, b,c Q1y(p8+2cQ32+3Q322)
2v/A4C13K1m 4A43/2C12K1m 4C12K1m(C1+Q12)3/2 2C13K1m+/C1+Q12
b,c Q2y(p8+2cQ3243Q32z) . b,c Q2y(p8+2cQ32+3Q322z) . bb,c Q1(p8+2cQ4?+3Q42z) | b byc Q1(p8+2cQ4?+3Q4?z)
2v/A4C13K1m 4A43/2C12K1m 4C22K1m(C2+Q12)3/2 2C23K1m,/C2+Q12
bbzc Q2(p8+2cQ4%+3Q4%z) . b byc Q2(p8+2cQ42+3Q4%z)  b,c Qly(p8+2cQ4%+3Q4%z)  byc Qly(p8+2cQ4?+3Q42z)
2v/A3C23K1m + 4A33/2C22K1m - 4C22K1m(C2+Q12)3/2 - 2C23K1m/C2+Q12 -
byc Q2y(p8+2cQ4?+3Q4%z)  byc Q2y(p8+2cQ42+3Q42%z)  bb,cp1Q1(3p1%2+2Q1%2+3Q32)v b b,c p1Q2(3p12+2Q22+3Q3%)v
2VA3C23K1m - 4A33/2C22K1n - 2C12K1m(C1+Q12)3/2 - 2A43/2C12K1n a
bb,cp1Q1(3p1%+2Q1%2+3Q4%)v b b,yc p1Q2(3p1%+2Q22+3Q4%)v  b,c p1Q1(3p12+2Q12+3Q3%)yv
2C22K1m(C2+Q12)3/2 - 2433/2C22K1n - 2C12K17(C1+Q12)3/2 -
b,c p1Q2(3p1%+2Q22+3Q32)yv . b,cp1Q1(3p12+2Q12+3Q4%)yv = b,c p1Q2(3p1%2+2Q22+3Q4?)yv,
2A43/2C12K1m + 2C22K1m(C2+Q12)3/2 2A33/2C22K1m )

EZZ

T 8p12Q1* z 3p14Q1tz
47rQ15(1 v)b cyC1+Q1%Q3(= c13 (c1+Q12)3(p12+Q12)+

2p1°p9Q1%+20p13Q1°+3p0Q18+3p18z+12p1*Qi*(c+22)  p12Q1%(p1*z+2Q1*(2¢c+52)+p12Q1% (4c+72))

(C1+Q12)(p12+Q12)3 (C1+Q12)2(p12+Q12)2
2Q12(2¢?z+5Q1%2z+223+4c(Q1%+22)) 3c2z+5Q12z+3z3+2c(2Q12+3z2))
C12 Cc1

1 5 8p12Q1tz 3p14Q14z
4mQ15(1-v) b,c Q4 plz + le + Q42 = (p12+Q42)3 + (p12+Q12)(p12+Q12+Q42)3
2p1°p9Q1%+20p13Q1°+3p0Q18+3p18z+12p14Qi*(c+22)  p12Q1%(p1*z+2Q1*(2¢c+52)+p12Q1% (4c+72))
2Q12(2c2z+5Q(;;lzzjzgg?z«(f()éjzgzli;)mZ;c2z+5Q12z+3z3+2c(2Q12Erpslzz;)le)z(plzinerQA’Z)z 8p12Q2%z
(p12+Q42)2 - p12+Q4? ) 4mQ25(1-v) VA4b,c Q3(— +
3p14Q2%z | 2p1°p9Q22+20p13Q2°+3p0Q28+3p18z+12p1*Q2*4(c+22) _ P12Q22(p1*z4+2Q24(2c+52)+p12Q22 (4c+72)) +
A423B22 , s s A4B2§ 5 s . s A42B22
2Q2%(2c*z+5Q2 z+222 +4c(Q2°+z%)) _ 3¢ z+5Q2°z+3z°4+2c(2Q2°+3z%) _ ;l \/_b CQ4(3p1 3?2 z
C1 c1 4mQ25(1-v) A33B2
8p12Q2%z 2p19p9Q22+20p13Q2°+3p0Q28+3p18z+12p1*Q2*(c+22)  p12Q2® (p14z+2Q24(2c+5z)+p12Q22(4c+7z))
(p12+Q42)3 A3B23 A32B22
2Q22(2c?z+5Q22%z+223+4c(Q2%2+2%))  3c¢?z+5Q2%2z+3z3+2c(2Q2%+32?) 1 p1/C1+Q12Q3 ,1  2Q1?
(p12+Q42)? B p12+Q42 ) 2n(1-v) Z ( Qi3 Gz
p12Q1? p1*+2p12Q12+3Q1* \/_p1Q3 2Q22  p12Q22  p1*+2p12Q22+3Q2* VA3p1Q4 ,p1%2Q2?
(C1+Q12)2(p12+Q13) - (C1+Q12)(p12+Q12)2) Q23 (Cl “c1z ' AszBz A4B22 )~ Q23 (ASZBZ -
p14+2p12Q22+3Q2* 2Q2? P1Q4/p12+Q12+Q42 2Q12 1
A3B22 T (p12+Qa?)2 p12+Q4—2) - Q13 - (p12+Q42)2 ~ p12+Q4?
2 2 4 2 2 4
2 2 n Sl 2 22 zp1 +22];1 Qz1 +3(221 2 DA -v)+v);
(p12+Q1%)(p1%+Q1%+Q4%) (p1%+Q1%)?(p1%+Q1°+Q4%)

_ byc ,—2c-3z | 3p1%z 3p1%z | 2c+3z b,c ,~2c-3z | 3p1%z 3pl1%z  2c+3z bchlv 1
Exy_4K1n(A13/2 A15/2  A35/2 A33/2) 4K1n(A23/2 A25/2  A45/2 A43/2) 2K1m (A13/2 A33/2)
bzc plv 1 .
2K1m (Az3/2 A43/2)‘

6. = b,c p1%2Q3 b,c p1%2Q3 b,c p12Q4 b,c p12Q4 b,c Q3(Q1%2-p1?) , b,c Q4(Q1%2-p1?)
XZ " 2A23/2B1Kim  2A43/2B2Kim 2A13/2B1Kim = 2A33/2B2Kirm 2vAZB12K1m 2vVA1B12K1m
b,c Q3(Q22-p1%)  byc Q4(Q2%-p1%) . 3b,cp13Q3z 3b,c p13Q3z 3b,c p13Q4z 3b,c p13Qaz
2vA4B22K1m 2vVA3B22K1m 4A25/2B1K1m  4A45/2B2Kim  4A15/2B1Kim = 4A35/2B2Kirm
bzc p1Q3(p12p3+3a?(c+22z)—6ax(c+22)+3x%(c+22)) " bzc p1Q4(p12p3+3a?(c+2z)—6ax(c+2z)+3x%(c+22))
4A23/2B12K1m 4A13/2B12K1m
bzc Q3(-3a*+p13p5+12a3x—3x*+6p1x2z+12ax(x?—plz)+6a?(-3x2+plz)) n
4\/A2B13K1m
b,c Q4(-3a*+p13p5+12a3x—3x*+6plx2z+12ax(x?—plz)+6a?(—3x2+plz)) n
4/A1B13K1m
b,c Q3(-3a*+p13p5-12adx—3x*+6p1x2z+6a?(—3x2+plz)+12ax(-x%+piz))
4\/A4B23K1m
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b,c Q4(-3a*+p13p5—12adx—3x*+6p1x2z+6a?(—3x2+pl1z)+12ax(-x%+p1z)) , b,cp1Q3(3c3+8c2z+6Q22z+223+c(3Q2%2+722))

4vVA3B23K1n + 4A43/2B22K1m
b,c p1Q4(3c3+8c?z+6Q22z+223+c(3Q2%+722)).
4A33/2B22K1m ’
€yy =
_ b,c p12Q1 b,c p1%2Q1 __bge p12Q2 bzc p12Q2 bzc Q1(Q3%2-p1?) | byc Q2(Q3%2-p1?) _
2C1K1m(C1+Q12)3/2 ' 2C2K1m(C2+Q12)3/2  2A43/2C1Kim  2A33/2C2Kim  2C12K1my/C1+Q12 2v/A4C1%2K1m
b,c Q1(Q4%-p1%)  byc Q2(Q4%-p1?) 3b,c p13Qiz 3b,c p13Qiz 3b,c p13Q2z 3b,c p13Q2z
2C22K1myC2+Q1Z  2VA3C22Kim  4CIK1m(C1+Q12)5/2 ' 4C2K1m(C2+Q12)5/2  4A45/2CIKim ' 4A35/2C2Kim
b,c p1Q1(p12p3+3b2(c+22)—6by(c+22z)+3y?(c+2z))  b,c p1Q2(p1?p3+3b2(c+22z)—6by(c+22)+3y?(c+22))
4C22K17(C2+Q12)3/2 - 4A33/2C22K1n -
bzc Q1(=3b*+p13p5+12b3y—3y*+6p1y2z+12by(y%—p1z)+6b%(-3y%+p1z))
4C23K1m/C2+Q12 -
b,c Q2(-3b*+p13p5+12b3y—3y*+6p1y2z+12by(y?—p1z)+6b2%(-3y%+p1z))
4/A3C23K1m t
b,c Q1(-3b*+p13p5-12b3y-3y*+6p1y2z+6b%(-3y%+p12)+12by(-y%+p1z)) n
4C13K1m,/C1+Q12
bzc Q2(=3b*+p13p5-12b3y—-3y*+6p1y?z+6b%(=3y2+p1z)+12by(—=y?>+p1z)) , byc p1Q1(3c3+8c2z+6Q32%z+223+¢(3Q3%+722))
4/A4C13K1m + 4C12K1m(C1+Q12)3/2 +
b,c p1Q2(3c3+8c?z+6Q3%z+223+c(3Q3%+722)).
4A43/2C12K17n ’
pl=zp+z=c+z

p2=z—2zp=2z-—c,

p3 = 2z + 3zp = 2z + 3¢;

p4 = 6z + 3zp = 6z + 3¢;

p5 =2z + 3zp =z + 3c;

p6 = 3z + 2zp = 3z + Zc;

p7 = =3z — 2zp = =3z — 2c;
p8 = —z3 + 3zzp? + 2zp% = —z3 + 3zc¢? + 2¢3;
p9 =7z + 2zp =7z + 2c;

p0 =5z + 4zp = 5z + 4c;
Al=pl1%+ (a—x)2+ (b —y)?%
A2 =p1%+ (a—x)2+ (b +¥)%
A3=p1%+ (a+x)?+ (b —¥)%
A4 =pl®+ (a+x)*+ (b +y)%
Bl =pl12 + (a — x)?;

B2 =pl1? + (a + x)?;
Cl=pl1%+ (b+y)%
C2=p1* + (b —y)?%

Kl =-1+4v;
K2 = -1+ 2v;
K3 =-2+v;
Ql=a—x;
Q2 =a+x;
Q3=>b+y;
Q4=-b+y;
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