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Abstract

It is plausible that most of the Stars in the Milky Way Galaxy, like the Sun, consist of planetary systems, instead of
a single planet. Out of the estimately discovered 3980 planet-hosting stars, about 860 of them are known to be
multiplanetary systems (as of 2023 June). Gravitational microlensing, which is the magnification in the light of a
source star, due to a single or several lenses, has proven to be one of the most useful astrophysical phenomena with
many applications. Until now, many extrasolar planets (exoplanets) have been discovered through binary
microlensing, where the lens system consists of a star with one planet. In this paper, we discuss and explore the
detection of multiplanetary systems that host two exoplanets via microlensing. This is done through the analysis
and modeling of possible triple-lens configurations (one star and two planets) of a microlensing event.
Furthermore, we examine different magnifications and caustic areas of the second planet, by comparing the
magnification maps of triple and binary models in different settings. We also discuss the possibility of detecting the
corresponding light curves of such planetary systems with the future implementation of the Nancy Grace Roman
(Roman) Space Telescope and its Galactic Time Domain survey.

Unified Astronomy Thesaurus concepts: Exoplanet detection methods (489); Gravitational microlensing (672);
Gravitational microlensing exoplanet detection (2147)

Supporting material: animations

1. Introduction

The first discovery of a planet around a solar-type star came
in 1995, when a Jovian-mass planet orbiting the star 51 Pegasi
was detected from observations of periodic variations in the
radial velocity of the star (Mayor & Queloz 1995). Since then,
the exoplanet research has evolved dramatically, involving a
broad range of observational and theoretical effort.

Due to the lack of proper observational instruments and the
difficulties of directly imaging exoplanets, most of these
objects are detected indirectly (Fischer et al. 2014) mostly with
the following methods (see Wright & Gaudi 2013): Astrometric
and Doppler Shift measurements (which are based on the
perturbations of the radial velocity or proper motion of the host
star), Timing (when a planet changes the priodicity in the
brightness of a variable star), Transits (which is based on the
change in the photometric light curve of a star, caused by a
passing planet), and Microlensing.

The Kepler/K2 space missions for detecting exoplanets with
the transit method have shown that it is quite common for a star
to host multiple planets and many multiplanetary systems have
been discovered this way (Livingston et al. 2019;
Maltagliati 2019).

Since our discussion of detecting multiplanetary systems is
mainly based on the microlensing method, we will review some
of its principles and foundations, in the following passages.

Since their first discovery in 1993 (Alcock et al. 1993;
Aubourg et al. 1993; Udalski et al. 1993), gravitational
microlensing events have provided astronomers and astro-
physicists with a powerful tool for studying various objects,

ranging from exoplanets to black holes. These events act as
natural telescopes that can magnify and lead to the detection of
some of the darkest objects in our universe, such as exoplanets
orbiting the lens objects (Mao & Paczynski 1991; Gould &
Loeb 1992; Bennett & Rhie 1996; Bennett 2008), Massive
Astrophysical Compact Halo Objects (Alcock et al.
1997, 2000), Free Floating Planets (Sumi 2014;
Sajadian 2021a), and even Isolated Black Holes in the Galactic
disk (Sahu et al. 2022; Sajadian & Sahu 2023).
The properties of microlensing events due to single and

binary lenses have been studied in great details (see
Liebes 1964; Refsdal 1964, 1966; Schneider & Weiss 1986).
Currently, most of the exoplanets that are discovered via
microlensing, belong to the category of binary events where a
source star passes from behind two lenses; one star with its
companion planet. The only change from the simple case of a
single lens is that the deflection angle, which is caused by the
gravitational field of the lens objects (Dyson et al. 1920),
consists of the sum of two point lenses:
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where m1, m2 are the masses of the two lenses and x1, x2 are
their positions. Here, we assume two lens objects are in the
same distances from the observer.
The binary lens equation, in its complex notation, was

derived by Witt (1990):
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where, μ1=m1/(m1+m2), μ2=m2/(m1+m2), z1 and z2 are
the positions of the lenses, ζ= ξ+ iη and z= x+ iy are the
source and the image positions projected on the lens plane and
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normalized to the Einstein radius (the radius of the images ring
at the complete alignment). z̄ indicates the complex conjugate
of z. By doing some calculations (Witt & Mao 1995), the lens
equation (Equation (2)) becomes a lengthy fifth order
polynomial in z, which requires numerical solutions in order
to trace the position of the images (Fatheddin &
Sajadian 2022).

The binary microlensing method for detecting exoplanets
relies on the existence of one planet in the lens system, but it is
rare for a star to have only one planet. The complicated
degeneracies, lack of fast and accurate models and lack of
observational data, might be some of the causes for not
detecting as many triple microlensing events as the binary ones
(we discuss and review the probabilities of triple-lens events in
more details at the end of Section 2.).

The first observation of triple-lens gravitational microlensing
was done in 2006, when a gas giant was detected orbiting a
stellar binary system (Bennett et al. 2020). The first triple-lens
system consisting of one star and two planets, was detected in
2008 (Gaudi et al. 2008), when a Jupiter/Saturn planetary
system Analog was discovered. Since then, a few other triple-
lens systems, similar to these events, have been observed.

There are many lensing and microlensing projects that
produce TBytes of data i.e., the Optical Gravitational Lensing
Experiment (Udalski et al. 2015), the Microlensing Observa-
tions in Astrophysics (Sako et al. 2008) microlensing group,
and the Korea Microlensing Telescope Network (Kim et al.
2016). The future implementation of ground and Space based
surveys, like the Nancy Grace Roman Space Telescope
(Roman) telescope (Penny et al. 2019) will produce even more
data for triple-lens events.

In this paper, after discussing the properties of triple-lens
systems in Section 2, we will analyze and study the properties
of magnification maps of these systems in Section 3. In
Section 4, we investigate the possibility of detecting the light
curves of multiplanetary systems with the Roman space
telescope. Finally, in the last section, we discuss and
summarize the results.

2. Microlensing from Triple-lens Systems

In this section we are going to review some characteristics of
microlensing due to a triple-lens system and its lens equation so
that we can analyze the features and detection of multiplanetary
systems in the next sections. The existence of a third lens object
can cause several degeneracies in the lens equation, we review
some of these degeneracies in Section 2.2. Since, most of the
exoplanets that are detected with microlensing, belong to the
category of binary lenses, we review some of the probabilistic
comparisons between these events and events with triple lenses
in the last part of this section.

2.1. Parameters of a Triple Lens System

When a source passes from behind three lenses, the only
change from a binary lens situation (Equation (1)) is that the
deflection angle now consists of the sum of three point lenses:
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where m1, m2, m3 are the masses of the three lenses, and
x1, x2, x3 are their positions.
In gravitational lensing formalism, the Einstein radius, θE,

which is the angular radius of the images ring at the time of
complete alignment, is defined as:
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where Ml is the lens mass, Dls=Ds−Dl, Dl and Ds are the lens
and source distance from the observer.
In a triple-lens scenario, we use the following parameters to

analyze or model an event (Figure 1):

1. The mass ratios q21=m2/m1 and q31=m3/m1.
2. The triple separations s21 and s31 (projected on the lens

plane and in units of the Einstein radius for the total
masses; Ml=m1+m2+m3).

3. The angle f from the s12-axis to the s13-axis counter-
clockwise and the angle θ from the x-axis of the chosen
coordinate system to the s12-axis measured counter-
clockwise (also in the Einstein Radius).

4. Radius of the source ρ* (also projected in the lens plane
and in the Einstein Radius).

5. The impact parameter u0.
6. The angle α0 from the s12-axis to the source trajectory

counterclockwise.
7. Time of the closest approach t0 and the Einstein crossing

time tE.

Changing any of these parameters allows for a very large
variety of triple-lens light curves and makes triple lenses more
complicated than binary ones, which were briefly reviewed in
the introduction.
The triple-lens equation for a triple-lens system can be

derived easily as (similar to Equation (2)):

z
m m m

= +
-

+
-

+
-

z
z z z z z z

, 51

1

2

2

3

3¯ ¯ ¯ ¯ ¯ ¯
( )

where μi=mi/Ml, z1, z2, and z3 are the positions of the lenses
projected on the lens planet normalized to the Einstein radius,
ζ= ξ+ iη and z= x+ iy are the source and the image positions
and z̄ indicates the complex conjugate of z.

Figure 1. Parameters of a Triple Lens system. The three lenses are labeled as
m1, m2, m3 (where m1 is the host star and m2 and m3 are the planets). The
trajectory of the source is also illustrated. The coordinate system is centered on
the host star.
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According to Rhie (2002), a polynomial form for this
equation can be derived by choosing a coordinate system in a
way that the position of a mass m1, z1, and the center of mass of
the other two masses, defined as z4, make the lens axis along
the real axis of the complex plane. This process leads to a
lengthy tenth-order polynomial in z, which can not be solved
analytically.

One way to solve the lens equation and calculate the
corresponding light curves of a triple-lens system is the inverse
ray-shooting (IRS) method (Kayser et al. 1986; Wambs-
ganss 1990, 1999), discussed in Appendix. One method to
increase the performance speed of IRS method is using tree
algorithm as explained in Sajadian & Rahvar (2010).

In the next subsection, we will review some degeneracies in
the triple-lens equation.

2.2. Degeneracies in Triple Lens Equation

There are many parameters involved in the shapes of light
curves for microlensing events and consequently, they can have
different shapes. Sometimes, this can lead to a parameter
degeneracy in the modeling of the event either accidentally
(see, e.g., Gaudi 1998) or due to symmetry of the lens equation
(see, e.g., Gould 1994).

In the case of triple microlensing, a four-fold degeneracy in
the light curves can be found, which is similar to the case of
close and wide degeneracy found in a binary lens (Song et al.
2014). Three important degeneracies are expected for triple-
lens microlensing events (which are discussed in detail in Song
et al. 2014.): discrete degeneracy, four-fold close/wide
degeneracy, and continuous external shear degeneracy. Below,
we briefly review each degeneracy.

Discrete degeneracy arises if one reverses the sign of the
three parameters (u0, α0, f), which is owing to the symmetry of
the lens equation. This degeneracy can be resolved by
measuring the second-order parallax effect. In planetary
microlensing, where the mass ratios are q21= 1 and q31= 1,
one can denote the planetary positions in complex notation
(Equation (5)) as zp. If one changes zp into

-zp
1, the shape of the

central caustics remains the same. This degeneracy can also be
found in the case of binary lenses (Dominik 1999) and it is not
just limited to triple lenses.

Finally, if one rewrites the triple-lens equation and expands
the deflection terms caused by two of the masses (m2 and m3) at
the location of the primary mass (m1) using the Taylor
expansion, we end up arriving at a lens equation similar to the
case of binary lenses (Equation (2)). The important conse-
quence of this continuous degeneracy is that in some cases,
multiplanetary systems may be mistakenly detected as a single-
planet system (Song et al. 2014).

2.3. Detection Probability of Triple Lensing Events

For detecting an exoplanet via microlensing, a signal is
considered planetary if the deviations between the light curve
calculated by the binary lens model (where one of the lens
objects is planetary) and the simple single lens model is larger
than a carefully chosen critical value. The Gould & Loeb
criterion (Gould & Loeb 1992) provides a reliable criterion by
considering deviations as planetary signals when a few
observational points deviate consecutively from the single-lens
light curve.

Ryu et al. (2011) show that if we consider the Gould & Loeb
criterion for detecting a planet, for most cases, the detection
probability of the low-mass planet in the triple-lens system is
very similar to that in the binary lens system. The reason for
this similarity is due to the lens superposition in the central
regions (Han et al. 2001). It should also be noted that if the
interference between caustics of the two planets change the
original shapes, the binary superposition would not work well.
Additionally, it can be demonstrated that for the low-

magnification events, where the source star only passes one of
the planetary caustics, the probability of detecting the second
planet is very low (Han & Park 2002). But, if the source star
passes the main caustic (i.e., the high-magnification events), the
probability of detecting the second planetary companion
increases dramatically to unity (Griest & Safizadeh 1998).
This is due to the closeness of planets to the Einstein radius and
makes microlensing a unique method for detecting multi-
planetary systems in such situations (Gaudi 2012).

3. Microlensing Magnification Map Analysis

Magnification maps are two-dimensional planes that show
the magnification in the light of the source star in a region of
the source plane. In a magnification map, each point is a
solution of the lens equation (Equation (5)) regardless of the
source trajectory. Therefore, magnification maps are helpful
tools for discussing and analyzing microlensing events and
their magnification.
In this section we analyze different configurations of the

triple-lens magnification maps by evaluating the change in
average magnification due to the second planet when the
corresponding parameters of the system change and evolve.
The magnification due to lens objects from a point-like

source star in any coordinate, x, of the source plane can be
easily calculated by the inverse of the determinant of
amplification matrix (Schneider et al. 1992):
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If we input deflection angles due to binary (Equation (1)) and
triple lenses (Equation (3)) in Equation (6) and consider the
source plane as a Lx× Ly rectangular plane consisting of
Nx×Ny points, i.e., pixels, we get triple-lens and binary lens
magnification maps due to a point-like source star, respectively.
Furthermore, the average magnifications due to binary and

triple lensing systems can be derived similarly as:
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Now, the magnification due to the second planet can be
defined as the deviation between the mean magnifications of
triple, má ñt , and binary systems, má ñb ,:

m m m= á ñ - á ñ. 9t b3 ( )

There are some regions of the magnification map that the
magnification is very high (almost infinite), i.e., the caustics
(Erdl & Schneider 1993). Caustics can form due to the host star
and the planets as well. Studying the properties of the planetary
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caustics is important because the characteristics of the
corresponding planetary signals in the microlensing light curve
depend highly on them (Han 2006).

One of the most important properties of planetary caustics is
their size or area, since it is used to determine the probability of
detecting the planet. If the planetary caustic is big enough, there
is a higher chance of a source star passing through, or close, to
it. This in turn leads to a more detectable planetary signal.

It is known that a planet and its host star engage in a
Keplerian motion, where they move in elliptic orbits around
their common center of mass. This motion effects the
magnifications due to each planet and the size of their caustics.
However, if the xallarap effects can be neglected (Rota et al.
2021), a planetary signal in the microlensing light curve only
represents a snapshot of the planet at its current angular
separation from the host star, and does not depend on its orbital
motion (Rahvar & Dominik 2009).

Figure 2 shows an animation of the change in the
magnification map of a multiplanetary system which is caused
by the orbital motions of two planets around the host star. It can
be seen that the sizes of the planetary caustics change as the
planets rotate around the barycenter. Additionally, the color of
the caustics also changes, which represents the variation in the
mean magnification of each caustic.

As it was mentioned in the introduction, the case of
gravitational microlensing due to binary lenses has been
studied extensively before. Also, In subsection 2.1, the main
parameters of a triple-lens system were reviewed. Some of
these parameters are only introduced in the case that the third
lens (the secondary planet) exists. These parameters are: (q31,
s31, f).

In order to measure and discuss the changes in μ3, we
assume that the parameters of the primary planet are constant
and only those of the second planet vary. The change in the f
angle was demonstrated in Figure 2.

In order to investigate the dependence and change of μ3 with
its angular separation s31 and mass ratio q31, we consider the

position of the first planet constant at θ= 0°.0, s21= 1.0 θE with
the mass ratio q21= 9× 10−4 (which is about the mass ratio of
the planet Jupiter and Sun). The angle f of the second planet is
also considered constant at 60°.
First, we consider s31 varying between 0.9 θE and 2.5 θE

where the second planet is also a Jovian planet with the mass
ratio q31= 9× 10−4. The top panel of Figure 3 shows the
dynamic change in magnification and area of the second
planetary caustic with respect to its separation from the host
star. We can see that the second planetary caustic becomes
brighter (which represents the increase in its average
magnification) and smaller as the second planet moves away
from the star. The change in μ3 with separation s31 and the
best-fitted curve are shown in Figure 4(a). It can be seen that μ3
increases with s31. However, some deviations from the best-fit
curve are visible in this figure, which are mostly caused by the
approach and retreat of the second planet to the primary planet.

Figure 2. The orbital motion of two planets around the host star and the change
in the system’s magnification map. The color bar displays the mean
magnification at each point in the source plane. An animated version of this
figure is available. Its real-time duration is 16 s. The planetary caustics become
relatively larger and fainter as they move closer to the host star in their
respective orbits.

(An animation of this figure is available.)

Figure 3. Top panel: this animation illustrates the dynamic change in the
magnification map of the system as the separtion of the second planet from the
host star (s31) changes. The second planetary caustic becomes smaller and
brighter as it moves away from the star. Bottom panel: this animation shows
that dynamic change in the magnification map of the system as the mass ratio
of the second planet (q31) changes. The second planetary caustic becomes
largers and brighter as the mass ratio increases. An animated version of this
figure is available. Its real-time duration is 8 s.

(An animation of this figure is available.)
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It should also be noted that, although the mean magnification
increases with distance, but the area of the caustic decreases
considerably, which is shown in Figure 4(b).

Then, we assume that the position of the second planet
remains constant at s31= 1.1 θE and the mass ratio, q31 changes
between 3× 10−4 and 3× 10−3. The dynamic changes of the
second planetary caustic are illustrated in the bottom panel of
Figure 3. We can see that the second planetary caustic becomes
brighter and larger (therefore, more detectable) as q31 increases.
Figure 4(c) demonstrates the change in μ3 as q31 increases. We
can see that μ3 increases linearly with the best-fit line:
y= 3.42x− 0.02. The change in the area of this caustic is also
shown in Figure 4(d), which shows that the caustic area (and
the detection probability) of the second planet also increases
linearly with respect to q31.

4. The Roman Galactic Time Domain Survey

The Roman space telescope’s Galactic Time Domain Survey
(RGTDS) will detect an unprecedented number of exoplanets
by monitoring the light curves of a large sample of stars toward
the center of our galaxy. RGTDS is expected to discover bound
exoplanets where the planets have distances in the range of 1 au
and more from their host star using the gravitational

microlensing (Penny et al. 2019). Another possible discoveries
by the Roman telescope are detection of habitable exoplanets,
exomoons rotating free floating planets, and exoplanets around
source stars (Bagheri et al. 2019; Sajadian 2021b; Sajadian &
Sangtarash 2023).
In order to explore the detection of multiplanetary systems in

RGTDS, we need to simulate a sample of different triple-lens
planetary microlensing light curves and see if there is a
significant difference between the triple and binary models that
is observable by the Roman telescope.
We prepared a sample of 500 microlensing events where we

considered both binary and triple systems and their difference.
In the triple models, the planet that was considered in the
corresponding binary systems also exists, with the addition of
another planet. This way we can investigate that if a planet is
detected with microlensing and the Roman telescope, are the
effects of the second planet also detectable in the light curve.
For preparing our sample, we performed a Monte Carlo

simulation by taking into account all of the relevant factors,
e.g., mass ratios, angular separations, radius of the source star,
impact parameter, photometric accuracy, etc. Also, instead of
considering the position of the host star as the center of our
reference frame, we make a rectangular plane with the size of

Figure 4. Panels (a) and (b) show the change in the mean magnification and caustic area of the second planet with respect to its separation (s31). Figure (c) and (d)
show the change in the mean magnification and caustic area of the second planet with respect to its mass ratio (q31).
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Lx× Ly around the path of the source star and consider the
center of this plane as our reference frame. This approach
makes the light-curve simulations (which are explained in
Appendix) easier and allows for a wide range of samples by
just moving the positions of the lens objects with respect to the
origin.

Four light curves taken from the sample are shown in
Figure 5. The light curves corresponding to triple systems are
shown with the red curve, whereas the binary system light
curves are illustrated with a dashed black curve. The difference
between the triple and binary systems are displayed with a blue
curve at the bottom of each light curve. We can see that the
planetary signal due to the second planet is clearly visible in
every light curve.

To simulate the synthetic data points taken by the Roman
telescope, we assume these observations are done in the W149
Filter, which is a combination of the stellar magnitude in the
standard bands as W149 = (MH+MJ+MK)/3, where MH, MJ,
and MK are stellar absolute magnitudes in the standard filters H,
J, and K, respectively. The photometric properties of stars in
the simulation are determined using the Galactic Besançon
model1 (Robin et al. 2004, 2012). We use the 3D extinction
map by Marshall et al. (2006), and the relation between
extinctions in different filters given by Cardelli et al. (1989).

The Roman telescope can detect stars with the apparent
magnitude in the range W149 ä[14, 26] mag (Penny et al.
2019).
The cadence between data is fixed at 15.16 minutes. Roman

will detect the Galactic bulge during six 62 days observing
seasons.2 Three seasons will be done during two first years of
the Roman mission, and others will happen during two last
years of its mission. So there is a long gap between first three
observational seasons and others.
In fact, the Roman telescope can detect the Galactic bulge

only during two 62 days time intervals in a year. Hence, the
time interval between two observing seasons will be at least
120 days. More details about these simulations can be found in
Sajadian (2021b).
As it was mentioned in Section 2.3, in planetary microlen-

sing with one planet, the difference between the χ2 values
derived from fitting the real binary model, cbinary

2 , and the best-

fitted single lens model, csingle
2 is considered for justifying a

detection. Here, we consider the same notion for investigating
that if a second planet is detected by Roman. We assume that
the system is in fact triple and take the following value as our

Figure 5. Light curves of four different microlensing events. In each figure the triple and binary models and their difference are illustrated. The magnification map on
the top right of each light curve corresponds to the configurations of the lenses and the path of the souce star where there is a second planet (the red curve), whereas the
maginfication map at the bottom represents the binary system configuration (the dashed black curve).

1 https://model.obs-besancon.fr/ 2 Roman Galactic Bulge Time Domain Survey
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criterion for detecting the second planet:

c c cD = - . 102
triple
2

binary
2 ( )

We have calculated the cD n
2 (normalized Δχ2) values for

our sample of light curves by considering various apparent
magnitudes at the baseline W149 (mW149), different Einstein
crossing times (tE [days]), planetary mass ratios (q12 and q13),
angular separations (s12 and s13), etc.

The threshold of cD > 100n
2 is usually considered as the

criterion for detecting a planetary signal with weak sensitivity
in the light curve of a microlensing event. Whereas, the
threshold of cD > 500n

2 indicates a planetary signal detection
with high sensitivity. If we consider these criteria for our light-
curve sample, 85 out of 500 events convey a second planetary
signal detected by Roman, including 24 events where the
second planetary signal was robust. This gives an efficiency
between 4.8% and 17%.

The statistical distribution of our simulated parameters are
shown in Figure 6. The red curve shows the detected
multiplanetary systems with low sensitivity and the green
curve shows the ones with high sensitivity.

It is also worth noting that since Roman will provide a very
large sample of microlensing events with planetary signals,
even the high sensitivity criterion (which has an efficiency of
4.8%) would result in the detection of an unprecedented

number of multiplanetary systems via gravitational
microlensing.
The light-curve data and the full simulation results

(including the photometric simulations) of the Roman space
telescope can be found in Fatheddin (2023).

5. Conclusions

It is quite plausible that a star can host multiple planets, as it
has been evident in the transit data from space telescope like
Kepler and the Transiting Exoplanet Survey Satellite.
In this work, we studied the detection and characterization of

multiplanetary systems with gravitational microlensing. We
have shown that different parameters can affect the shape of
microlensing magnification maps and proportionately change
the shape of corresponding light curves. Also, we have shown
that the area of the second planetary caustic, and therefore its
detection probability, is also highly dependent on its config-
urations (i.e., its separation from the host star or its mass ratio).
We performed Monte Carlo simulations for all of the

parameters involved in triple-lens planetary events and
simulated 500 light curves based on the results. We studied
the possibility of detecting these multiplanetary systems with
the future implementation of the Roman space telescope. Our
results show that Roman will have a detection efficiency
between 4.8% and 17%, which will lead to a large and diverse

Figure 6. Visualizations of statisctical distributions of the parameters used in the simulated data set and the results. The red curve shows the detected multiplanetary
systems with low sensitivity and the green curve shows the ones with high sensitivity.
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sample of multiplanetary systems using the microlensing
method.

In this paper, we mainly considered the multiplanetary
system consisting of a host star with two planets. However, this
results can also be simply investigated for a system with a
higher number of planets.
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Appendix
Magnification Map and Light-curve Simulations

Most of the simulations of binary microlensing events are
modeled by using the contour integration method, which is
based on the Green’s theorem (Gould & Gaucherel 1997;
Dominik 1998; Bozza et al. 2018) in order to infer the
characteristics and the physical parameters of the events. In this
method, the total area of the lensed images is calculated, which
leads to the magnification factors and light curves. Inverse ray
shooting (IRS; Kayser et al. 1986; Wambsganss 1990, 1999) is
not used in these cases due to its inefficiency for fitting light
curves of low-multiplicity point mass lenses of microlensing
planetary systems (see Rhie 2002). But, IRS proposes an
efficient method for modeling planetary microlensing events
with more than two lenses (Bennett 2010). Here, we briefly
explain the IRS method which was used for simulating the
magnification maps of Section 3 and light curves of Section 4.
This algorithm is based on our discussion in Sections 1 and 2.

When we observe a Gravitational Lensing or Microlensing
event, the light rays are emitted from the source (which is in the
source plane) and after moving through the Lens plane, they are
deflected due to the gravitational field of the Lens. The special
theory of relativity states that the light rays are “time-
invariant,” which means that the time reverse of the path that
light rays take from any source to an observer is allowed. This
is the main notion behind IRS.

In the formalism of IRS, for inverting the lens equation,
Equation (5) (i.e., knowing the position, distortion, magnifica-
tion, of the image(s) of the source), we shoot rays backwards
from the observer to the lens plane and by calculating the
deflection angle of each ray (Equation (3)), we find the location
of where the light ray hits the source plane, and therefore
forming an image there. Because of the very long distances in
astronomy, the observer can not differentiate between most
close and far objects; so, in IRS, everything is happening in one
plane, which is the observed plane.

Since the source is moving behind the Lens objects (we
usually take the lens to be stationary), we can make a set of
frames and in each frame propagate the rays by simulating the
motion of the source and then take a snapshot. Finally a
dynamic light curve can be made by calculating the areas of the
formed images and then dividing them by the area of the
unlensed source.

We also note that in our simulations, in order to consider the
finite source effects, we have considered the source star as an
array-like homogeneous disk with the radius ρ*.
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