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Abstract: Due to their flexible deployment and movement capability, unmanned aerial vehicles
(UAVs) are being utilized as flying mobile edge computing (MEC) platforms, offering real-time
computational resources and low-latency data processing for a wide range of applications. This
article aims to explore a UAV-assisted MEC system where multiple UAVs provide MEC services
to mobile devices (MDs) using an ellipsoidal trajectory. Depending on the position, size, and
orientation of the ellipsoidal trajectories, the coverage area of the UAV, the energy consumption, and
the task transmission latency of MDs change. This has rarely been investigated in the existing works.
Furthermore, unlike other studies, we consider that each MD has varying task offloading rates, which,
together with varying user densities, makes the problem more challenging. Therefore, we formulate
an optimization problem that finds the center position, major radius, minor radius, and rotation
angle of the ellipsoidal trajectory of UAV-assisted MEC servers, to minimize the total transmission
latency and energy consumption of mobile devices while taking into account the required data
transmission rate, task transmission time, and energy consumption constraints. Then, we transform
this optimization problem into a Markov decision process and propose a deep Q-learning-based
ellipsoidal trajectory optimization (DETO) algorithm, to resolve it. The results from our simulations
demonstrate that DETO efficiently computes the optimal position and trajectory for each UAV, and
can achieve better performance compared to other baselines, leading to the reduced data transmission
latency and energy consumption of mobile devices across a range of simulation scenarios.

Keywords: unmanned aerial vehicle (UAV); mobile edge computing (MEC); task offloading; UAV
ellipsoidal trajectory; deep reinforcement learning; user association

1. Introduction

Recent technological advancements and the widespread adoption of smart devices
have given rise to a plethora of innovative applications, including augmented reality
(AR) [1], virtual reality (VR) [2], automatic driving [3], real-time video analytics [4], and
mobile online gaming [5], which are complex, computationally intensive, and highly energy
demanding [6]. Despite being equipped with advanced computation and communication
technology, smart devices or mobile devices (MDs) have limitations, in terms of energy
resources, computational power, and memory [7]. These constraints constitute a significant
challenge for processing computation-intensive and time-sensitive applications in MDs [8].

An effective strategy is to transfer computation-intensive tasks from these resource-
constrained devices to devices with a more powerful computational capacity, i.e., mobile
edge computing (MEC) servers that are situated at the network’s edge [9–11]. This strategy
enables faster processing of data. By transferring the computation-intensive tasks to MEC
servers, MDs can reduce the burden of handling resource-intensive computations. They
can instead concentrate on carrying out lightweight operations. As a result, this strategy
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not only increases overall system capability while consuming less energy but also extends
the battery life of the MDs [12].

Even though MEC offers several advantages, it is imperative to consider the delay
introduced by the physical distance between MDs and MEC servers [13,14], especially in
time-sensitive applications (e.g., AR and VR). In the context of AR and VR applications,
even minor delays can impede the seamless integration of the virtual and physical worlds,
ultimately affecting user engagement and overall experience. Moreover, during crowded
events or festivals, offloading tasks to MEC servers becomes challenging, due to increased
network congestion and reduced resource capacity. It is also difficult to establish a connec-
tion that is reliable between MDs and MEC servers because of the increased user activity.
Therefore, unmanned aerial vehicles (UAVs) equipped with MEC (UAV–MEC) servers can
be employed as a potential solution, to provide communication and computation services
to the MDs [15–18]. Deploying UAVs near MDs significantly reduces data processing
time, making them suitable for time-sensitive applications that require real-time analysis.
UAVs can adapt their position and coverage based on user density and location, ensuring
better service quality. Moreover, they establish direct communication links with MDs.
The performance of the MEC system is, therefore, expected to be significantly enhanced by
the deployment of UAVs.

A lot of research has been conducted on UAV location optimization, focusing on two
types of deployment scenarios: static deployment [19–22] and mobile deployment [23–27]
in 2D or 3D environments. UAVs serve fixed or predefined areas for specific purposes,
using static deployment. Mobile UAV deployment involves UAVs with the ability to change
locations and relocate as necessary.

However, existing research problems have not explored the potential advantages of
using UAVs with ellipsoidal movement, which allows dynamic adjustments in position,
trajectory, and shape within a predefined area. This adaptability is essential for scenarios
with varying user densities, allowing UAVs to increase coverage, serve more MDs, reduce
data transmission distances, and expedite task execution. In contrast to task-offloading
studies [28–30], which often simplify user scenarios by assigning a single task per user, our
research addresses the task offloading request rate, considering scenarios where MDs may
have multiple tasks or no tasks. When MDs offload tasks, task transmission consumes their
energy resources, which is further influenced by the relative positions of the UAVs and
MDs. The increased energy consumption can significantly reduce the MD’s battery life,
potentially impacting the network’s overall longevity. Hence, the strategic deployment
of UAVs becomes imperative, to minimize energy consumption during data transmission.
However, an exclusive focus on energy efficiency may slow down data transmission,
potentially impeding rapid communication and increasing total task transmission latency.
Conversely, prioritizing only latency minimization can lead to elevated energy consumption
and draining device batteries. Therefore, in this paper, we aimed to achieve a balance by
optimizing both the transmission latency and the energy consumption of MDs. Moreover,
a single UAV’s constrained computing and energy capacities can limit its performance
in task offloading scenarios. Employing multiple UAVs may be more advantageous and
suitable when the number of users is high, or the coverage area is large. However, it can
be difficult to choose a globally optimal strategy in multi-UAV systems without exact and
comprehensive environmental knowledge.

Recently, deep reinforcement learning (DRL) [31,32], which is a combination of re-
inforcement learning (RL) [33] and deep learning (DL), has gained attention, in solving
complex optimization problems. These problems include optimizing UAV locations for
maximizing spectral efficiency or quality of experience (QoE) [26,27], trajectory planning
for UAV–MEC systems, to achieve energy efficiency during task execution [28,29], energy
management, and energy efficiency enhancements in network performance [34–37], as well
as optimizing UAV trajectories, to minimize energy consumption during data collection [38].
In DRL, the agent tries out various actions within each state, observes the resulting rewards,
and selects the action that maximizes the cumulative reward. At each step, the expected
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reward of the next state is combined with the immediate reward of the current state and
guides the agent’s decision making process toward potential actions [39]. As a result,
through continuous learning and adaptation, DRL demonstrates its capacity to effectively
solve complex optimization problems with better solutions.

Therefore, in this article, we propose a DRL model named the deep-Q-network-(DQN)-
based ellipsoidal trajectory optimization (DETO) algorithm for UAVs in a UAV-assisted
MEC system. The key contributions of this article are summarized as follows:

• A UAV–MEC system is investigated, where multiple UAVs are used as flying MEC
servers to provide computing services to the associated MDs. Each MD has computation-
intensive tasks to offload to the UAV–MEC server. The primary objective is to reduce
the weighted sum of the total data transmission latency and energy consumption
of MDs by optimizing the position, size, and shape of ellipsoidal trajectories for the
UAV–MEC servers.

• A Markov decision process (MDP) is formulated for this optimization problem. Then,
a DQN-based ellipsoidal trajectory optimization (DETO) is proposed, to optimize the
center position, major radius, minor radius, and rotation angle of the ellipsoidal trajec-
tories for the UAV–MEC servers. Additionally, DETO also optimizes the associations
between MDs and UAV–MEC servers.

• The Geolife dataset [40], providing user position data, is used for conducting extensive
simulations. According to the simulation findings, the proposed model performs
better than other baseline approaches, including the greedy algorithm and genetic
algorithm (GA), in terms of different numbers of MDs, different numbers of task
request rates, and different numbers of UAVs.

The remaining content is arranged as follows. Related works are discussed in Section 2.
In Sections 3 and 4, the details of the system model and problem formulation are explained,
respectively. Section 5 describes the proposed algorithm. Section 6 presents a performance
evaluation of the simulations, and Section 7 concludes our work.

2. Related Work

There has been a lot of research on the difficulties that come with deploying UAVs
while taking into account a number of factors. Examples include optimizing response
time and bandwidth efficiency [19], maximizing the number of high-priority ground nodes
(GNs) [20], minimizing the number of mobile base stations (MBSs) to provide coverage to
a group of ground terminals (GTs) [21], maximizing system throughput [22], improving
spectral efficiency [26], and optimizing quality of experience (QoE) [27]. Next, we provide
a brief introduction to these aspects.

2.1. Optimal Placement of Static UAVs

Earlier studies focused on the deployment of fixed-position UAVs in a number of
scenarios, including both single-UAV and multi-UAV configurations. In [19], the authors
introduced an evolutionary algorithm for disaster areas, optimizing the terrestrial and UAV
base station positions to reduce their count, enhance response times, and ensure sufficient
bandwidth. In [20], an optimal UAV deployment strategy was suggested for high-speed
wireless networks, to increase the number of served high-priority GNs. The main objective
of these studies was to address the problem of developing a single UAV, in order to increase
its coverage. However, as the need for wireless connectivity grows, it becomes more and
more important to investigate the deployment of multiple UAVs while trying to achieve
even wider coverage, improving the efficiency of wireless networks. In [21], the challenge
of establishing wireless connectivity in infrastructure-limited terrestrial networks was
addressed by using MBSs mounted on UAVs, aiming to ensure communication coverage
for distributed GTs by minimizing the number of MBSs through a polynomial-time spiral
arrangement algorithm. For high-rate wireless communications systems, an iterative
3D multi-UAV deployment strategy was suggested in [22]. The goal was to maximize
system throughput while considering co-channel interference and quality of service (QoS)
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requirements. However, the abovementioned studies failed to consider multiple UAVs’
high levels of mobility and flexible movement design.

2.2. Optimal Placement of Mobile UAVs

In [23], a novel cyclical multiple access method using a base-station-equipped mobile
UAV was proposed, to enhance wireless connectivity and communication quality for
distributed GTs through scheduled interactions. In [24], the author presented a mobile
relaying technique, using high-speed UAVs to enhance communication between a source
and destination by optimizing the trajectory and power allocation of the UAV iteratively.
However, the abovementioned studies considered a single UAV and designed a simple
trajectory for it. The study in [25] focused on energy-efficient UAV-to-GT communications,
proposing a circular trajectory with the center position at the GT, optimizing the UAV’s
trajectory to find a balance between communication throughput and energy consumption.
However, the paper focused on optimizing the speed and flight radius of a single UAV, to
achieve an optimal circular trajectory.

2.3. Optimal Placement of UAVs Using RL Techniques

In recent decades, the application of machine learning, especially reinforcement learn-
ing, has gained significant attention, for solving UAV deployment problems by enabling
adaptive and optimized operations in dynamic environments. The proposed approach
in [26] used BS-equipped UAVs to enhance cellular network capacity in high-traffic scenar-
ios under 5G networks and to optimize 3D UAV–BS locations, based on user requirements,
to maximize spectral efficiency. In [27], a novel framework addressing UAV deployment
and movement for QoE optimization was introduced, incorporating genetic algorithm-
based cell division, Q-learning-based deployment, and movement strategies to enhance
cumulative user satisfaction. These papers concentrated on improving the positions of
UAVs in a multi-UAV scenario, with a focus on communications-related issues. Additionally,
the UAV-assisted MEC system was explored by investigating the flexible movement of UAVs
in [28,29]. A cooperative multi-agent DRL framework was used to investigate collaborative
task offloading in a multi-UAV-multi-EC MEC system, optimizing trajectories, communications,
and computation, to reduce delays and energy consumption during execution [28]. A flying
MEC architecture that offloaded tasks to UAVs was introduced, aiming to achieve energy
efficiency with DRL-based and convex-optimization-based trajectory control techniques [29].

2.4. Energy Efficiency and Energy Management with the RL Technique

RL has also gained attention in optimizing energy efficiency and energy management
in different network environments. The study in [34] addressed the complex challenge
of optimizing energy-efficient resource allocation in cognitive radio (CR) networks while
maintaining QoS, using model-free RL methods including Q-learning and state–action–
reward–state–action (SARSA) with a cooperative framework. In [35], the authors discussed
optimizing energy management and time scheduling in the context of radio-frequency-
powered CR networks, to improve long-term secondary throughput using a deep deter-
ministic policy gradient (DDPG) approach. The authors in [36] presented a DRL-based
framework for optimizing energy efficiency in reconfigurable-intelligent-surface-(RIS)-
assisted cellular networks, addressing the joint optimization of base station transmitting
power and RIS configuration. An energy-preserving MAC protocol for wireless sensor net-
works based on Q-learning was presented in [37], optimizing MAC parameters adaptively,
to extend network lifetime and reduce energy consumption. The study in [38] introduced
a DRL approach for optimizing UAV trajectory planning in wireless sensor networks,
focusing on energy consumption minimization during data collection.

In the abovementioned UAV deployment studies, the primary objective was to opti-
mize the horizontal location and altitude of UAVs, while the concept of ellipsoidal move-
ment for UAVs remained unexplored. To address this gap, our research explores the
potential of UAVs to dynamically adjust their trajectories in ellipsoidal paths, thereby en-
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hancing the connection between MDs and UAVs. Each MD may have multiple tasks rather
than just one because of the variance in task offloading request rates. Furthermore, we have
developed a multi-objective framework aimed at minimizing the weighted sum of total
transmission latency and energy consumption that differs from a single-objective perspec-
tive. We use user positions taken from the Geolife trajectory dataset rather than random
user placements. This method offers precise location data, which enhances the optimization
of ellipsoidal trajectories for UAVs, bringing them closer to real-world scenarios.

3. System Model

We consider a square region consisting of a set of MDs, represented byD = {1, 2, 3, . . . , M},
and a set of UAVs, denoted by U = {1, 2, 3, . . . , N}. Other notations used in the system
model are in Table 1.

Table 1. List of Notations.

Notation Description

M,D Number and set of MDs
N,U Number and set of UAVs
Ai,j User association between the ith MD and the jth UAV–MEC server
λi Task request rate of MD i
łi Input data size (in bytes) of each task of MD i

λmin, λmax Minimal, maximal values of task request
łmin, łmax Minimal, maximal values for the task data size
[xi, yi, 0] Coordinates of the ith MD

[xj(t), yj(t), h] Coordinates of the jth UAV–MEC server
T Cycle period of UAV–MEC server’s ellipsoidal trajectory

Cx,j X-coordinate center of the jth UAV–MEC server’s ellipsoidal path
Cy,j Y-coordinate center of the jth UAV–MEC server’s ellipsoidal path
Rx,j Major radius of the jth UAV–MEC server’s ellipsoidal path
Ry,j Minor radius of the jth UAV–MEC server’s ellipsoidal path
θj Rotation angle in the jth UAV–MEC server’s ellipsoidal path
ri,j Ground distance

di,j(t) 3D distance between MD i and UAV–MEC server j
PLLoS Path loss of line-of-sight link

PLNLoS Path loss of non-line-of-sight link
P(LoS) Probability of line-of-sight link

P(NLoS) Probability of non-line-of-sight link
a, b Propagation environment constants
c Speed of light
f Carrier frequency

ηLoS, ηNLoS Additional loss for LoS and NLoS propagation modes
ω Elevation angle between MD and UAV–MEC server

PLi,j(t) Path loss between MD i and UAV–MEC server j
h Height of the UAV–MEC server
Pt Transmit power of the MD
σ2 Noise power
B Channel bandwidth

SNRi,j(t) Signal-to-noise ratio between MD i and UAV–MEC server j
Ri,j Average data transmission rate

TTrans
i,j Data transmission latency between MD i and UAV–MEC server j

ETrans
i,j Energy consumption for transferring data from MD i to UAV–MEC server j

Ttotal
j Total data transmission latency of MDs connected to UAV–MEC server j

Etotal
j

Total transmission energy consumption of MDs connected to UAV–MEC
server j for offloading task request per second

Uj
Weighted sum of transmission latency and transmission

energy consumption

ρ
Relative weights of transmission latency and transmission energy

consumption of MDs connected to UAV–MEC server j
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We assume the current location of the MDs is known and that each MD has computation-
intensive tasks to execute. The MDs themselves, however, are unable to execute these
computation-intensive tasks locally because of limited resources in processing power, mem-
ory, or energy. To address this, UAVs are utilized to enhance the delivery of MEC services
to ground MDs, allowing them to use more powerful computing resources for efficient task
execution. Each MD i has a task request rate λi (λmin ≤ λi ≤ λmax), and the size of the
input data for each task is denoted łi (łmin ≤ łi ≤ łmax), where λmin, λmax are the minimum
and maximum task request values and łmin, łmax are the minimum and maximum task data
sizes. MDs transfer all their computational task requests to UAV–MEC servers for execution.
The UAV–MEC servers hover over a target area in an elliptical pattern while providing
services to the connected MDs. In particular, to prevent trajectories from colliding, a careful
deployment plan is essential. We choose each UAV–MEC server’s initial center position for
the ellipsoidal trajectory from the cluster center. Thus, a specific sub-area within the total
coverage region is allocated to each UAV, which helps in providing MEC services to the
ground MDs located in that specific sub-area in an efficient manner. Additionally, each MD
can establish a connection with one UAV–MEC server at a time, to offload its task request.
Then, one can have

Aij ∈ {0, 1}, ∀i ∈M, ∀j ∈ N, (1)

where Aij = 1 implies the ith MD is associated with the jth UAV; otherwise, Aij = 0.

3.1. Equations of the UAVs Ellipsoidal Movement

On the horizontal plane, an ellipse’s equation, according to [41], can be presented as

(x− Cx)2

R2
x

+
(y− Cy)2

R2
y

= 1, (2)

where the ellipse’s center is located at (Cx, Cy); Rx and Ry, respectively, are the radii of the
X and Y axes. If the ellipse rotates at a particular angle, θ, the equation can be written as

((x− Cx) cos(θ) + (y− Cy) sin(θ))2

R2
x

+
((x− Cx) sin(θ)− (y− Cy) cos(θ))2

R2
y

= 1.
(3)

Equation (3) can be written as a parametric equation of a rotated ellipse, as follows:

x(δ) = Cx + Rx cos(δ) cos(θ)− Ry sin(δ) sin(θ),

y(δ) = Cy + Rx cos(δ) sin(θ) + Ry sin(δ) cos(θ).
(4)

This parametric equation is used to calculate the UAV’s X and Y location points on the
rotated ellipsoidal path, using parameter δ. Specifically, for any given time t, δ(t) = 2π

T (t)
calculates the UAV’s position along the ellipsoidal path [42], where 2π and T represent the
complete circumference of the ellipse and the total time for the UAV to complete one cycle
over the ellipse, respectively.

In our considered scenario, we assume the jth UAV–MEC server following an ellip-
soidal trajectory on the horizontal plane with major radius Rx,j and minor radius Ry,j,
as well as rotation angle θj (Figure 1). The center position of this ellipsoidal trajectory is
represented by (Cx,j, Cy,j). The UAV–MEC server maintains a constant altitude h while
flying, similar to [25,43]. Within cycle period T, the UAV–MEC server completes one cycle
of this ellipsoidal trajectory, in order to assist the associated MDs. We partition cycle period
T into P equally sized time intervals. Thus, in each time slot t, the coordinates of the jth
UAV–MEC server are denoted [xj(t), yj(t), h], where xj(t), yj(t), and h represent the X, Y,
and Z coordinates, respectively, of UAV–MEC server j in time slot t along the ellipsoidal
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path. By using Equation (4), the X, Y location of the jth UAV–MEC server in time slot t can
be written as

xj(t) = Cx,j + Rx,j cos
(

2π

T
t
)

cos(θ)

− Ry,j sin
(

2π

T
t
)

sin(θ),

yj(t) = Cy,j + Rx,j cos
(

2π

T
t
)

sin(θ)

+ Ry,j sin
(

2π

T
t
)

cos(θ).

(5)

Figure 1. The XY-plane positions of MDs and a UAV with an ellipsoidal trajectory.

3.2. Air-to-Ground Path Loss Model

Now, if the ith MD wants to offload its task to the jth UAV–MEC server, where the
position of MD i is denoted (xi, yi, 0) in the 3D coordinate system, then the ground distance
between MD i and UAV–MEC server j in time slot t is denoted ri,j(t). While the UAV–MEC
server moves along the ellipsoidal path, the 3D distance between MD i and UAV–MEC
server j in time slot t is expressed as

di,j(t) =
√
(xi − xj(t))2 + (yi − yj(t))2 + h2. (6)

The wireless communications model between the UAV–MEC server and the ground
MDs is constructed based on line-of-sight (LoS) and non-line-of-sight (NLoS) link prop-
agation modes, from which the air-to-ground path loss model is derived. From [44,45],
the mathematical equations for the path loss of the LoS and NLoS propagation modes can
be expressed as follows
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PLLoS = 20 log di,j(t) + 20 log f + 20 log
4π

c
+ ηLoS,

PLNLoS = 20 log di,j(t) + 20 log f + 20 log
4π

c
+ ηNLoS,

(7)

where c represents the light’s propagation speed and f represents the carrier frequency;
ηLoS and ηNLoS are the environment factors specific to average the additional path losses
for the LoS and NLoS propagation modes, respectively. However, according to the Interna-
tional Telecommunication Union (ITU) guidelines for radio transmissions, the following
parameters are essential for figuring out the geometric probability of LoS transmission in
an urban setting:

• α represents the portion of the total land area occupied by buildings.
• β quantifies the average density of buildings per unit area, measured in terms of the

number of buildings per square kilometer.
• γ is a scale parameter that illustrates the distribution of building heights, using the

Rayleigh probability density function.

Using these parameters, the LoS probability equation between MD i and UAV–MEC
server j can be represented as

P(LoS) =
m

∏
n=0

1− exp

−
(

hj − (n + 1
2 )

(hj−hi)

(m+1)

)2

2γ2


, (8)

with
m = b(hj − hi)tanθ

√
αβ− 1c, (9)

where the height of the transmitter (the UAV–MEC server) and the receiver (the MD) are
denoted hj and hi, respectively. It is important to mention that the system’s frequency has
no effect on the geometric LoS formula, and this formula can be represented by using the
simple modified sigmoid function (S-curve), which significantly simplifies the calculation
of the LoS probability.

Moreover, the probability function for the LoS link using the S-curve can be represented
as

P(LoS) =
1

1 + a exp(−b(ω− a))
, (10)

where the propagation environment determines constants a and b, which represent var-
ious scenarios, including suburban, urban, dense urban, and high-rise urban zones;
ω = arctan( h

ri,j(t)
) is the elevation angle between MD i and UAV–MEC server j in time slot

t along the ellipsoidal trajectory. The probability function for establishing the NLoS link
is then

P(NLoS) = 1− P(LoS). (11)

Therefore, the probabilistic mean path loss of the system in time slot t can be ex-
pressed as

PLi,j(t)) = P(LoS)× PLLoS + P(NLoS)× PLNLoS. (12)

Now, using Equations (7), (10), and (11) in (12) and by applying basic algebraic
operations, we have the following [44,46]:

PLi,j(t) =
ηLoS − ηNLoS

1 + a exp
(
−b
(

arctan
(

h
ri,j(t)

)
− a
))

+ 10 log(di,j(t)2) + 20 log( f ) + 20 log
(

4π

c

)
+ ηNLoS,

(13)
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where ri,j(t) =
√(

xi − xj(t)
)2

+
(
yi − yj(t)

)2. In our scenario, we assume the transmit
power of each MD is the same. Thus, the signal-to-noise ratio between MD i and UAV–MEC
server j in time slot t is

SNRi,j(t) =
Pi

PLi,j(t)× σ2 , (14)

where Pi is the transmit power of MD i, and σ2 is the noise power. The ground-to-air (G2A)
data transmission rate between MD i and UAV–MEC server j in time slot t is

Ri,j(t) = B log2(1 + SNRi,j(t)). (15)

The average data transmission rate for MD i throughout cycle period T is then de-
fined as

Ri,j =
1
P

P

∑
t=1

Ri,j(t). (16)

Assume that all task requests coming from MD i, which is connected to UAV–MEC
server j based on maximum throughput, are offloaded through the G2A channel. Thus,
the G2A data transmission latency, TTrans

i,j , between MD i and UAV–MEC server j is deter-
mined by the task’s data size, łi, and the rate at which the data are transmitted, Ri,j. Then,
TTrans

i,j can be stated as

TTrans
i,j =

łi
Ri,j

. (17)

Therefore, the total data transmission latency experienced by the MDs connected to
UAV–MEC server j for offloading task requests per second can be obtained as follows:

Ttotal
j =

M

∑
i=1

Ai,jλiTTrans
i,j , (18)

where λi is the task offload request rate of MD i.
The energy consumption for task transmission between MD i and UAV–MEC server j

can be obtained as follows:
ETrans

i,j = PiTTrans
i,j . (19)

The total transmission energy consumption of all MDs connected to UAV–MEC server
j for offloading task requests per second is

Etotal
j =

M

∑
i=1

Ai,jλiETrans
i,j . (20)

4. Problem Formulation

The aim of this article is to minimize the total transmission latency and the total
transmission energy consumption of MDs. Thus, the function can be written as

Uj = ρTtotal
j + (1− ρ)Etotal

j , (21)

where ρ ∈ [0, 1] is a coefficient that is used to define the relative weight of transmission
latency and transmission energy consumption based on the nature of the application.
A higher ρ value prioritizes reducing transmission latency, while a lower value emphasizes
lowering energy consumption. Additionally, ρ can be assigned to different values to align
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with various objectives and can be easily modified through the application settings, as
needed. Next, the optimization problem can be expressed as follows:

min
Cx,j ,Cy,j ,

Rx,j ,Ry,j ,θj

N

∑
j=1

Uj, (22)

s.t.
N

∑
j=1

Ai,j = 1, ∀i ∈ M, (23)

Xmin ≤ Cx,j ≤ Xmax, ∀j ∈ N, (24)

Ymin ≤ Cy,j ≤ Ymax, ∀j ∈ N, (25)

Rmin ≤ Rx,j ≤ Rmax, ∀j ∈ N, (26)

Rmin ≤ Ry,j ≤ Rmax, ∀j ∈ N, (27)

θmin ≤ θj ≤ θmax, ∀j ∈ N, (28)

Ri,j ≥ Rth, (29)

Ttran
i,j ≤ Tth, (30)

Etran
i,j ≤ Eth, (31)

where Equation (23) indicates one MD can connect to one UAV–MEC server at a time, to of-
fload its task. Equations (24) and (25) indicate the horizontal and vertical center position de-
ployment constraints for the UAV–MEC server’s ellipsoidal trajectory. Equations (26)–(28)
are the constraints for the major radius, minor radius, and rotation angle, respectively,
which define the size and shape of the ellipsoidal trajectory. Constraint (29) indicates that
the data transmission rate should be higher than the predefined threshold value, to ensure
the QoS for each MD. Equation (30) is the constraint for the transmission latency, and (31)
is the constraint for the transmission energy consumption of each MD, which has to be less
than the threshold value.

To address the problem formulated above, we propose a DQN-based solution in the
next section, to obtain nearly optimal results utilizing environmental knowledge.

5. Proposed Algorithm

In this section, the proposed DQN-based ellipsoidal trajectory optimization (DETO)
algorithm is discussed in detail, with a focus on the formulation of the state, action, and re-
ward design aimed at addressing the optimization problem presented in Equation (22).

5.1. Markov Decision Process Formulation

Generally, RL problems can be represented as instances of MDP [47], in which the
actions taken in the present state determine the future state. Therefore, the process of
optimizing the center position, major radius, minor radius, and rotation angle of the
ellipsoidal trajectories of UAV–MEC servers to minimize the total transmission latency and
total transmission energy consumption of MDs can be formulated as an MDP with tuple
< S, A, R >. At each time step t, the agent observes a state s ∈ S, selects an action a ∈ A,
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transitions to the future state s′, and obtains a reward r ∈ R. The design of state, action,
and reward are presented as follows.

State: Consists of positional parameters of each UAV’s ellipsoidal trajectory:

S = {Cx,j, Cy,j, Rx,j, Ry,j, θj, ∀j ∈ N}, (32)

where Cx,j, Cy,j, Rx,j, Ry,j, and θj denote the x-coordinate center, the y-coordinate center,
the x-coordinate radius or major radius, the y-coordinate radius or minor radius, and the
rotation angle of the ellipsoidal trajectory of UAV–MEC server j, respectively.

Action: An action involves one of the following: moving the center position horizon-
tally or vertically in a positive or negative direction, incrementing or decrementing the
major or minor radius, changing the rotation angle to either clockwise or anticlockwise,
or keeping the current state unchanged.

Reward: An effective reward design acts as a map, directing the learning agent in the
direction of the desired result. It gives the agent important feedback on the effectiveness of
its actions. Thus, to effectively solve the center position, size, and shape of the ellipsoidal
trajectories of the UAV–MEC servers, we have designed our reward function with the help
of our objective function, which is defined as

r =


1

η1Φ , if objective decreases

in current state,
1

η2Φ , otherwise,

(33)

where η1, η2 are constants. The values of η1, η2 are both within the range (0, 1) and η2 > η1,
and Φ represents the system objective in Equation (22).

5.2. DQN-Based Ellipsoidal Trajectory Optimization

RL has gained significant attention in recent times for solving complex optimization
problems. Instead of using static data, an agent interacts with the environment, explores
its surroundings, and learns through trial and error to develop a policy that maximizes the
total reward:

π∗ = arg max
π

∞

∑
t=0

γtrt, (34)

where γ denotes the discount factor, reducing the influence of future rewards on the agent’s
decision making. In RL, particularly in traditional Q-learning [48], the Q-value function
serves as a tool to evaluate the effectiveness of selecting a specific action in a particular
state. It is updated iteratively, using the Bellman equation:

Q(s, a) = E
[

r + γ max
a′

Q(s′, a′) | s, a
]

. (35)

However, Q-learning records each combination of state s and action a in a Q-table,
which is impractical for many real-world scenarios. The dimensions of the Q-table rise
dramatically as the sizes of the state and action spaces grow, and Q-learning needs a huge
memory space to save them. Deep-Mind [49] introduced the DQN to overcome this issue
by utilizing function approximation through an NN, to estimate the Q-values for individual
state–action combinations.

Considering the large state space and high-dimensional action space in our UAV-
assisted MEC system, we employ the DQN framework to address the MDP problem
discussed earlier, called DQN-based ellipsoidal trajectory optimization (DETO). The frame-
work is depicted in Figure 2 and consists of two NNs (the Q-network and the target
Q-network) and a memory dataset to store the experiences. Each network has multiple
layers that are connected to one other, to correlate the state and action. The input of the NN
is used to represent the current state of the environment and the probability assigned to
each possible action is represented by the output of the networks. The memory dataset is
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depicted as a queue-like data structure. The agent creates new transitions by interacting
with the environment and stores them in memory. When the memory reaches its limit,
it begins to remove the earliest transitions, to make way for the newest ones. Therefore,
the most recent transitions are kept in memory while removing the oldest ones, which
primarily helps in tracking the agent’s most recent interactions with the environment.

Figure 2. The DETO framework.

The DETO training steps are presented in Algorithm 1. At the beginning of each
simulation during the learning process, a number of elements, including the capacity of
the memory dataset and the parameters of both the Q-network and the target network, are
initialized. For the NN learning process, these parameter values serve as starting points.
This initialization is performed through lines 2, 3, and 4 of the algorithm. Note that the DQN
uses a dual-network strategy to estimate the current Q-value and target Q-value, where
both the Q-network and the target Q-network have the same neural architecture. However,
these networks have a different set of parameter values to make these estimations.

Each training episode begins with the agent starting from an initial state, and each
episode runs for a given number of steps (lines 5, 6, and 7). The initial deployment positions
for each UAV–MEC server are determined using the K-means clustering technique and are
integrated into the initial state information. In each step of the training episode, the NN
receives the current state (line 8) as an input value, and it returns the Q-values of every
action. The agent then selects an action using an epsilon greedy algorithm (line 9).

Due to the lack of background knowledge about the environment, the agent em-
phasizes exploration at first. To do this, it occasionally selects random actions under the
guidance of a probability parameter, ε. With the aid of this exploratory strategy, the agent
discovers the dynamics of the environment, gathers important data, and stays away from
locally optimal solutions. The agent eventually reduces the use of random actions as it
becomes more familiar with the environment. This reduction acts as a switch towards
exploitation, forcing the agent to choose the actions that work best. This adjustment aids
the agent in finding the ideal balance between utilizing what it has already determined as
best and attempting new things, enabling it to get the best results over time by combining
both previously successful strategies and new information.

The agent takes action to change the center position, length of a radius, or rotation
angle of the ellipsoidal path, to determine the position, size, and shape of the ellipse.
By performing the above actions, it observes the next state (line 10). This state transition
leads to a change in the UAV–MEC server’s position. Consequently, the associations
between MDs and UAV–MEC servers also change. The association between each MD and
UAV–MEC server is determined based on throughput. In particular, for each MD, the UAV–
MEC server that yields the highest throughput is selected. Subsequently, after computing
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the association between MDs and the UAV–MEC server, the agent obtains the reward
(lines 11, 12).

Algorithm 1 DQN-based ellipsoidal trajectory optimization (DETO)
Input: Initial center position, radius, rotation angle of the ellipsoidal trajectory of each
UAV–MEC server
Output: Optimal center position, radius, rotation angle of the ellipsoidal trajectory to
minimize the system objective

1: for simulation = 1 to N do → N : Total simulation number
2: Initialize memory dataset E with capability B
3: Initialize the Q-network’s parameter values θ
4: Initialize the target Q-network’s parameter values θ− ← θ
5: for episode = 1 to L do → L : Total episode number
6: Initial state
7: for t = 1 to T do → T : Max length of episode
8: Current state st
9: Select an action according to ε−greedy algorithm

10: Perform action at and observe the next state st+1
11: Compute the association of MDs with the UAV–MEC server
12: Obtain reward rt, using (33)
13: Store current experience (st, at, rt, st+1) in E
14: Randomly sampling a batch of experiences (sj, aj, rj, sj+1) from E
15: Compute target Q-value for the next state, using target Q-network
16: Apply a gradient descent step with regard to the network parameter

values θ, to reduce the squared difference between target Q-value and
current Q-value, using (36)

17: Periodically, reset the target Q-network’s parameter values from the
Q-network: θ− ← θ

18: Set st = st+1
19: end for
20: end for
21: Test the model and save the results
22: end for
23: choose the best result

To make the learning process stable and to enhance sample effectiveness, the agent
stores each transition that includes state, action, reward, and the next state in memory
dataset E (line 13). When training Q-network parameters, a batch of transitions from the
memory dataset is randomly chosen by the agent (line 14). This sampling process is used
to break the correlation between consecutive transitions, ensuring the training data are
sufficiently diverse, which aids the network’s ability to acquire useful weights that can
effectively handle a variety of data values.

During training, the aim is to reduce the gap between the target Q-network’s output,
r + γ maxa′ Q(s′, a′; θi−1), and the Q-network’s output, Q(s, a; θi), which is achieved by
utilizing the mean squared error (MSE) loss function (lines 15, 16):

L(θi) = E[r + γ max
a′

Q(s′, a′; θi−1)−Q(s, a; θi)
2]. (36)

The parameter values of the Q-network are updated using the Adam optimizer with
an initial learning rate of 0.001. Then, the parameter values from the Q-network are copied
periodically to the target Q-network (line 17). At the end of the training, we test the model
and save the results with optimized parameters for the ellipsoidal trajectory (lines 20, 21).
Finally, from the outcomes of multiple simulations, we select the best result (lines 22, 23).
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6. Performance Evaluation

For this segment, we analyzed the efficiency of our suggested DETO approach in a
UAV-enabled MEC network by conducting simulations. A suburban area was considered,
to simulate the deployment of UAV–MEC servers for 300 MDs distributed within three
distinct hotspots. The K-means clustering technique was used to determine the initial
center position for each UAV–MEC server, based on the user distribution provided and the
number of deployed UAV–MEC servers. The initial values of the major radius, the minor
radius, and the rotation angle for the ellipsoidal movement of each UAV were randomly
chosen within the ranges [60, 200] m and [0◦, 360◦], respectively. The value of ρ was set to
0.5, meaning that both transmission latency and transmission energy consumption were
equally important. Table 2 summarizes the rest of the simulation parameters utilized in our
experiments, with default values denoted in bold.

The Geolife mobility dataset [40] was used to determine the MDs’ locations. The dataset
contains GPS traces of 182 users in Beijing, China, which were collected during a five-year
period by Microsoft Research Asia from April 2007 to August 2012. Our simulation covered
a crowded region of 1000× 1000 m2 area in the city. The MD locations were then chosen
from the users’ GPS points within the specified area by considering the time frame 12 p.m.
to 1 p.m. during the year 2008.

For the DETO framework’s neural network structures, we used two hidden layers,
each with 64 neurons. These hidden layers had ReLU activation functions, whereas the
output layer had a linear activation function. Table 3 represents the DETO framework’s
main hyperparameter representation, which was used to train the model.

The experiments were performed using a system with an Intel Xeon E3-1245 v5
processor running at 3.50 GHz, an NVIDIA GeForce GTX 1050 Ti graphics card, and 16 GB
of RAM. Implementation of the DETO framework was carried out using Python 3.8.0 and a
GPU-enabled version of TensorFlow 2.9.2.

Table 2. Experimental settings.

Parameter Symbol Value Unit

Size of the area - 1000× 1000 m2

Number of MDs M {150, 200, 250, 300, 350} -
Number of UAVs N {1, 2, 3, 4} -

Task offload request rate λ [0.1, 1] task/s
Task size ł [1, 10] MB

Height of UAV h 100 [15,50] m
Range of major radius Rx [60, 200] [43,51] m
Range of minor radius Ry [60, 200] m
Range of rotation angle θ [0, 360] ◦

Path loss parameter a 9.61 -
Path loss parameter b 0.16 -
Path loss parameter ηLoS 1 -
Path loss parameter ηNLoS 20 -
Channel bandwidth B 20 MHz

Transmit power of MD Pt 20 dBm
Noise power σ2 −100 dBm

The carrier frequency f 2 GHz
The speed of light c 299,792,458 -

weight ρ 0.5 -
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Table 3. Hyperparameters of the DETO Model.

Parameter Value

Number of episodes 100
Time steps 80

Learning rate 0.001
Discount factor 0.95

ε with starting value 1
ε with final value 0.1

Epsilon decay 0.9997
Memory size 2500

Batch size 32
Optimizer Adam optimizer

6.1. Training Efficiency of the DETO Scheme

In this subsection, we examine the effectiveness of the DETO optimization method’s
training. DETO’s training progress is shown in Figure 3. As the number of training episodes
increased, we can see that the total number of rewards continues to rise progressively from
the beginning. With a total of 100 episodes, total rewards experience a notably significant
increase after the 40th episode. This occurs because the agent initially explores new
positions at random using the ε probability, and these new positions may not yield optimal
performance. Moreover, experience replay memory initially has fewer feasible solutions.
However, as the neural networks begin training, experience replay memory gathers more
useful solutions. Thus, UAVs are able to execute actions iteratively and can learn from
mistakes, to increase the reward, which ultimately leads to a better system objective. Even
though the curve shows fluctuations and lacks convergence, it continually moves upward.

Figure 3. Training curve of DETO.

In Figures 4 and 5, we plot the UAVs’ ellipsoidal trajectories and the corresponding
rewards, respectively, during the algorithm’s iterative operations after the end of the DETO
model’s training. With the advancement of the learning process, the UAVs gradually
optimize their ellipsoidal movements, minimizing transmission latency and energy con-
sumption. The distribution of MDs and the deployment positions for UAV ellipsoidal
movements are shown in Figure 4. Figure 5 illustrates the system’s improvement over
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time, as the reward increases in each step. Remarkably, within the first 25 steps, the reward
stabilizes and stays relatively constant. This implies that after an adequate number of steps,
the system achieves a balanced state, to reduce the system’s overall transmission delay and
energy consumption in providing MEC services to the MDs with maximum throughput.

Figure 4. Deployment positions of UAVs’ ellipsoidal movement.

Figure 5. Reward during the algorithm’s iterative operations.
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6.2. Performance Comparison between DETO and Other Baselines

In this section, the performance of the DETO method is compared to a GA solution
and a greedy solution under various conditions, including different numbers of MDs,
different numbers of task request rates, and different numbers of UAVs. The GA and
greedy approaches are described as follows:

• GA-based ellipsoidal trajectory optimization (GAETO): A rank-based genetic algo-
rithm is employed to find a solution for ellipsoidal trajectory optimization, where
each solution is a vector representation of real numbers. The initial population is
generated randomly, and the fitness function is calculated using the reciprocal value
of the system objective for each individual solution. Lower fitness values are given
to higher ranks and have a higher chance of being selected as parents. Then, new
solutions are generated by applying crossover and mutation, and the best solution is
recorded. This procedure repeats for a given number of generations.

• Greedy: In this setup, each UAV’s center position is chosen from the cluster center.
The major radius of each UAV is equal to one half of the distance along the x-axis
between its center and its farthest associated user, while the minor radius is equal to
one half of the distance along the y-axis between its center and its farthest associated
user. The rotation angle is set to 0◦.

6.2.1. Effects of Different Numbers of MDs

Figure 6 shows the system objective, total transmission latency, total transmission
energy consumption, and total throughput of the three methods. With an increase in the
number of MDs, all four figures show an increasing trend. This occurs because when the
MDs increase in number, the tasks that need to be offloaded also increase, which results in
higher system objectives. Additionally, as the number of MDs increases, there is a change in
their distribution. This can cause the distance between MDs and the UAV–MEC servers to
increase, which leads to longer latency and more energy consumption during transmissions,
further contributing to the rise in the system objective.

From Figure 6a, we see that the system objective increases gradually when the MDs
increase in number from 150 to 200, from 200 to 250, from 250 to 300, and from 300 to 350,
respectively, and that DETO performs better than the other two algorithms, achieving a
lower system objective. For example, the value of the system objective with DETO is 0.82
when the number of MDs is 300. On the other hand, the objective values from GAETO and
the greedy approach are 0.83 and 0.84, respectively. Moreover, the gap between the system
objectives increases with the increase in MDs, and the gap is especially wider when MDs
number 350 because more tasks need to be offloaded, and GAETO and greedy provide
suboptimal solutions.

From Figure 6b,c, it can be observed that both total transmission latency and total
transmission energy consumption for all three algorithms experience a relatively sharp
increase as the number of MDs increases from 150 to 200 and from 200 to 250. This increase
occurs due to the increased task requests associated with the growing number of MDs,
resulting in longer transmission latency and greater transmission energy consumption.
However, the rise is slightly slower when MDs increase from 250 to 300. This is because
when the number of MDs is 300, the majority of the users have a task request rate in
the 0.1 to 0.5 range. Having lower task requests results in lower transmission latency
and transmission energy consumption. It again follows a sharp increase with higher task
requests when MDs increase from 300 to 350. DETO’s performance is always better than
GAETO and the greedy algorithm. For example, when the number of MDs is 300, total
transmission latency with DETO is 63.76 s, which is 1.37% and 2.99% lower than GAETO
and the greedy algorithms, respectively.

Figure 6d illustrates the effect of the different numbers of MDs on the total throughput
of the system. With an increase in the number of MDs, the total throughput experiences
a sharp rise. This occurs because the channel bandwidth for each MD is assumed to be
fixed. Therefore, when the number of MDs increases, the system’s total throughput also
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increases. In terms of DETO, the total throughput increases by 31.39%, 24.80%, 20.27%,
and 17.09% when the MDs increase in number from 150 to 200, from 200 to 250, from 250 to
300, and from 300 to 350, respectively. Moreover, the performance of DETO is 4.33%, 3.92%,
3.87%, 3.51%, and 4.33% higher than the greedy approach for all numbers of MDs.

(a) (b)

(c) (d)

Figure 6. Effects of different numbers of MDs: (a) effects on the system objective; (b) effects on
the total transmission latency; (c) effects on total transmission energy consumption; (d) effects on
total throughput.

6.2.2. Effects of Different Numbers of Task Requests

Figure 7 shows the effects of varying numbers of task requests. With the increasing
number of task requests, the total task size concurrently expands. Consequently, more
data bits need to be offloaded to UAV–MEC servers from the MDs. When MDs transmit a
large volume of data bits to the UAV–MEC servers, it leads to higher transmission latency
and increased energy consumption. Therefore, the system objective, total transmission
latency, and total transmission energy consumption shown in Figure 7a, Figure 7b, and
Figure 7c, respectively, demonstrate an increase consistent with the growth in task requests.
In Figure 7a, it is observed that DETO always performs better than the GA and greedy ap-
proaches, obtaining a lower system objective across different task request ranges, whereas
the system objective obtained by the greedy algorithm is the highest among them. For ex-
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ample, when the number of task requests is in the range of 0.6 to 1, the system objectives
obtained by DETO and GAETO are 0.737 and 0.751, respectively, while the system objective
for the greedy approach is 0.765.

The displayed curves in Figure 7b,c show a steady and gradual increase as the number
of task requests increase. This is a result of the growing need to offload more tasks, which
requires more time and energy for transmission. For example, in Figure 7b, the transmission
latency obtained by DETO increases from 231.17 s to 328.66 s when the task request changes
from the [1.6–2] range to the [2–3] range. By comparison, GAETO increases from 234.49 s to
332.45 s, and the greedy approach increases from 240.19 s to 340.33 s, respectively. Similarly,
in Figure 7c, transmission energy consumption increases for DETO, GAETO, and the greedy
approach, ranging from 23.11 J to 32.86 J, 23.44 J to 33.24 J, and 24.01 J to 34.03 J, respectively.

(a) (b)

(c) (d)

Figure 7. Effects of different numbers of task requests: (a) effects on the system objective; (b) effects
on the total transmission latency; (c) effects on total transmission energy consumption; and (d) effects
on total throughput.

Figure 7d illustrates the system’s total throughput, with DETO and GA showing a
slight up-and-down trend, while greedy remains unchanged. This is because the through-
put is influenced by the positions of the MDs and the positions of the UAVs along the
ellipsoidal paths. The throughput follows an increasing or decreasing trend when the
number of MDs increases or decreases. However, in this scenario, the positions remain un-
changed for a fixed number of MDs, even though the number of task requests varies. Thus,
the solutions obtained by DETO and GAETO show slight fluctuations in total throughput.
Notably, the DETO-based approach consistently shows higher throughput than GAETO
and greedy. Moreover, the results imply that using the NN to approximate the Q-values
enables the DQN-based solution to achieve better results for the considered problem.
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By maximizing the total reward and locally optimizing the DQN result, the agent can learn
a strategy to identify the ellipsoidal trajectory’s parameters that provide a lower system
objective. On the other hand, GA-based solutions partially depend on random processes,
which may result in early convergence if genetic diversity is lost, resulting in suboptimal
solutions. Moreover, because of the large solution space, the GA produces a considerable
number of infeasible solutions in each iteration, whereas greedy uses fixed parameters to
solve the considered problem. Therefore, finding a good solution is hard, using GA and
greedy approaches.

6.2.3. Effects of Different Numbers of UAVs

The performance of DETO was evaluated across a range of UAV counts, varying from
one to four, by considering the system objective, total latency, total transmission energy
consumption, and total throughput. Figure 8a illustrates a decrease in the system objective
as the number of UAVs rises. As the UAVs increase in number from one to two, then to
three, and to four, the system objective of DETO decreases by 7.60%, 13.13%, and 4.53%,
respectively. Similarly, GAETO decreases by 6.60%, 13.27%, and 4.60%, respectively, while
the greedy approach records reductions of 5.97%, 13.21%, and 4.88%, respectively. Addi-
tionally, at the relevant UAV count intervals, DETO consistently outperforms the greedy
technique by 2.33%, 4.03%, 3.94%, and 3.58%, respectively.

For different numbers of UAVs, Figure 8b,c compare the total transmission latency and
transmission energy consumption for all algorithms; significantly, DETO performs better
than the alternatives. The transmission latency and the transmission energy consumption
of MDs tend to reduce as the number of UAVs rises because the increased accessibility of
UAVs enables more efficient task offloading. The average distance between MDs and UAVs
reduces as the number of UAVs rises. Due to the shorter travel distance, data transfer takes
less time and energy, resulting in reduced latency and lower energy consumption for MDs.
For example, when the number of UAVs increases from three to four, the transmission
latency of DETO, GAETO, and greedy decreases from 73.16 s to 69.84 s, from 74.53 s to 71.09
s, and from 76.16 s to 72.44 s, respectively. Similarly, the transmission energy consumption
of DETO, GAETO, and greedy decreases from 7.31 J to 6.98 J, from 7.45 J to 7.10 J, and from
7.61 J to 7.24 J, respectively.

As the number of UAVs increases, Figure 8d illustrates the corresponding growth in
total throughput. This increase is because data transmission speeds can be boosted by
reducing the distance between sending and receiving points with more UAVs. With the rise
of UAVs, the performance of DETO improves by 17.02%, 21.84%, and 5.03%, respectively.
Notably, the degree of improvement is slightly lower when the number of UAVs changes
from three to four. This happens because the distances between MDs and UAVs do not
change noticeably when there are three UAVs in the environment compared to when there
are four UAVs. The DETO solution achieves higher throughput compared to GAETO
and the greedy approach with the increasing number of UAVs. For example, the total
throughput of DETO is 2.27% and 4.36% higher than that of the GAETO and greedy
approaches, respectively, with four UAVs.
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(a) (b)

(c) (d)

Figure 8. Effects of different numbers of UAVs: (a) effects on the system objective; (b) effects on
the total transmission latency; (c) effects on total transmission energy consumption; (d) effects on
total throughput.

7. Conclusions

In this study, we focused on a multi-UAV-assisted MEC system deployed in a festival
area. The UAVs followed ellipsoidal trajectories, to provide MEC services to MDs that had
latency-sensitive and computation-intensive applications, each with diverse task offloading
requests. To enhance the system’s efficiency, we formulated an optimization problem
aimed at minimizing the weighted sum that encompassed both the total transmission
latency and the total transmission energy consumption experienced by the MDs. This
optimization approach involved the optimization of the key parameters that defined
the UAVs’ ellipsoidal trajectories: specifically, the center position, the major radius, the
minor radius, and the rotation angle. These trajectory adjustments precisely dictated
the UAVs’ position and size and the shape of their elliptical movements. Furthermore,
the problem accounted for constraints related to required throughput, transmission time,
and energy consumption. We developed a DRL framework called DETO to effectively
address the challenges posed by a vast state space and a high-dimensional action space.
To determine the effectiveness of our proposed DETO method, we conducted comparative
evaluations against two alternative approaches. These evaluations were carried out across
diverse scenarios, encompassing varying numbers of MDs, distinct task request rates,
and different numbers of UAVs. The results illustrated the efficiency of DETO in optimizing
the ellipsoidal trajectory for each UAV, resulting in reductions in both the transmission
latency and the transmission energy consumption of the MDs. Furthermore, when the
number of users and task request rates increased, we observed an accompanying rise
in both the transmission latency and the transmission energy consumption of the MDs.
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This phenomenon was attributed to the increased task requests, which naturally led to
higher demands on the system. Conversely, when the number of UAVs was increased,
both the transmission latency and the transmission energy consumption decreased, owing
to the reduced distance between the MDs and the UAVs. Overall, the simulation results
demonstrated that the DETO framework outperformed the baselines, due to its ability
to learn from experiences and iteratively enhance solutions, establishing a significant
advantage in various scenarios.

For future work, we aim to enhance the existing framework by considering additional
optimizing variables, including the height of the UAV, taking into account the dynamic
mobility of MDs within the festival area. In addition to optimizing task transmission latency
and energy consumption, we will extend our objectives, to include the minimization of the
total task completion time (including task transmission and processing time when offloaded
to the UAV) and the overall system’s energy consumption. We plan to apply a more
advanced RL method and to investigate the effect of varying ρ on the system’s objective.
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