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Abstract
This paper studies the quantile estimation by using the link function under a broad family of
asymmetric densities known as a generalized quantile-based asymmetric family. We proposed
a link function and quantile estimation in regression settings. The estimator’s asymptotic
properties of the estimators are also discussed here. To demonstrate the proposed methods for
estimating the quantile function, an actual data application including the proportion of daily
SARS-Cov-2 infected persons tested for COVID-19 infection and meteorological factors such as
temperature and humidity is included. We discovered that the amount of daily SARS-Cov-2
infected people tested for COVID-19 infection is significantly influenced by temperature and
humidity.
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1 Introduction
Regression is one of the fundamental statistical tools that determines the strength and nature of the
relationship between a set of response variables and a set of covariates. The mean regression focuses
on an average relationship between a set of response variables and a set of covariates. It provides a
single characteristic of a conditional distribution. It performs better results with nice mathematical
properties for symmetric distribution (e.g., normal distribution). It is also not suitable when the
data comes from the skewed distribution (see, for example, [1]). In regard to parameter estimation
(or in general statistical inference and asymptotic properties) for a given distributions, a convenient
class of families is the exponential family where the response variable Y given a covariate X is as
follows

fY |X(y|X = x) = exp
(

(yθ(x)−b(θ(x)
a(φ)

+ c(y;φ)
)
, (1.1)

where a(·), b(·) and c(·, ·) are measurable functions (see, for example, [2]). The parameter function
θ(·) is called the canonical parameter and φ is a scale parameter.

m(x) ≡ E(Y |X = x) = b′(θ(x))

var(Y |X = x) ≡ α(φ)b′(θ(x))

The function g(b′)−1, which links the mean regression function to the canonical parameter function
(b′)−1(m) = θ is called the canonical link.

However, the mean regression is highly influenced by extreme values. It is not usable when the
quantile of the conditional distribution is the main interest (see, for example, [3]).

Therefore, [4] provided tick exponential family, whose role in the conditional quantile estimation is
analog to the role of the linear exponential family (1.1) in the conditional mean estimation. The
general form of the tick exponential family for y ∈ R is given by

fα(y; η) = α(1− α)g′(y)

{
exp [−(1− α)(g(η)− g(y))] if y ≤ η
exp [α(g(η)− g(y))] if y > η.

(1.2)

It is noted that the tick-exponential family (1.2) is only used for the whole real line continuous
variable. It is not useful for boundary response variables. Beside of this, the asymmetric Laplace
is the only member of this family.

On the other hand, [5] proposed quantile regression which minimizes the tick function. It provides
full characteristics of the distribution. This quantile regression is actually nonparametric because
it does not need the underlying parametric assumption. It is more robust to outliers than mean
regression. It is the only regression tool which is used for finding the effect of the covariate on
different quantile level of the response variables. A nice discussion of quantile regression is presented
by [3]. There are many problems that arise in nonparametric quantile regression due to the unknown
underlying distribution. For example, crossing problem in quantile curves which leads to invalid
inference, less efficiency etc.
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Recently, [1] proposed the generalized quantile-based asymmetric family for any continuous variable
Y which takes the form

fgα(y; η, φ) =
2α(1− α)g′(y)

φ

 f
(

(1− α)
(
g(η)−g(y)

φ

))
if y ≤ η

f
(
α
(
g(y)−g(η)

φ

))
if y > η,

(1.3)

where η is the location parameter and the αth quantile of Y and φ is the scale parameter. The
speciality of family (1.3) is the location parameter(η) is a specific quantile of this family. There are
many members of the family available in the literature such as asymmetric normal, asymmetric
Laplace, asymmetric t and at least three big families that are subset of this family e.g, tick
exponential (see, [6]), asymmetric power family (see, [6]), quantile-based asymmetric family (see,
[6]). For any β ∈ (0, 1), the βth-quantile of Y equals

{F gα}−1(β; η, φ) =

 g−1
(
g(η) + φ

1−αF
−1
(
β
2α

))
if β ≤ α

g−1
(
g(η) + φ

α
F−1

(
1+β−2α
2(1−α)

))
if β > α,

with in particular {F gα}−1(α; η, φ) = η. In the regression setting, the family (1.3) can be written as

{fgα,Y |X(y ; η(x), φ(x)|X = x) =
2α(1− α)g′(y)

φ(x)

 f
(

(1− α)
(
g(η(x))−g(y)

φ(x)

))
if y ≤ η(x)

f
(
α
(
g(y)−g(η(x))

φ(x)

))
if y > η(x),

(1.4)

where η(x) and φ(x) are now the function of the covariate(s) x. In the setting of (1.4), the βth-
conditional quantile function of Y given X = x (with (0 < β < 1)) is then

{F gY |X,α}
−1(β; η(x), φ(x)|x) = g−1(g(η(x)) + φ(x).Cα(β))

where

Cα(β) =
1

1− αF
−1

(
1 + β

2α

)
I(β < α) +

1

α
F−1

(
1 + β − 2α

2(1− α)

)
I(β ≥ α).

With F−1 the quantile function associated with the reference symmetric density f . The quantity
Cα(β) is known as a constant and is a monotonic function of β. The family (1.3) depends on two
vital elements:

• the reference symmetric density f and

• monotone strictly increasing link function g.

When the link function is identity (i.e., g(y) = y) then family tends to quantile-based asymmetric
family given in [6]. In this study, the reference symmetric density f is assumed to be known. So
the main focus is to estimate the link function g.

The link function is a crucial element in semiparametric quantile regression under the generalized
quantile-based asymmetric family (see, [1]). It allows to explain any type of continuous response in
terms of covariates. Besides, estimating the maximum likelihood estimator for unconditional setting
and local likelihood estimator for conditional setting, the link function should be known (see, [1]).
Usually we assume that, the link function in semiparametric quantile regression is known. For
example, identity link, logit link, log link, canonical link, reciprocal link etc. But in real life data
application, the link function is unknown. So it is very important to estimate link function.
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Alternatively, logit-type link function could be a solution. So, in this research, we focus on the
study of different link functions in semiparametric regression.

The main contribution of the study is to estimate the link function of the generalized quantile-based
asymmetric family in regression settings. Section 2 presented a logit-type link function and derive
its distribution. The estimation of the logit-type link function in conditional settings is described
in Section 3. The real data application is added to demonstrate the proposed methodology. The
concluding remarks are added in the final section.

2 Logit-type Link Function
Let the density of Y is a member of the generalized quantile-based family of distributions, and G is
a distribution function of Y . Suppose g be a logit-type link function of Y depends on G such that

g(Y ) = logit(G(Y )) = ln

(
G(Y )

1−G(Y )

)
. (2.1)

If we know the distribution function of G, we can easily derive the logit-type link function by using
(2.1). The distribution of logit-type link function for quantile estimation in (2.1) has been studied
in [7].

If η is the αth quantile of Y and g is the monotone strictly increasing link function, then g(η) is
also the αth quantile of Z = g(Y ) (see for example, [3]). By introducing the αth quantile parameter
µ ∈ R and a scale parameter φ > 0, we get

fα(z;µ, φ) =
2α(1− α)

φ


e
−α(

z−µ
φ

)(
1+e

−α(
z−µ
φ

)
)2 if z > µ

e
−(1−α)(

µ−z
φ

)(
1+e

−(1−α)(
µ−z
φ

)
)2 if z ≤ µ,

(2.2)

where F−1
α (α) = µ. The density given in (2.2) is denoted by ALD(µ, φ, α) and called quantile-based

asymmetric logistic density (ALD) proposed in [6]. We can easily find the quantile function of Z
which is

F−1
α (β) =

{
µ− φ

1−α ln( 2α
β
− 1) ; if β < α

µ− φ
α

ln( 1−β
β−2α+1

) ; if β ≥ α.

3 Estimation of Logit-type Link Function for Conditional
Setting

Let the density of Zi is the link function of quantile-based asymmetric family of logistic distribution
and F is distribution function of response yi. The different link functions are presented in Fig.1 for
the different densities.

Zi = ln
( F (yi)

1− F (yi)

)
; where, Zi ∼ ALD(µ, φ, α)
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In conditional setting, the link function Zi is now function of covariate Xi takes the form,

Zi|Xi ∼ ALD(µ(x), φ(x), α(x)); where, Zi|Xi = ln
( F (y|X)

1− F (y|X)

)
.

Where,
µ(X) ∈ R, φ(X) ∈ R and α ∈ (0, 1).

The parameters are defined as,

θ1(X) = Xβ1 = µ(X) ∈ R
θ2(X) = Xβ2 = lnφ(X) ∈ R
θ3(X) = Xβ3 = ln α(X)

1−α(X)

Fig. 1. Link function curve for (a). the real-valued random variable; (b). the
semi-infinite supported random variable

Where,

z =


Z1

Z2

...
Zn


n×1

; X =


1 X11 X21 . . . Xp1
1 X12 X22 . . . Xp2
...

...
...

...
1 X1n X2n . . . Xpn


n×(p+1)

and βj =


βj0
βj1
βj2
...
βjp


(p+1)×1

; j = 1, 2, 3.

We now turn to the regression setting involving one covariate. For conditional density of Z given
X = x we consider the density fZ|X(·; θ1(x), θ2(x)) in (2.2) and allow θ1, θ2 and index parameter α
depend on x (See the density plot of ALD is given in Fig. 2). This leads to the conditional density
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fZ|X,θ3(X)(Z; θ1(X), θ2(X)) = C



exp

[
−
(

eθ3(X)

1+eθ3(X)

)(
Z−eθ1(X)

eθ2(X)

)][
1+exp

(
−(

eθ3(X)

1+eθ3(X)
)(Z−eθ1(X)

eθ2(X)
)
)]2 if Z > eθ1(X)

exp

[
−
(

1

1+eθ3(X)

)(
eθ1(X)−Z
eθ2(X)

)][
1+exp

(
−( 1

1+eθ3(X)
)( e

θ1(X)−Z
eθ2(X)

)
)]2 if Z ≤ eθ1(X),

(3.1)

where,

C =
2eθ3(x)

(1 + eθ3(x))2eθ2(x)

The conditional likelihood function for θ(x) = (µ(x), φ(x), α(x))T can be written as

L(θ) =

n∏
i=1

fZ|X,θ3(X)(Z; θ1(X), θ2(X))

Fig. 2. The density plots of a quantile-based asymmetric logistic distribution with α
= (0.15, 0.25, 0.50, 0.75, 0.85)th Quantile of µ = 0 and φ = 1

The conditional likelihood function for θ(x) = (µ(x), φ(x), α(x))T can be written as

lnL =

n∑
i=1

log fZ|X,θ3(X)(Z; θ1(X), θ2(X)).
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Fig. 3. Cumulative distribution function (left) and quantile function (right) for µ =
0, φ = 1 and α = (0.25, 0.50)

For simplification we use, l = lnL

l(θ1(X), θ2(X), θ3(X);Zi) = n ln
( 2eθ3(X)

1 + eθ3(X)

)
− nθ2(X)− 1

1 + eθ3(X)

n∑
i=1

eθ1(X) − Zi
eθ2(X)

I(Zi ≤ eθ1(X)) − 2

n∑
i=1

ln
(

1 + exp
(
− eθ1(X) − Zi

(1 + eθ3(X))eθ2(X)

)
I(Zi ≤ eθ1(X)) − eθ3(X)

1 + eθ3(X)

n∑
i=1

Zi − eθ1(X)

eθ2(X)
I(Zi > eθ1(X))

− 2

n∑
i=1

ln
(

1 + exp
(
− (Zi − eθ1(X))eθ3(X)

(1 + eθ3(X))eθ2(X)

))
I(Zi > eθ1(X)).

l(Xβ1,Xβ2,Xβ3, ) = n ln
( 2eXβ3

1 + eXβ3

)
− nXβ2 −

1

1 + eXβ3

n∑
i=1

eXβ1 − Zi
eXβ2

I(Zi ≤ eXβ1)

− 2

n∑
i=1

ln
(

1 + exp
(
− eXβ1 − Zi

(1 + eXβ3)eXβ2

)
I(Zi ≤ eXβ1)

− eXβ3

1 + eXβ3

n∑
i=1

Zi − eXβ1
eXβ2

I(Zi > eXβ1)

− 2
n∑
i=1

ln
(

1 + exp
(
− (Zi − eXβ1)e

Xβ3

(1 + eXβ3)eXβ2

))
I(Zi > eXβ1).
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3.1 Asymptotic properties of estimators
Differentiating the liklihood function with respect to β1, β2 and β3 we get,

δl

δβ1
= −K

n∑
i=1

eXβ1 − Zi
eXβ2

− 2
δ

δβ1

n∑
i=1

ln
(

1 + exp
(
− eXβ1 − Zi

(1 + eXβ3)eXβ2

)
−KeXβ3

n∑
i=1

Zi − eXβ1
eXβ2

− 2
δ

δβ1

n∑
i=1

ln
(

1 + exp
(
− (Zi − eXβ1)e

Xβ3

(1 + eXβ3)eXβ2

))
,

δl

δβ2
= −nX +K

n∑
i=1

eXβ1 − Zi
eXβ2

− 2
δ

δβ2

n∑
i=1

ln
(

1 + exp
(
− eXβ1 − Zi

(1 + eXβ3)eXβ2

)
+KeXβ3

n∑
i=1

Zi − eXβ1
eXβ2

− 2
δ

δβ2

n∑
i=1

ln
(

1 + exp
(
− (Zi − eXβ1)e

Xβ3

(1 + eXβ3)eXβ2

))
,

δl

δβ3
= 2Kn+

KeXβ3

(1 + eXβ3)

n∑
i=1

eXβ1 − Zi
eXβ2

− 2
δ

δβ3

n∑
i=1

ln
(

1 + exp
(
− eXβ1 − Zi

(1 + eXβ3)eXβ2

)
+

KeXβ3

(1 + eXβ3)

n∑
i=1

Zi − eXβ1
eXβ2

− 2
δ

δβ3

n∑
i=1

ln
(

1 + exp
(
− (Zi − eXβ1)e

Xβ3

(1 + eXβ3)eXβ2

))
,

Fig. 4. (a). Histogram and fitted density estimate (solid red line) of the uniform
logittype transformation of the proportion of daily SARS-CoV-2 infected people

(left); (b). the estimated quantile function (right) the uniform logit-type
transformation of the proportion of daily SARS-CoV-2 infected people

Now, the partial derivatives with respect to β1, β2 and β3 is given by,

δ2l

δβ1δβ2
= KX

n∑
i=1

eXβ1 − Zi
eXβ2

− 2
δ

δβ1β2

n∑
i=1

ln
(

1 + exp
(
− eXβ1 − Zi

(1 + eXβ3)eXβ2

)
+KXeXβ3

n∑
i=1

Zi − eXβ1
eXβ2

− 2
δ

δβ1β2

n∑
i=1

ln
(

1 + exp
(
− (Zi − eXβ1)e

Xβ3

(1 + eXβ3)eXβ2

))
,
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δ2l

δβ1δβ3
=
−KXeXβ3

1 + eXβ3

n∑
i=1

eXβ1 − Zi
eXβ2

− 2
δ

δβ1β3

n∑
i=1

ln
(

1 + exp
(
− eXβ1 − Zi

(1 + eXβ3)eXβ2

)
+
KXeXβ3

1 + eXβ3

n∑
i=1

Zi − eXβ1
eXβ2

− 2
δ

δβ1β3

n∑
i=1

ln
(

1 + exp
(
− (Zi − eXβ1)e

Xβ3

(1 + eXβ3)eXβ2

))
,

δl

δβ2δβ3
=
−KeXβ3
1 + eXβ3

n∑
i=1

eXβ1 − Zi
eXβ2

− 2
δ

δβ2β3

n∑
i=1

ln
(

1 + exp
(
− eXβ1 − Zi

(1 + eXβ3)eXβ2

)
− K(eXβ3)2

1 + eXβ3

n∑
i=1

Zi − eXβ1
eXβ2

− 2
δ

δβ2β3

n∑
i=1

ln
(

1 + exp
(
− (Zi − eXβ1)e

Xβ3

(1 + eXβ3)eXβ2

))
,

δ2l

δβ1
2 = −KX

n∑
i=1

eXβ1 − Zi
eXβ2

− 2
δ

δβ2β3

n∑
i=1

ln
(

1 + exp
(
− eXβ1 − Zi

(1 + eXβ3)eXβ2

)
−KXeXβ3

n∑
i=1

Zi − eXβ1
eXβ2

− 2
δ

δβ2β3

n∑
i=1

ln
(

1 + exp
(
− (Zi − eXβ1)e

Xβ3

(1 + eXβ3)eXβ2

))
,

δ2l

δβ2
2 = −KX

n∑
i=1

eXβ1 − Zi
eXβ2

− 2
δ

δβ2
2

n∑
i=1

ln
(

1 + exp
(
− eXβ1 − Zi

(1 + eXβ3)eXβ2

)
−KXeXβ3

n∑
i=1

Zi − eXβ1
eXβ2

− 2
δ

δβ2
2

n∑
i=1

ln
(

1 + exp
(
− (Zi − eXβ1)e

Xβ3

(1 + eXβ3)eXβ2

))
,

δ2l

δβ3
2 =

2KnX
1 + eXβ3

+
[KXeXβ3

1 + eXβ3
+
KX(eXβ3)2

(1 + eXβ3)2
] n∑
i=1

eXβ1 − Zi
eXβ2

− 2
δ

δβ2
2

n∑
i=1

ln
(

1 + exp
(
− eXβ1 − Zi

(1 + eXβ3)eXβ2

)
+
[KXeXβ3

1 + eXβ3
+
KX(eXβ3)2

(1 + eXβ3)2
]

n∑
i=1

Zi − eXβ1
eXβ2

− 2
δ

δβ2
2

n∑
i=1

ln
(

1 + exp
(
− (Zi − eXβ1)e

Xβ3

(1 + eXβ3)eXβ2

))
,

where, K = X
1+eXβ3

.

It can be shown that, for large sample

β̂1β̂2
β̂3

∼ N(β,Σ−1),

where,

Σ =


δ2l
δβ12

δ2l
δβ1δβ2

δ2l
δβ1δβ3

δ2l
δβ1δβ2

δ2l
δβ22

δ2l
δβ2δβ3

δ2l
δβ1δβ3

δ2l
δβ2δβ3

δ2l
δβ32

 .
After differentiating the conditional log liklihood function, we have noticed that the derivatives are
non linear and complex. That’s why, for estimating parameter we have used a R package QBAsyDist
which is introduced by [6]. In Section 3.2 we have applied a real data for illustrative purpose.
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Fig. 5. (a). Estimated quantile function of Y ; (b). The QQ-plot (right)

3.2 Real data application
For illustrative purposes, we consider the daily proportion of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infected people who have tested for Coronavirus disease (COVID-19)
infection from August 3, 2020 to February 12, 2021 in Bangladesh. The number of daily new SARS-
CoV-2 infected cases and daily new tested peoples are reported by the Institute of Epidemiology
Disease Control and Research (IEDCR), Dhaka, Bangladesh. The data are available on the website
with web-link https://covid19.who.int/. It is observed that on average each day, 13.61% of peoples
are infected who have tested for COVID-19 infection. Notice that the daily proportion of SARS-
CoV-2 infected people (Y ) is a bounded variable with support [0, 1].

For the bounded random variable, we can not directly compute the quantile function of the
distribution. Therefore, many authors including [8] and [9] used the uniform logit-type link function
in quantile estimation (See Fig. 3 for the cdf and quantile function of Y.). That is the link function
is Z = logit(G(Y )), where G(y) = (y−a)/(b−a). We also consider this link function to estimate the
quantile function of the proportion of daily SARS-CoV-2 infected cases among the people who have
tested for COVID-19 infection on that day. In Section 2, we have shown that the distribution of Z
is a quantile-based asymmetric logistic distribution given in (2.2). The data and quantile function
of Z are presented in Fig. 4. The quantile function of Y and Q-Q plot are presented in Fig. 5.

For the uniform logit-type link function for this data set, we consider a as the minimum proportion
of infected people minus k and b as the maximum infected people plus k, where k is very small
number. In this case, we use k = 0.01. To add (subtract) a small value of k to b (a) to avoid the
zero value of denomination (numerator) in the logit-type link function. The resulting link function
is z = g(y) = ln

(
y−a
b−y

)
for y ∈ (a, b). Using this link function Z = g(Y ), we estimate parameter

θ = (µ, φ, α)T of the distribution of Z via the method of maximum likelihood estimation Figs. 4
and 5.
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The daily proportion (Y ) of SARS-CoV-2 infected people who have tested positive for COVID-19
infection is considered a response variable, and the daily temperature (X1) and humidity (X2)
are considered covariates from August 3, 2020 to February 12, 2021 for illustrating the proposed
method.

The data of daily temperature and humidity is available on the website
https://www.timeanddate.com/weather/bangladesh/dhaka. In this case, the parametric functions
can be written as

θ1(X) = Xβ1 = β10 + β11X1 + β12X2,

θ2(X) = Xβ2 = exp(β20 + β21X1 + β22X2),

θ3(X) = Xβ3 =
exp(β30 + β31X1 + β32X2)

1 + exp(β30 + β31X1 + β32X3)
.

Table 1. The summary statistics of the estimators for estimating µ(X;β1), φ(X;β2)
and α(X;β3) and the p-values obtained by using Bootstrapping

µ(X; β1) φ(X; β2) α(X; β3)

β1 β̂1

(
se(β̂1)

)
P -value β2 β̂2

(
se(β̂2)

)
P -value β3 β̂3

(
se(β̂3)

)
P -value

β10 2.3414(0.3994) <0.005 β20 1.0759(0.3160) 0.006 β30 0.3947(0.5239) <0.0001
β11 0.7312(0.6943) <0.0001 β21 0.02031(0.2076) <0.0001 β31 0.0641(0.2431) <0.0001
β12 0.7514 (0.4129) 0.008 β22 -0.0901(0.2836) 0.064 β32 0.0166(0.2844) 0.424

The estimated parametric functions can be written as

µ̂(Xi; β̂1) = 2.3414 + 0.7312X1 + 0.7514X2,

φ̂(Xi; β̂2) = exp(1.0759 + 0.02031X1 − 0.0901X2),

α̂(Xi; β̂3) =
exp(0.3947 + .0641X1 + 0.0166X2)

1 + exp(0.3947 + 0.0641X1 + 0.0166X3)
.

Table 1 shows the summary statistics of the estimated models. Regression coefficients for the
temperature and humidity significantly impact the daily proportion of infected cases for the estimated
function µ̂(X, β̂1). For estimated φ̂(X, β̂2), we see the regression coefficients for only temperature is
statistically significant. Similarly, for α̂(X, β̂3), we observe that temperature is highly statistically
significant but humidity is not at 5% level of significance.

4 Concluding Remarks
In this research, we study the theory of quantile regression using a generalized quantile-based
asymmetric family of densities. We provide the theory of logit-type link function for estimating
quantile function in regression settings. In regression settings, we consider the response variable
is the proportion of daily SARS-Cov-2 infected people tested for COVID-19 infection and two
covariates: temperature and humidity. We noticed that the temperature and humidity have a
significant impact on the proportion of daily SARS-Cov-2 infected persons tested for COVID-19
infection.

Declarations
• Funding: This research has been conducted with the financial support of a research grant

from Jahangirnagar University.

34



Karim and Haque; AJPAS, 20(3): 24-35, 2022; Article no.AJPAS.92094

Competing Interests
Authors have declared that no competing interests exist.

References
[1] Gijbels I, Karim R, Verhasselt A. Quantile estimation in a generalized asymmetric

distributional setting. Steland, Ansgar and Rafajlowicz, Ewaryst and Okhrin, Ostap. Stochastic
Models, Statistics and their Application. 2019b;Springer:13–40.

[2] Fan J, Gijbels I. Local Polynomial Modelling and Its Applications, Chapman & Hall/CRC;
1996.

[3] Koenker R. Quantile Regression. New York: Cambridge University Press; 2005.

[4] Komunjer I. Quasi-maximum likelihood estimation for conditional quantiles. J of Econometrics.
2005;128(1):137–164.

[5] Koenker R, Bassett Jr G. Regression quantiles. Econometrica: J of the Econometric Society.
1978;33–50.

[6] Gijbels I, Karim R, Verhasselt A. On Quantile-based Asymmetric Family of Distributions:
Properties and Inference. International Statistical Review. 2019a;87:471-504.

[7] Karim R, and Haque S. Distribution of logit-type link function in a generalized quantile-based
asymmetric distributional setting. Thailand Statistician (Accepted); 2022.

[8] Bottai M, Cai B, McKeown RE. Logistic quantile regression for bounded outcomes. Statistics
in Medicine. 2010;29(2):309–317.

[9] Columbu S, Bottai M. Logistic Quantile Regression to Model Cognitive Impairment in
Sardinian Cancer Patients in Di Battista T, Moreno E, Racugno W, Topics on Methodological
and Applied Statistical Inference, Springer, 2016;65–73.

——————————————————————————————————————————————–
© 2022 Karim and Haque; This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribu-tion, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
https://www.sdiarticle5.com/review-history/92094

35

http://creativecommons.org/licenses/by/4.0

	Gallery Proof_2022_AJPAS_92094 - Copy.pdf (p.1)
	Gallery Proof_2022_AJPAS_92094.pdf (p.2-12)
	Introduction
	Logit-type Link Function
	Estimation of Logit-type Link Function for Conditional Setting
	Asymptotic properties of estimators 
	Real data application

	Concluding Remarks


