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ABSTRACT 
 

Quantifying the spatio-temporal pattern of urban expansion is essential to understanding the 
ecological consequences of urbanization and supporting optimal urban management strategies. As 
one of the most developed regions in China, Guangzhou has experienced rapid urban expansion 
over the past decades. However, little is known about the detailed process of urban expansion 
across long-term periods. Combining remote sensing data with GIS techniques, we attempted to 
quantify the spatio-temporal pattern of urban expansion in Guangzhou. We mapped the urban 
landscape in Guangzhou using Landsat images between 1973 and 2017. The urban land 
developed and change process was also examined, including urban expansion direction, urban 
expansion types, and landscape responses to urban expansion. The results showed that the 
building nearly increased by 90-fold from 1973 to 2017, and over half of the newly developed 
buildings mainly came from farmland. Edge expansion is the main type of urban growth. The urban 
trajectory shows that the expansion mainly occurred in the southwest to northeast direction. Urban 
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growth led to radical changes in the urban landscape, leading to sharp decreases in soil and 
farmland. The results from this study provide key information for future planning to make eco-
friendly megacities as well as sustainable development.  

 

 
Keywords: Urban expansion; landscape response; Guangzhou; Landsat. 
 

1. INTRODUCTION 
 
In recent decades, unprecedented urban 
expansion has led to the modification of the 
Earth’s surface structure [1,2]. Urban land 
accounts for merely a small part of the Earth's 
land surface, but the acceleration of the 
urbanization process has had a significant impact 
on terrestrial ecosystems at different scales [3-5], 
resulting in reduced biological diversity, impacted 
ecosystem services and function, changed 
biogeochemical cycles and climate [6-10]. With 
fast economic and population growth in China, 
rapid urban land expansion has tremendously 
changed the regional and continental 
environmental systems, leading to a lot of 
negative environmental impacts such as loss of 
arable land, fragmented habitats, and elevated 
land surface temperature [11]. The rapid urban 
land expansion has threatened sustainable 
development [12,13]. Therefore, given such 
political and sustainable development demands, 
accurate and updated urban expansion 
information and landscape change response 
information are crucially important to support 
sustainable development and preserve 
ecological and environmental conditions for 
researchers and governors [12].  
 
As the core of Pearl River Delta urban 
agglomeration and a pilot area of Guangdong-
Hong Kong-Macao Greater Bay, Guangzhou is 
an excellent example for studying urban 
expansion related to its process, because it is 
one of the largest metropolitans and rapidly 
developing areas in China or even the world. The 
socioeconomic factor was the primary driving 
force that directly and indirectly affected 
Guangzhou’s composition of land cover. 
Following the urban sprawl, a large number of 
buildings have become one of the most dominant 
urban landscapes in Guangzhou. Continuous 
urban expansion has led to many environmental 
issues in Guangzhou over the few decades, 
including large arable land loss, urban heat 
islands, and water pollution [14-16]. As the size 
and number of the buildings continue to grow, 
these impacts on the natural systems will 
become more apparent. Urban expansion              
brings huge pressure to the environment and 

ecological systems. The rapid pace of                     
building growth is reshaping the morphology                
and function of the urban area. Guangzhou           
faces a huge challenge in maintaining trade-             
offs between regional development and 
ecological benefits, highlighting the need                     
for a clear understanding on the urban  
expansion process. Therefore, in-depth studies 
of urban expansion patterns are essential to 
promote sustainable urban development in 
Guangzhou. 
  
Given the rapid urban development in 
Guangzhou, accurate and long-term data on the 
dynamics of urban expansion is highly vital to 
optimize land use patterns and to promote 
effective development to ensure urban 
sustainability. Moreover, a comprehensive 
characterizing urban expansion process will 
provide basic and valuable information on 
monitoring of urban planning effects and 
modeling urban growth in Guangzhou. We                  
first mapped the urban landscape with an 
integrated method, and the changes in urban 
landscape was also evaluated. Then, we 
examined the spatio-temporal patterns of                 
urban expansion, mainly including                   
expansion types, and expansion direction                   
(or trajectory).  
 

2. MATERIALS AND METHODS 
 

2.1 Study Area and Data Source 
 
Guangzhou is located between 112°57′1.1″-
114°3′19.57″E and 22°33′35.32″-23°56′1.99″N, 
and covers an area of about 7,434.4 km

2
 (Fig. 1). 

Guangzhou, as the center of Pearl River Delta 
and the capital of Guangdong province, is the 
cultural, economic, and political center of south 
China. Guangzhou comprises of 12 districts, 
namely: Yuexiu, Tianhe, Haizhu, Liwan, 
Huangpu, Luogang, Panyu, Nansha, Baiyun, 
Huadu, Zengcheng and Conghua. Guangzhou 
has a typical sub-tropical maritime monsoon 
climate, in which persistent rain and clouds in 
spring and summer (two wet seasons) are a 
prominent climate feature [17]. The topography in 
Guangzhou has a low elevation in the south, but 
high in the northeast. 
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Fig. 1. Location of the study area (the false-color image is the Landsat-5TM image collected on 
November 02, 2009) 

 
Understanding the complex processes of urban 
expansion requires long-term records [18]. 
Eighteen Landsat images from nine periods from 
the U.S. Geological Survey (USGS) website 
were used as imagery sources to monitor urban 
expansion over a 44-year period (Table 1). All of 
the used images were selected because they 

were cloud-free or cloud-few from October to 
December in each study period. Other ancillary 
data include the Guangzhou administrative map 
(2005) for delineation of the study boundary and 
the high-resolution image (2009) from Google 
Earth for selecting classification samples and 
assessing classification accuracy. 

 
Table 1. List of Landsat images used in this study 

 

Years Sensor Acquired date 
(yyyy/mm/dd) 

Number of GCP's for 
registration 

Geometric registration 
RMS error 

1973 MSS 1973/10/25 16 ±0.45 
1979 MSS 1979/10/19 15 ±0.49 
1988 TM 1988/12/10 10 ±0.33 
1994 TM 1994/10/24 15 ±0.35 
2000 TM 2000/10/08 7 ±0.17 
2005 TM 2005/11/23 7 ±0.005 
2009 TM 2009/11/02 ~ Master image 
2013 OLI 2013/11/29 6 ±0.002 
2017 OLI 2017/10/23 9 ±0.061 
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2.2 Images Pre-Processing 
 
The surface reflectance (SR) data of 2009                  
were obtained from the USGS EROS                  
Science Products Architecture (ESPA, 
https://espa.cr.usgs.gov/), and the rest were 
obtained from the USGS Earth Explorer 
(https://earthexplorer.usgs.gov/). Except for the 
2009 SR data, the original digital numbers of 
these images were converted to the atmospheric 
radiance using the conversion formula from the 
USGS Landsat program [19,20]. Furthermore, 
two images (path 122 row 44, path 122 row 43) 
of each period were spliced together. To respond 
to the resolution of the other Landsat instruments 
(TM, OLI), the MSS images were re-sampled              
to 30 meters using the nearest neighbor 
resampling method [21]. The 2009 spliced SR 
image was used as a reference for registering 
the other eight spliced images, and the root 
mean square errors were limited within 0.5 pixels 
(Table 1). 
 
Since the multi-temporal and multi-sensor 
images were used, it is necessary to normalize 
the variation in SR across all used images                  
[22-24]. Comparing the pre-band spectral               
range, the Landsat time series images have 
similar or same spectrum range [25], thus 
iteratively re-weighted multivariate alteration and 
detection (IR-MAD) transformation [26] was 
adopted to approximately adjust the differences 
of SR between used the images of Landsat. We 
used the 2009 mosaic SR image as a reference 
for conducting the relative radiometric 
normalization procedure based on the IR-MAD 
transformation [25,26], the atmospheric radiance 
of the other eight target images (including 
1973MSS, 1979MSS, 1988TM, 1994TM, 
2000TM, 2005TM, 2013OLI, 2017OLI) were 
converted to the SR [25-27]. The SR (blue band, 
green band, red band, near-infrared band, 
shortwave infrared 1 band, shortwave infrared 2 
bands) of 1988TM, 1994TM, 2000TM, 2005TM, 
2013OLI, and 2017OLI were corrected with 
respect to the year 2009 TM SR (blue band, 
green band, red band, near-infrared band, 
shortwave infrared 1 band, shortwave infrared 2 
bands). For correcting the MSS imagery                
(three bands analogous to TM) with respect to 
the year 2009 SR image, the green, red                    
and near-infrared bands of the year 2009 SR 
image were used to match the SR of the MSS 
(1973, 1979). Finally, the SR of all used images 
was approximately adjusted to a common 
radiometric scale based on the year 2009 SR 
image. 

2.3 Urban Landscape Classification 
 

We adopted the feature composite classification 
scheme to extract the urban landscape. First, the 
normalization different water index (NDWI) and 
normalization different vegetation index (NDVI) 
(Equation (1) and Equation (2)) were calculated 
for the all SR images. Then, NDWI and NDVI 
images were stacked into the SR image of each 
study period. Two five-layer images (MSS) and 
seven eight-layer images (TM, OLI) were 
obtained to apply classification. 
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             (2) 

 

Where Bg, Bn, Br represent green, near infrared, 
and red bands of Landsat imagery. 
 

The urban landscape was broken down into six 
categories: building, forest, soil, farmland, shrub-
grass, and water. All urban landscape 
classifications were identified using a support 
vector machines (SVM) technique. Firstly, larger 
than 1500 points were randomly generated within 
the overlapped area between the year 2009 TM 
SR image and the quasi-synchronous high-
resolution image from Google Earth. Then, these 
points were visually divided as building, forest, 
soil, farmland, shrub-grass, and water; of more 
than 200 random sample points for each 
classification, half of them were employed for 
validation and the other half were employed for 
training. The training sample points were 
employed to train the SVM classifier based on an 
eight-layers imagery from the year 2009 layer-
stacked image [21]. Based on the validation 
samples, an error matrix was used for evaluating 
accuracy [28]. The results of accuracy 
assessment are found in Table 2. 
 

In order to verify whether the five-layers image 
(green, red, near infrared bands, and NDVI, 
NDWI images) meet urban landscape 
classification, a new classifier for the SVM was 
developed using the same training samples as 
the eight-layers imagery, whereas only five-
layers (green, red, near infrared bands, and 
NDVI, NDWI images) from the year 2009 layer-
stacked image were used. The accuracy was 
also assessed with the same validation samples, 
as tabulated in Table 2. Although only five-layers 
were used, the classified result was similar to the 
eight-layers SVM approach (Table 2).  
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Table 2. The accuracy assessment results of the different classification methods (unit: %) 
 

 Water Building Soil Forest Farmland Shrub-grass 

Eight-layers Producer's accuracy 96.08 92.00 86.05 90.38 81.13 78.43 
User's accuracy 98.00 92.00 74.00 94.00 86.00 80.00 

Five-layers Producer's accuracy 95.92 90.00 84.78 87.04 80.00 82.35 
User's accuracy 94.00 90.00 78.00 94.00 80.00 84.00 

 
In this study, an elaborated atmospheric 
correction was employed to minimize the 
differences between used images (see section 
2.2), and to get relatively consistent SR in 
various Landsat images [23,26]. Moreover, SVM 
classifiers (five-layers and eight-layers) 
generated from the 2009 layer-stacked image is 
a practical bridge between used images. 
Therefore, consistent and valid results of 
classification could be expected using the five-
layers SVM classifier for MSS images and the 
eight-layers SVM classifier for TM and OLI 
images [21].  
 

2.4 Quantification of Landscape 
Responses with Urban Expansion 

 

A matrix system was generated through a GIS 
application using classification maps of the 
region for the years 1973, 1979, 1988, 1994, 
2000, 2005, 2009, 2013, and 2017, to quantify 
how much water, soil, forest, shrub-grass, and 
farmland were converted directly and indirectly to 
building. These nine time points enabled the 
definition of nine conversion episodes, 1973–
1979, 1979–1988, 1988–1994, 1994–2000, 
2000–2005, 2005–2009, 2009–2013, 2013–
2017, and 1973–2017, which could be used to 
track the process of landscape change due to 
urban expansion. 
 

2.5 Quantifying the Spatio-Temporal 
Patterns of Urban Expansion 

 

The spatial-temporal process of urban expansion 
was measured from different dimension. We 
used GIS technique to estimating the types and 
direction of urban expansion in Guangzhou. 
Three types of urban expansion were identified 
using Equation (3) [29,30]. Urban expansion 
types are defined as outlying if S = 0, edge if 0 < 
S < 0.5, and infilling if S ≥ 0.5. The three 
expansion types are illustrated in Fig. 2. 
 

cL
S

p
              (3) 

 

Where Lc is the length of the common edge 
between a new and existing building patch, and p 

is the perimeter of the new building patch                
(Fig. 2). 
 
Urban expansion trajectory was characterized by 
the changes of Gravity Center (GC). The concept 
of Gravity Center is used to identify the weighted 
center of the building, mapping the GC change of 
the building estimated the spatial direction of 
urban development [31]. The GC migration was 
described based on the alteration of the gravity 
center coordinate (GCC) [31]. The GCC is 
measured by Equation (4) and Equation (5). 
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Where X and Y are the GCC for the building, Xi 
and Yi are GCC of the ith patch, Pi is area of the 
ith patch, n is number of patches in the building. 
 
To examine the spatial pattern of expansion and 
its change over time, four class-level spatial 
metrics were selected to capture the pattern of 
three urban expansion types from different 
dimensions, i.e. the patch density (PD) equals 
the number of patches of the corresponding 
patch type divided by total landscape area, the 
mean patch area (MPA) measure the average 
area of all patches in the landscape, the 
landscape shape index (LST) quantify the 
irregularity of the landscape, and the clumpiness 
index (CLUMPY) describes the proportional 
deviation of the proportion of like adjacencies 
involving the corresponding class from that 
expected under a spatially random distribution. 
Four indices describe four key aspects feature of 
the landscape: density, size, edge, and 
aggregation respectively. The comments and 
calculation method of four spatial metrics can be 
found in the help document of FRAGSTATS 
software version 4.2. 
  



 
 
 
 

Chen and Yu; Asian J. Geo. Res., vol. 6, no. 3, pp. 34-46, 2023; Article no.AJGR.101226 
 

 

 
39 

 

 
 

Fig. 2. The three types of urban expansion: (a) Infilling, (b) Edge, (c) Outlying 
 

3. RESULTS 
 

3.1 Landscape Responses of Urban 
Expansion 

 
The resulting landscape maps generated for the 
area of study are shown in Fig. 3, respectively. 
During the period 1973–2017, the building areas 
grew from 0.26% to 23.04% of the study area, 
the building nearly increased by 90-fold, the 
change in the area of building indicated that 
Guangzhou experienced rapid urban expansion 
over the 44 years period. The building kept on 
expanding from 1973, the mean annual growth 
rates of the building also increased greatly, which 
were 3.83, 5.40, 22.25, 23.34, 47.24, 66.33, 
110.60 km

2
/year for the seven periods of 1973–

1979, 1979–1988, 1988–1994, 1994-2000, 2000-
2005, 2005-2009 and 2009-2013, respectively, 
indicating that the urbanization process of 
Guangzhou has been accelerated from 1973 to 
2013. But the mean annual growth rates of the 
building decreased during 2013–2017 (101.19 
km

2
/year), indicating that the speed of urban 

expansion in Guangzhou tends to slow down. 
 
The analysis of landscape change revealed a 
93.03% decrease in soil, a 66.39% decrease in 
shrub-grass, a 49.66% increase in water, a 
19.76% increase in forest, with a 40.35% 
decrease in farmland between 1973 and 2017. 
Urban landscapes have been dramatically 
changed (Fig. 4). The first majority landscape of 
the study area was forest, the total area of forest 
fluctuates during these years, but the overall 
trend is increasing, the forest area in this region 
in 2017 was 3432.13 km

2
, accounting for 46.17% 

of the total area. The largest area change was 
found in soil, the soil area drastically reduced 
during 1973-2017. And the area of soil was 

falling since 1988. The area of farmland 
fluctuates during 1973-2005, the area of 
farmland was falling since 2005, with a high rate 
of decline over the period of 2005 to 2017. The 
total area of water fluctuates during whole period, 
which was found obviously lower in 2000. The 
total area of shrub-grass fluctuates during these 
years, but the overall trend is downward.  
 
The expansion of buildings (+1693.5 km

2
) was 

the leading urban landscape rapidly changing 
from 1973 to 2017. The other landscape 
conversion to buildings captured from 1973 to 
2017, and the landscape response processes 
caused by urban expansion are listed in Table 3. 
Over the period, massive new buildings were 
developed on land that was previously soil or 
farmland, with most converted from farmland 
(807.84 km

2
, both directly and indirectly), 

followed by soil (481.99 km
2
, both directly and 

indirectly). For all study periods, a similar 
conversion phenomenon was observed, with lots 
of other landscapes being continuously 
converted to the buildings. 
 

3.2 The Patterns of Urban Expansion 
 
Three urban expansion types were identified and 
the contribution of each in the eight periods was 
illustrated in Fig. 5. Through the 44 years, the 
edge was the primary expansion type (over 55% 
in any one period), the landscape surrounding 
the built up area was gradually eroded because 
of the edge expansion. In the first period (1973–
1979), the infilling type occupied only 3.88% of 
the total newly developed buildings, while the 
outlying type occupied 37.11%. In contrast, the 
percentage of the infilling type increased to 
almost 31.91% between 2013 and 2017, while 
the outlying type occupied 10.10%. The areas of 
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infilling expansion were less than the areas of 
outlying expansion in 1973–1979, 1979–1988, 
1988–1994, and 1994–2000, but the areas of 
outlying expansion were less than the areas of 
infilling expansion in 2000–2005, 2005–2009, 

2009–2013 and 2013-2017. In the period of 
2013–2017, the rate of edge and outlying 
expansion was lower than that in the period of 
2009–2013, but the rate of infilling expansion 
was faster than that in the period of 2009–2013. 

 

 
 

Fig. 3. Landscape maps of the studied area for the years: (a) 1973, (b) 1979, (c) 1988, (d) 1994, 
(e) 2000, (f) 2005, (g) 2009, (h) 2013 and (i) 2017 



 
 
 
 

Chen and Yu; Asian J. Geo. Res., vol. 6, no. 3, pp. 34-46, 2023; Article no.AJGR.101226 
 

 

 
41 

 

 
 

Fig. 4. Changes in area of different landscape in Guangzhou from 1973-2017 
 

Table 3. Quantifying landscape responses with urban expansion, based on the other 
landscapes transferred to buildings from 1973 to 2017 in Guangzhou (unit: km

2
) 

 

 Water Soil Forest Shrub-grass Farmland 

1973–1979 0.92  4.40  2.57  1.46  13.60  
1979–1988 1.30  11.47  4.80  6.47  24.58  
1988–1994 1.59  5.60  10.47  20.21  98.66  
1994–2000 4.17  2.68  13.93  52.89  66.38  
2000–2005 19.94  7.55  34.53  55.64  118.53  
2005–2009 20.43  5.91  36.48  63.75  138.75  
2009–2013 22.79  18.70  67.52  161.82  171.56  
2013–2017 72.07  2.86  98.76  15.83  215.22  
1973–2017 45.32  481.99  134.64  223.67  807.84  

 

 
 

Fig. 5. Area percentage of urban expansion type for Guangzhou within the study period 
 
The GC migration of the building reflected the 
direction of urban expansion. It can be seen from 
Fig. 6 that the direction of expansion trended 
toward the northeast of Guangzhou which has 

large tracts of soil, farmland and forests. With 
expansion in this direction, a large amount of 
soil, farmland and forests were replaced by the 
buildings. 
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Fig. 6. Direction of urban expansion was observed between 1973 and 2017 in Guangzhou 
 
The metric characteristics shown in Fig. 7 reflect 
the dynamic patterns of the urban expansion. 
The MPA of the edge type is higher than the 
other two types, but the MPA of three expansion 
types has a slight decreasing trend. The MPA of 
the infill type decreased from 0.42 ha to 0.32 ha, 
the edge type also decreased from 1.14 ha to 
0.73 ha, and the outlying type also reduced from 
0.26 ha to 0.18 ha. The PD of the infill and edge 
types grew continuously with accelerating 
urbanization in Guangzhou. The infill type has a 
higher growth rate than the edge type. The PD of 
the outlying type reached its peak in 2009-2013 
(112.78). The LST of all types increased fleetly, 
outlying reached its peak in 2009-2013. The 
CLUMPY of all types declined, the infill and 
outlying types decreased sharply.  
 

4. DISCUSSION  
 

This study integrated remote sensing and GIS to 
analyze the spatio-temporal processes of urban 
expansion. The IR-MAD transformation was 
employed to deal with the SR differences 
between Landsat images, and using the SVM to 
effectively identify the urban landscape over 

long-term period. The IR-MAD transformation 
can reduce the bias caused by different 
environmental conditions and instruments in the 
multi-temporal Landsat images [25-27]. 
Meanwhile, SVM classifiers (five-layered and 
eight-layered) generated from the same data 
(2009 layer-stacked image) is a practical bridge 
between used classification images. The use of 
consistent training samples can greatly improve 
the efficiency of mapping urban landscapes. The 
methodological framework used in this study 
provides an effectively approach to rapidly 
extract urban landscape using multi-temporal, 
multi-sensor Landsat series imagery.  
 
This study evaluated the dynamics of urban 
expansion and evolution of landscape change 
and patterns of different expansion types in 
Guangzhou. Since the reform and opening up in 
1978, accompanied by the rapid development of 
a social economy and the massive increase in 
population, high-density apartment buildings, 
industrial parks and urban infrastructure have 
contributed to rapid urban expansion. The 
urbanization process, with no signs of slowing 
down, is the most visible and powerful force that 
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has brought about fundamental transitions in 
land use and landscape pattern in Guangzhou. 
As a consequence, the dramatic urban 
expansion has induced rapid landscape 
changes. Most of the land surrounding urban 
areas is used for agriculture. Much of the 
expansion occurred on the urban fringe along the 
southwest to northeast direction. Urban 
expansion through edge erosion therefore occurs 
mostly at the expense of farmland and the 
surrounding soil. Spanning the 44 years, the 
urban landscape pattern underwent rapid 
changes from being dominated by natural and 
semi-natural landscape to gradually being 
dominated by artificial building landscape, 
resulting in the loss of soil, forests and farmland, 
and a homogenization of landscape types [6,32], 
contributing a significant threat to the services 
and function of ecosystems in Guangzhou 
[17,33]. Durative urban expansion is projected to 
impact on landscape pattern in the future [34], 
there are would grievously threat to the regional 
ecological security and food security.  
 
Therefore, a key question facing governors now 
is how to manage urban expansion and its direct 
and indirect ecological consequences to come up 

with a sustainable development strategy guiding 
future directions and optimal patterns of urban 
land growth to minimize the negative impacts on 
natural and semi-natural landscape caused by 
urban expansion in Guangzhou.  
 
The edge expansion was the primary urban 
expansion type throughout the 44-year period. 
With the development of time, the proportion of 
infill type gradually increased, while that of 
outlying type decreased. This implies that when 
the growth space has been compressed and the 
urban form becomes more compact, the main 
type of urban expansion may gradually turn to 
infill growth. Comparing the urban expansion 
patterns of Beijing, Nanjing and Tianjin, we found 
that the dominating expansion type is 
significantly different in various urban areas, 
such as Nanjing with infilling expansion [12], 
Beijing with both edge expansion and infilling 
expansion [34], and Tianjin with outlying growth 
[34]. The regional development conditions and 
development strategies may contribute to the 
main causes of these differences. Our results are 
also significantly different from the result of Sun 
et al. [35] in Guangzhou, mainly because the 
study focused on the core area of Guangzhou. 

 

 
 

Fig. 7. Patterns of three urban expansion types characterized from 1973 to 2017 in Guangzhou 
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Urban expansion patterns are a dynamic process 
in space and time. Four indices were employed 
to measure the spatial patterns of three types of 
expansion at different times. Because the edge 
expansion is dominant, the MPA of the edge 
expansion is higher than that of the other two 
types. A decrease in the MPA is an indication 
that large-scale contiguous building clusters are 
gradually decreasing, which is also reflected in 
the decrease of the CLUMP index. The LST of 
the three expansion types gradually increased, 
and the majority of patches became more 
complex and irregular in shape. The combination 
of increasing patch density and decreasing mean 
patch area is an indication that the landscape of 
all expansion types occurring is more fragmented 
and dispersed. With rapid urban development, 
the landscape of three expansion types changed 
dramatically in size and structure, becoming 
more scattered and more complex 
configurationally and geometrically. 
 

5. CONCLUSIONS 
 

This study focuses on an analysis of the urban 
expansion pattern and landscape responses of 
one of China’s largest cities, which is rapidly 
developing. The data produced in this study 
implied Guangzhou is a highly dynamic region 
where the landscape has changed dramatically. 
A large portion of the natural and semi-natural 
landscape has been converted to buildings since 
the 1970s, and urbanization has been a major 
driver of landscape conversion in Guangzhou. 
Our study provides a more in-depth 
understanding of the variations in urban 
expansion patterns in Guangzhou and can be 
used to optimize the irrational landscape pattern 
of urban expansion and related issues. It is not 
only of important theoretical and practical 
significance to provide necessary geographic 
information for planning and policy-making, but 
also for metropolitan area with rapidly growing 
economies and populations to realize the 
sustainable use of urban land resources. 
 

Our results point out to the emergence of an 
expansion process where edge growth sites 
impact on specific land uses or land covers (soil, 
farmland, forests, etc.). However, Guangzhou's 
urbanization process shows no signs of slowing 
down in the short term. In this state, the edge 
expansion and outlying expansion should be 
strictly restricted, and the infilling development 
should be used as the preferred mode for urban 
development because it is usually related with a 
compact urban spatial pattern and edge 
expansion or outlying expansion model with a 

scattered one, and the compact urban spatial 
pattern has more advantages than the scattered 
one [34,36]. 
  
Urban landscape change is one of the greatest 
human impacts on the terrestrial environment. 
The form of urban development today will control 
and influence resource use, environmental 
condition and ecological security in time yet to 
come. If the urbanized extent is not effectively 
controlled by land use policy, the constant 
increase in buildings may be a serious threat to 
the surrounding natural landscape, and in the 
near future the urban environment of Guangzhou 
might reach an irredeemable condition.  
 
For future developments, it is essential that a 
sustainable land use strategy is produced which 
will minimize the amount of natural and semi-
natural landscapes that will disappear due to 
urban expansion. Urban authorities should use 
appropriate land use policies and urban planning 
to manage the urban land for future sustainable 
development in Guangzhou. 
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