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Abstract

Distribution is a basic characteristic of statistics. There exists only two ways to obtain the distribution
function for some quantity, which are the frequency generated by historical data and the belief degree
evaluated by domain experts, respectively. However, it is undoubtedly difficult for expert to give specific
and accurate experimental data in every questionnaire. By improving the questionnaire, this paper proposes
a new method of data collection combining uncertainty and randomness. Besides, a method of moments
for estimating the distributions with known parameters is estimated by using the collected data. Several
numerical examples are provided to illustrate the feasibility of the method.
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1 Introduction

In real life, human beings may confront many upcoming events and make subjective decisions about them. When
dealing with the likelihood that something will happen, people have two effective tools: probability theory and
uncertainty theory, which have obviously become two aximatic mathematical systems. Essentially, probability
theory and uncertainty theory are associated with frequencies and belief degrees respectively. As we all know,
the fundamental premise of applying probability theory is that the obtained distribution function is consistent
with the real frequency. For the sake of obtaining the distribution function for a quantity, such as bond price,
people may study historical data or consult relevant domain experts according to the specific situation.

When the frequency of the event we study is stable, there is no doubt that it is very appropriate to use probability
theory. However, in real life, the frequency of the event we study is unstable in many cases. One example is
that if we want to study the degree of marine pollution caused by the discharge of nuclear wastewater, due
to the sudden impact of human activities on marine ecosystems, the degree of marine pollution may change
dramatically. In this case, owing to technical and financial constraints, people cannot obtain sufficient statistical
sample data through a large number of repeated experiments, so it is necessary to use uncertainty theory.

For the purpose of dealing with situations with the event whose frequency is unstable, Liu [1] founded the
uncertainty theory in 2007. Many researchers subsequently studied and made significative peogresses in the area
of uncertainty theory. On the basis of the uncertain measure, Liu [1] proposed the concept of uncertain variable
and uncertainty distribution. Peng and Iwamura [2] proved the sufficient and necessary condition of uncertainty
distribution. In 2010, Liu [3] summarized the concept of regular uncertainty distribution and proposed inverse
uncertainty distribution. On the basis of the independence [4], Liu [3] introduced some operational laws for
calculating the distribution.

Uncertain statistics is a crucial part of uncertainty theory. Liu [3] proposed an approach to collecting expert’s
experimental data through inviting expert to complete the questionaire. With the help of the questionnaire
survey, Chen-Ralescu [19] got the expert’s data of the travel distance between Beijing and Tianjin. For the sake
of modeling and predicting the data more accurately, Liu [3] gaved the definition of the expected value. Yao [5]
proposed a formula to calculate the variance by invoking inverse uncertainty distribution. Furthermore, Sheng
and Yao [6] obtained some results of moments of uncertain variable. Liu [3] used the data obtained from experts
to establish the empirical uncertainty distribution. Thus Liu further gave the principle of least square based on
the empirical uncertainty distribution. Since then, many scholars have deeply studied uncertain statistics and
developed it into more research including estimation of uncertainty distribution, uncertain hypothesis test [7],
uncertain regression analysis [8], uncertain time series [9], and uncertain differential equation [10]. Lio and Liu
[11] presented the method of moments to estimate the unknown parameters in the distribution. Besides, the
uncertain maximum likelihood estimation was also proposed by Lio and Liu [12] and was modified by Liu and
Liu [13].

For some complicate situations, in order to quantify an event with randomness and fuzziness, Li and Liu [14]
first introduced the concepts of chance space and chance measure in 2009. Nevertheless, to describe a complex
system involving both randomness and uncertainty, Liu [15] redefined the concept of chance space as the product
of probability space and uncertainty space. Meanwhile, Liu [15] proposed the uncertain random variable and its
chance distribution, expected value, and variance. Liu [16] provided the operational law in 2013. Yao and Gao
[17] verified a law of large numbers for uncertain random variables.

In real life, it is not always so smooth for us to acquire the accurate data. On the one hand, expert may
have his own preferences so that the belief degrees are very subjective. On the other hand, it is undoubtedly
difficult for expert to give specific and accurate experimental data in every questionnaire. By improving the
questionnaire, this paper proposes a new method of data collection combining uncertainty and randomness. The
main structure of this paper is organized as follows. In the next section, we will make a review of some basic
concepts in uncertainty theory and chance theory. Then the improved method of data collection is introduced in
Section 3. By using the collected data, the corresponding method of moments to estimate the distributions with
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unknown parameters is established in Section 4. Finally, several numerical examples are provided to illustrate
the feasibility of the method proposed in Section 5.

2 Preliminary

In this section, some basic concepts of uncertainty theory and chance theory are given. More detailed information
may refer to [1, 3, 15].

2.1 Uncertainty Theory

Let Γu be a nonempty set, and Lu be a σ-algebra over Γu. Each element Λ ∈ Lu is referred to as an event. The
set function M satisfying the following axioms is called an uncertain measure:

Axiom 1. (Normality) M{Γu} = 1 for the universal set Γu;

Axiom 2. (Duality) M{Λ}+M{Λc} = 1 for any event Λ ∈ Lu;

Axiom 3. (Subadditivity) For every countable sequence of events Λi ∈ Lu, i = 1, 2, · · · , we have

M

{
∞⋃
i=1

Λi

}
≤
∞∑
i=1

M{Λi} .

The triplet (Γu,Lu,M) is referred to as an uncertainty space [3].

Axiom 4. (Product) Let (Γuk,Luk,Mk) be uncertainty spaces for k = 1, 2, · · · . Denote Γu = Γu1 ×Γu2 × · · · ,
Λ = Λ1 × Λ2 × · · · , Lu = Lu1 × Lu2 × · · · . Then the product uncertain maesure M is an uncertain measure
which satisfies:

M

{
∞∏
k=1

Λk

}
=

∞∧
k=1

Mk {Λk} ,

where Λk are arbitrarily chosen events from Luk for k = 1, 2, · · · , respectively.

An uncertain variable is a measurable function ξu from an uncertainty space (Γu,Lu,M) to the set of real
numbers.

Definition 2.1 ([1]). The uncertainty distribution Φu(x) of an uncertain variable ξu is defined by

Φu(x) =M{ξu ≤ x}, (1)

for any x ∈ R.

An uncertainty distribution Φu(x) is called regular if it is a continous and strictly increasing function with
respect to x at which 0 < Φu(x) < 1, and

lim
x→−∞

Φu(x) = 0, lim
x→+∞

Φu(x) = 1. (2)

The inverse function Φ−1
u (α) is referred to as the inverse uncertainty distribution of ξu whose uncertainty

distribution Φu(x) is regular.

Definition 2.2 ([1]). Let ξu be an uncertain variable. Then the expected value of ξu is defined by

EM{ξu} =

∫ +∞

0

M{ξu ≥ x}dx−
∫ 0

−∞
M{ξu ≤ x}dx, (3)

provided that at least one of the two integrals is finite.
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Furthermore, according to the difinition of the uncertainty distribution and the inverse uncertainty distribution,
the formula (3) can be rewritten as

EM{ξu} =

∫ 1

0

Φ−1
u (α)dα, (4)

where Φ−1
u (α) is the inverse uncertainty distribution of ξu.

2.2 Chance theory

Let (Γu,Lu,M) be an uncertainty space and (Ωr,Ar, P r) be a probability sapce. The product (Γu,Lu,M) ×
(Ωr,Ar, P r), denoted as the triplet (Γu ×Ωr,Lu ×Ar,M× Pr), can be regarded as a chance space. Note that
the universal set Γu ×Ωr is clearly the set of all ordered pairs of the form (γu, ωr), where γu ∈ Γu and ωr ∈ Ωr.
That is, Γu × Ωr = {(γu, ωr)|γu ∈ Γu, ωr ∈ Ωr)}. Meanwhile, Lu × Ωr is the product σ-algebra and M× Pr is
the product measure. Theoretically,M×Pr is referred to as chance measure. We represent the chance measure
by Ch{Θur}, where Θur is an event in the chance space.

Definition 2.3 ([15]). Let (Γu ×Ωr,Lu ×Ar,M× Pr) be a chance space, and let Θur ∈ Lu ×Ar be an event.
Then the chance measure of Θur is defined as

Ch{Θur} =

∫ 1

0

Pr{ωr ∈ Ωr|M{γu ∈ Γu|(γu, ωr) ∈ Θur} ≥ x}dx. (5)

Definition 2.4 ([15]). Let (Γu×Ωr,Lu×Ar,M×Pr) be a chance space. ξur is an uncertain random variable
in this space. Then its chance distribution is defined by

Υur(x) = Ch{ξur ≤ x}, (6)

for any x ∈ R.

Remark 1. If an uncertain random variable ξur degenerates to an uncertain variable ξu, its distribution also
becomes the uncertainty distribution Φ(x) = M{ξu ≤ x}, for any x ∈ R. Similarly, if an uncertain random
variable ξur degenerates to a random variable ξr, its distribution also becomes the probability distribution Fr(x) =
Pr{ξr ≤ x}, for any x ∈ R.

According to Defininiton (2.3). and the definition of EPr, we can rewrite the chance distribution to

Ch{ξur ≤ x} =

∫ 1

0

Pr{ωr ∈ Ωr|M{γu ∈ Γu|ξur(γu, ωr) ∈ Θur} ≤ x}dx

= EPr[M{γu ∈ Γu|ξur(γu, ωr) ∈ Θur} ≤ x}].

Definition 2.5 ([15]). Let ξur be an uncertain random variable. Then its expected value ECh is referred to as

ECh[ξur] =

∫ +∞

0

Ch{ξur ≥ x}dx−
∫ 0

−∞
Ch{ξur ≤ x}dx, (7)

provided that at least one of the two integrals is finite.

The formula (7) may be rewritten as follows:

ECh[ξur] =

∫ +∞

0

EPr[M{γu ∈ Γu|ξur(γu, ωr) ∈ Θur} ≥ x}]dx

−
∫ 0

−∞
EPr[M{γu ∈ Γu|ξur(γu, ωr) ∈ Θur} ≤ x}]dx.
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Since M{γu ∈ Γu|ξur(γu, ωr) ∈ Θur} ≥ x} and M{γu ∈ Γu|ξur(γu, ωr) ∈ Θur} ≤ x} are nonnegative random
variables, according to Fubini Theorem and the definition of EM, we have

ECh[ξur] =EPr

[∫ +∞

0

M{γu ∈ Γu|ξur(γu, ωr) ∈ Θur} ≥ x}dx
]

− EPr
[∫ +∞

0

M{γu ∈ Γu|ξur(γu, ωr) ∈ Θur} ≤ x}dx
]

=EPr

[∫ +∞

0

M{γu ∈ Γu|ξur(γu, ωr) ∈ Θur} ≥ x}dx

−
∫ +∞

0

M{γu ∈ Γu|ξur(γu, ωr) ∈ Θur} ≤ x}dx
]
.

Furthermore, according to Definition (2.2), we can rewrite ECh[ξur] as

ECh[ξur] = EPr [EM[ξur]] . (8)

Theorem 2.1 ([15]). Let ξur be an uncertain random variable with chance distribution Υur. Then

ECh[ξur] =

∫ +∞

0

(1−Υur(x))dx−
∫ 0

−∞
Υur(x)dx. (9)

When the chance distribution Υur of an uncertain random variable ξur is regular, the formula (9) may be
rewritten as

ECh[ξur] =

∫ 1

0

Υ−1
ur (α)dα. (10)

3 Improved Experimental Data

In 2010, Liu [3] proposed a questionnaire survey for collecting expert’s experimental data. In this paper, we
invite one domain expert to complete a questionnaire about the meaning of an uncertain variable ξu like ‘about
10km’ individually. The design of the questionnaire is roughly as follows. Firstly, we ask one expert to choose
a possible value x that the uncertain variable ξu may take. Then, we quiz him ‘how likely is ξu less than x?’
and denote his belief degree by t. Thus, we obtain an expert’s experimental data (x, t) from the domain expert.
Repeating the above process, we obtain the expert’s experimental data. Let (x1, t1), (x2, t2), · · · , (xn, tn) be the
expert’s experimental data that meet the following condition:

x1 < x2 < · · · < xn, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1.

Based on the empircial uncertainty distribution presented by Liu [3], the uncertainty distribution of ξu may be
given as follows.

Φu(x) =



0, x < x1,

ti +
(ti+1 − ti)(x− xi)

xi+1 − xi
, xi ≤ x ≤ xi+1, 1 ≤ i < n,

1, x > xn.

(11)

Since the distribution function is a monotonous increasing function, it is esay to get the corresponding inverse
distribution.

Φ−1
u (t) =



x1, t < t1,

xi +
(xi+1 − xi)(t− ti)

ti+1 − ti
, ti ≤ t ≤ ti+1, 1 ≤ i < n,

xn, t > tn.

(12)
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However, owing to personal preference, it is difficult to get the exact belief degree t corresponding to each
possible value x. In order to be more realistic, we can make improvements in the design of the questionnaire.
The specific operation is as follows. The domain expert is firstly asked to choose a poosible value x (say 100km)
that the variable ξur may take, and is then quizzed on the question,

“How likely is ξur less than or equal to x? Give an interval.”

Denote the expert’s belief degree interval by (α, β) (say(0.65,0.7)). An expert’s experimental data

(100, (0.65, 0.7))

is thus acquired from the domain expert. In this way, we replace the belief degree t with the belif degree interval
(α, β). In fact, the exact value of t is just a number in the interval (α, β). Generally, the probability of t
appearing in each value in the interval (α, β) is equal. So we can recognize that ti ∼ U(α, β). In this case,
the variable ξur should be an uncertain random variable instead of an uncertain variable. Repeating the above
process, the questionnaire may yield the following expert’s experimental data,

(x1, (α1, β1)), (x2, (α2, β2)), · · · , (xn, (αn, βn)).

Denote ti as a random variable which is subject to the uniform distribution on the interval [αi, βi]. Let
(x1, (α1, β1)), (x2, (α2, β2)), · · · , (xn, (αn, βn)) meet the following condition:

x1 < x2 < · · · < xn; ti ∼ U(αi, βi), 0 ≤ α1 · · · ≤ αi ≤ βi ≤ αi+1 ≤ · · · ≤ βn ≤ 1, i = 1, 2, · · · , n.

On the basis of the data above, we can get the empirical chance distribution as follows:

Υur(x) =



0, x < x1,

αi + βi
2

+
(αi+1 + βi+1 − αi − βi)(x− xi)

2(xi+1 − xi)
, xi ≤ x ≤ xi+1, 1 ≤ i < n,

1, x > xn.

(13)

Since the belief degrees are given in the form of intervals, we can’t acquire the inverse distribution.

4 Method of Moments

In this section, a method of moments based on expert’s experimental data is proposed to estimate the unknown
parameters. The k-th moment of the empirical chance distribution is presented as well.

Definition 4.1. Let ξur be an uncertain random variable and let k be a positive integer. Then ECh[ξkur] is called
the k-th moment of ξur.

Theorem 4.1. Let ξur be an uncertain random variable with regular chance distribution Υur and let k be a
positive integer. Then

ECh[ξkur] =

∫ 1

0

(Υ−1
ur (α))kdα.

Proof. Since α = Υur( k
√
x) and x = (Υ−1

ur (α))k represent the same curve in the rectangular coordinate system
(x, α), we have ∫ +∞

0

(1−Υur(
k
√
x))dx =

∫ 1

Υur(0)

(Υ−1
ur (α))kdα,

because the two integrals make an identical acreage. Similarly, we also have∫ 0

−∞
Υur(

k
√
x)dx = −

∫ Υur(0)

0

(Υ−1
ur (α))kdα.
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Then we can rewrite the k-th moment as

ECh[ξkur] =

∫ +∞

0

Ch{ξkur ≥ x}dx−
∫ 0

−∞
Ch{ξkur ≤ x}dx

=

∫ +∞

0

(1−Υur(
k
√
x))dx−

∫ 0

−∞
Υur(

k
√
x)dx

=

∫ 1

Υur(0)

(Υ−1
ur (α))kdα+

∫ Υur(0)

0

(Υ−1
ur (α))kdα

=

∫ 1

0

(Υ−1
ur (α))kdα.

Theorem 4.2. Let (xi, ti), i = 1, 2, · · · , n be the expert’s experimental data that meet the following condition:

0 ≤ x1 < x2 < · · · < xn, ti ∼ U(αi, βi),

0 ≤ α1 · · · ≤ αi ≤ βi ≤ αi+1 ≤ · · · ≤ βn ≤ 1, i = 1, 2, · · · , n. (14)

Then for any positive integer k, the uncertain random variable ξur with the empirical chance distribution has
the k-th empirical moment

ECh[ξkur] =
α1 + β1

2
xk1 +

1

k + 1

n−1∑
i=1

k∑
j=0

(
αi+1 + βi+1

2
− αi + βi

2
)xjix

k−j
i+1 + (1− αn + βn

2
)xkn. (15)

Proof. Since 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn, according to the formula (8) and Definition (2.2), we have

ECh[ξkur] =EPr
[
EM[ξkur]

]
=EPr

[∫ +∞

0

M{ξkur ≥ x}dx
]
.
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Then by using integral substitution method and duality axiom, we may rewrite ECh[ξkur] as

ECh[ξkur] =EPr

[∫ +∞

0

kxk−1M{ξur ≥ x}dx
]

=EPr

[∫ +∞

0

kxk−1(1−M{ξur ≤ x})dx
]

=EPr

[
k

∫ x1

0

xk−1(1−M{ξur ≤ x})dx+ k

n−1∑
i=1

∫ xi+1

xi

xk−1(1−M{ξur ≤ x})dx

+ k

∫ +∞

x1

xk−1(1−M{ξur ≤ x})dx
]

=EPr

[
k

∫ x1

0

xk−1dx+ k

n−1∑
i=1

∫ xi+1

xi

xk−1(1−M{ξur ≤ x})dx

]

=EPr

[
xk1 + k

n−1∑
i=1

∫ xi+1

xi

xk−1(1− ti −
(ti+1 − ti)(x− xi)

xi+1 − xi
dx

]

=EPr

[
kt1 + t2
k + 1

xk1 +
1

k + 1

n−1∑
i=1

k−1∑
j=1

(ti+1 − ti)xjix
k−j
i+1

+
1

k + 1

n−1∑
i=2

(ti+1 − ti−1)xki + (1− 1

k + 1
tn−1 −

k

k + 1
tn)xkn

]

=EPr

[
t1x

k
1 +

1

k + 1

n−1∑
i=1

k∑
j=0

(ti+1 − ti)xjix
k−j
i+1 + (1− tn)xkn

]
.

According to the operational law of random variable, ECh[ξkur] can be further rewritten as

ECh[ξkur] =EPr
[
t1x

k
1

]
+ EPr

[
1

k + 1

n−1∑
i=1

k∑
j=0

(ti+1 − ti)xjix
k−j
i+1

]
+ EPr

[
(1− tn)xkn

]

=EPr[t1]xk1 +
1

k + 1

n−1∑
i=1

k∑
j=0

(EPr[ti+1]− EPr[ti])xjix
k−j
i+1 + (1− EPr[tn])xkn

=
α1 + β1

2
xk1 +

1

k + 1

n−1∑
i=1

k∑
j=0

(
αi+1 + βi+1

2
− αi + βi

2
)xjix

k−j
i+1 + (1− αn + βn

2
)xkn.

The theorem is proved.

Definition 4.2. Let (xi, ti), i = 1, 2, · · · , n be the expert’s experimental data, 0 ≤ x1 < x2 < · · · < xn, ti ∼
U(αi, βi), 0 ≤ α1 · · · ≤ αi ≤ βi ≤ αi+1 ≤ · · · ≤ βn ≤ 1, i = 1, 2, · · · , n. Then for any positive integer k,

¯ξkur =
α1 + β1

2
xk1 +

1

k + 1

n−1∑
i=1

k∑
j=0

(
αi+1 + βi+1

2
− αi + βi

2
)xjix

k−j
i+1 + (1− αn + βn

2
)xkn (16)

is referred to as the k-th empirical moment.

Let ξur be an uncertain random variable with regular chance disetribution Υur(x; θ1, θ2, · · · , θp), where θ1, θ2, · · · , θp
are unknown parameters. Let (xi, ti), i = 1, 2, · · · , n be the expert’s experimental data with 0 ≤ x1 < x2 <
· · · < xn, ti ∼ U(αi, βi), 0 ≤ α1 · · · ≤ αi ≤ βi ≤ αi+1 ≤ · · · ≤ βn ≤ 1, i = 1, 2, · · · , n. Then we can use the k-th
empirical moment ¯ξkur to replace the k-th moment ECh[ξkur]. Based on the method of moments, these p unknown
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parameters require the following p equations for estimation:

ECh[ξkur] = ¯ξkur, k = 1, 2, · · · , p. (17)

If the equation group (17) has solutions as θ̂1, θ̂2, · · · , θ̂p, respectively, we may obtain the estimated distribution
function as Υur(x; θ̂1, θ̂2, · · · , θ̂p). If the equation group has no solution, we can use the principle of least squares
to get the estimations. Let γi = Υur(xi), the estimations of unknown parameters θi(i = 1, 2, · · · , p) are the
solutions of the following minimization problem:

min
θ1,θ2,··· ,θp

n∑
i=1

(Υ(xi; θ1, θ2, · · · , θp)− γi)2.

5 Numerical Examples

In order to demonstrate the effectiveness of the improved moments method presented in the previous section,
two numerical examples are given. Besides, when the the improved moments method fails to acquire the results,
another example is provided.

Example 5.1. Suppose that the uncertainty distribution of uncertain variable ξu has a functional form with
one unknown parameter θ as follows:

Υu(x; θ) = θx
1
2 , θ > 0,Υu(x; θ) ≤ 1.

By consulting a domain expert, we get the values of ξu and its corresponding belief degree intervals, which are
shown in Table 1. and Fig. 1.

Table 1. The data given by the domain expert

x 0.002 0.011 0.032 0.049 0.072 0.110
t (0.02, 0.07) (0.09, 0.13) (0.18, 0.22) (0.23, 0.25) (0.27, 0.31) (0.32, 0.39)

x 0.213 0.302 0.395 0.480 0.574 0.723
t (0.47, 0.53) (0.56, 0.63) (0.66, 0.70) (0.74, 0.76) (0.80, 0.84) (0.89, 0.94)

Fig. 1. The data given by the domain expert
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Considering that the belief degree t is presented in the form of interval (α, β), we regard the uncertain variable
ξu as an uncertain random variable ξur, while t ∼ U(α, β). By using the method of moments, we have

ECh[ξur] = ¯ξur.

Since ECh[ξur] =
∫ 1

0
Υ−1
ur (α)dα =

1

3θ2
, we have

1

3θ2
=
α1 + β1

2
x1 +

1

2

n−1∑
i=1

1∑
j=0

(
αi+1 + βi+1

2
− αi + βi

2
)xjix

k−j
i+1 + (1− αn + βn

2
)xn

=
α1 + β1 + α2 + β2

4
x1 +

n−1∑
i=2

αi+1 + βi+1 − αi−1 − βi−1

4
xi + (1− αn−1 + βn−1 + αn + βn

4
)xn.

Hence, we obtain the estimated value of unknown parameter θ,

θ̂ =

{
3

[
α1 + β1 + α2 + β2

4
x1 +

n−1∑
i=2

αi+1 + βi+1 − αi−1 − βi−1

4
xi + (1− αn−1 + βn−1 + αn + βn

4
)xn

]}− 1
2

,

i.e.,
θ̂ = 1.089.

Thus, the estimated distribution is

Υur(x) = 1.089x
1
2 ,Υur(x) ≤ 1.

Example 5.2. Suppose that the uncertainty distribution of uncertain variable ξu has a functional form with
two unknown parameters a, b as follows:

Υu(x; a, b) = ax+ b, (a > 0, 0 ≤ Υur(x; a, b) ≤ 1).

By consulting a domain expert, we get the values of ξu and its corresponding belief degree intervals, which are
shown in Table 2. and Fig. 2.

Table 2. The data given by the domain expert

x 0.4 1.0 1.5 2.0 3.0 4.0
t (0.08, 0.12) (0.17, 0.23) (0.28, 0.32) (0.39, 0.41) (0.67, 0.73) (0.88, 0.92)

Fig. 2. The data given by the domain expert
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Considering that the belief degree t is presented in the form of interval (α, β), we regard the uncertain variable
ξu as an uncertain random variable ξur, while t ∼ U(α, β). According to the method of moments, we will solve
the system of equations as follows: 

E[ξur] = ¯ξur,

E[ξ2
ur] = ¯ξ2

ur.
(18)

Additionally, the inverse chance distribution is Υ−1
ur (α; a, b) =

α− b
a

. We have

E[ξur] =

∫ 1

0

Υ−1
ur (α)dα =

1− 2b

2a
,

and

E[ξ2
ur] =

∫ 1

0

(Υ−1
ur (α))2dα =

1 + 3b2 − 3b

3a2
.

Thus, we have the following system of equations:
1− 2b

2a
= ¯ξur,

1 + 3b2 − 3b

3a2
= ¯ξ2

ur.

(19)

Then the unique solutions of the above equations
â =

1

2
√

3
( ¯ξ2
ur − ( ¯ξur)

2)−
1
2 ,

b̂ =
1

2
(1− 2â ¯ξur)

(20)

i.e.,
â = 0.2445, b̂ = −0.0526.

Thus, the estimated distribution is

Υur(x) = 0.2445x− 0.0526, 0 ≤ Υur(x) ≤ 1.

Example 5.3. Suppose that the uncertainty distribution of uncertain variable ξu has a functional form with
three unknown parameters a, b, θ as follows:

Υu(x; a, b, θ) = θx + ax+ b, (a > 0, θ > 1, 0 ≤ Υur(x; a, b) ≤ 1).

By consulting a domain expert, we get the values of ξu and its corresponding belief degree intervals, which are
shown in Table 3. and Fig. 3.

Table 3. the data given by the domain expert

x 0.1 0.2 0.3 0.4 0.5
t (0.17, 0.21) (0.24, 0.29) (0.32, 0.36) (0.41, 0.43) (0.47, 0.53)

x 0.6 0.7 0.8 0.9 1.0
t (0.57, 0.62) (0.66, 0.72) (0.77, 0.80) (0.86, 0.92) (0.99, 1.00)

Considering that the belief degree t is presented in the form of interval (α, β), we regard the uncertain variable
ξu as an uncertain random variable ξur, while t ∼ U(α, β). In this example, we can’t get the moment estimated
values easily. As the number of unknown parameters increases, the calculation of the estimated values will
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Fig. 3. The data given by the domain expert

become larger and harder. So we use the least squares estimation. The unknown parameters a, b, θ are the
solutions of the following minimization problem:

min
a,b,θ

10∑
i=1

(θxi + axi + b− γi)2.

Thus, we have θ̂ = 1.750, â = 0.326, b̂ = −0.879. The estimated distribution is Υur(x) = 1.75x + 0.326x −
0.879, 0 ≤ Υur(x) ≤ 1.

6 Conclusion

In this paper, we mainly provide a new method of data collection based on chance theory. By improving
the method of collecting the data from the domain expert, we make the data more realistic and make the fault
tolerance of the estimated value stronger. The method of moments in this paper is used to estimate the unknown
parameters in the distribution. By using this method, we may easily and conveniently calculate the unknown
parameters of the distribution in the real experiment.

In future research, the authors are intending to further investigate the situation of multiple experts. In addition,
the situation that the empirical distribution function is not a ladder type is also worth exploring.
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