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The concept of invasion is useful across a broad range of contexts, spanning from the
fine scale landscape of cancer tumors up to the broader landscape of ecosystems.
Invasion biology provides extraordinary opportunities for studying the mechanistic basis
of contemporary evolution at the molecular level. Although the field of invasion genetics
was established in ecology and evolution more than 50 years ago, there is still a limited
understanding of how genomic level processes translate into invasive phenotypes
across different taxa in response to complex environmental conditions. This is largely
because the study of most invasive species is limited by information about complex
genome level processes. We lack good reference genomes for most species. Rigorous
studies to examine genomic processes are generally too costly. On the contrary, cancer
studies are fortified with extensive resources for studying genome level dynamics
and the interactions among genetic and non-genetic mechanisms. Extensive analysis
of primary tumors and metastatic samples have revealed the importance of several
genomic mechanisms including higher mutation rates, specific types of mutations,
aneuploidy or whole genome doubling and non-genetic effects. Metastatic sites can
be directly compared to primary tumor cell counterparts. At the same time, clonal
dynamics shape the genomics and evolution of metastatic cancers. Clonal diversity
varies by cancer type, and the tumors’ donor and recipient tissues. Still, the cancer
research community has been unable to identify any common events that provide
a universal predictor of “metastatic potential” which parallels findings in evolutionary
ecology. Instead, invasion in cancer studies depends strongly on context, including
order of events and clonal composition. The detailed studies of the behavior of a variety
of human cancers promises to inform our understanding of genome level dynamics in
the diversity of invasive species and provide novel insights for management.

Keywords: clonal diversity, epigenomics and epigenetics, genomics, metastasis, non-genetic inheritance,
invasion biology, invasive species

INTRODUCTION

The concept of invasion is provocative across many levels of biology. In the context of biodiversity
and ecology, microbial, plant, and animal species invade non-native ecosystems imposing
ecological and economic problems and challenges on a global scale (Pimentel et al., 2000; Pyšek
and Richardson, 2010; Simberloff et al., 2013; Strong and Ayres, 2013; van Kleunen et al., 2018;
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Bartz and Kowarik, 2019; Cuthbertab et al., 2021). In cancers, a
primary tumor in one tissue can give rise to lineages that disperse
to a wide variety of novel environments in other tissues of the
host (Turajlic et al., 2018; Capp and Thomas, 2020), imposing
a potentially lethal cost on the host (Pienta et al., 2020a; Dujon
et al., 2021). Evolutionary processes are inherent to invasions
as biological entities are exposed to environmental conditions
that may vary from their original environments. The invasive
species may experience population bottlenecks, and be subject
to genetic drift (Bock et al., 2015; Sottoriva et al., 2017; Zahir
et al., 2020). In studies that span the diversity of biological taxa
and known human cancers, comparison of source and invasive
populations of species and cancer cells has shed light on how
rapid evolution can occur (Lee, 2002; Bossdorf et al., 2005;
Prentis et al., 2008; Turajlic et al., 2018; Alexandrov et al., 2020;
Gerstung et al., 2020).

The field of invasion genetics was established in ecology and
evolution more than 50 years ago to understand the genetic
mechanisms underlying invasion in natural systems (Baker
and Stebbins, 1965). But even by 2002, evolutionary genetics
was considered “relatively unexplored” in most invasive species
(Lee, 2002). Despite some level of success in the last two
decades, we have only a limited understanding of how genomic
processes translate into phenotypic diversity across different
taxa in response to complex environmental conditions (Bock
et al., 2015; van Kleunen et al., 2018; Mounger et al., 2021a).
Several studies have concluded that while population bottlenecks
and genetic drift typically have a negative effect on invasion
success, adaptive responses by invasive species are not limited
by reduced genetic variation (Bock et al., 2015; Dlugosch et al.,
2015; Estoup et al., 2016; Colautti et al., 2017). However, the study
of most invasive species is constrained by a lack of information
about complex genome level processes. We lack good reference
genomes for most species. Genomic approaches are expensive,
and typically studies have focused only on DNA sequences as
the mechanism of inheritance (Bock et al., 2015; Richards and
Pigliucci, 2020; Mounger et al., 2021a). Further, information
about the genetic make-up of source populations is often limited,
and what genetic changes occur during the “lag time” (see
glossary in Table 1 for bolded terms) between introduction
and invasion is virtually unexplored (Bock et al., 2015;
van Kleunen et al., 2018).

There are several ways to consider how cancer can be seen as a
process of invasion. This could include the initiation of cancer
as a cell lineage goes from being part of the whole organism
program to becoming its own self-defined fitness function and
unit of selection (Gatenby and Brown, 2017). Furthermore,
once initiated, the expanding population of cancer cells evolves
rapidly, and invades adjacent unoccupied tissue. Finally, some
cells may metastasize to other regions of the same tissue or to
novel organs other than that of the primary tumor. Here, we are
interested in parallels between cancer and biological invasions
with respect to an extant and expanding population of cancer
cells as opposed to cancer initiation itself (Figure 1). In this
context, metastases are described quite similarly to biological
invasions in the cancer literature. There are also comparable
outstanding questions in both fields of inquiry (Table 2). During

the process of metastasis, cancer cells leave the primary tumor
and establish new tumors either in the same or different tissue
(Nowell, 1976). Understanding this process is critical considering
that metastasis is linked to the majority of cancer-related
deaths (Lambert et al., 2017; Birkbak and McGranahan, 2020).
Besides creating lethal burdens or organ failures, the metastatic
disease eventually evolves resistance to all known therapies
(Pienta et al., 2020a).

The process of invasion in diverse cancers provides unique
opportunities for studying contemporary evolution since cancer
studies are fortified with extraordinary resources for studying
genome level dynamics and the interactions among genetic and
non-genetic mechanisms (Turajlic et al., 2018; Gerstung et al.,
2020). Cancer studies have shown that compared to primary
cancer cell counterparts, metastatic samples can have higher
mutation rates, multiple types of mutations, and aneuploidy
or whole genome doubling with attendant non-genetic effects
(Patel and Vanharanta, 2017; Sansregret and Swanton, 2017;
Turajlic et al., 2018; Pienta et al., 2020b, 2021; Patel et al.,
2021). This suggests that these genome level processes can be
important in the invasion process as has also been implicated in
the evolutionary ecology of invasive species (Bock et al., 2015;
Mounger et al., 2021a). At the same time, bottleneck events shape
the genomics and evolution of metastatic cancers (Loeb et al.,
2003; Szczurek et al., 2020; Patel et al., 2021), and clonal diversity
varies by cancer type and the recipient tissues of the metastases
(Turajlic et al., 2018). All the progress in cancer genomics
notwithstanding, the cancer research community has been unable
to identify any common events that provide a universal predictor

FIGURE 1 | A schematic figure that compares the steps of biological invasion
in invasive species (adopted from Theoharides and Dukes, 2007) and cancers
(adopted from Gatenby et al., 2009). Native population and primary tumor (in
light blue) refer to the source of ecological invasion and cancer invasion,
respectively. The first step (green) for invasive species is transport in ecological
invasion, which can be natural or by human-assisted dispersal. This step
resembles two steps in cancer invasion: (1) intravasation and (2) circulation,
where a non-random subset of cancer cells first enters the blood or lymphatic
vessels and then travels to a distant organ(s). The following step in the
ecological invasion (2) introduction (in orange) closely mimics step three in
cancer invasion: extravasation. In invasive species and cancer cells, this step
refers to the introduction to the new site. The final steps in the ecological
invasion, (3) establishment and (4) spread, resembles in cancer (4)
establishment and extension into the adjacent tissue, and (5) colony
formation, angiogenesis, proliferation, and spread.
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TABLE 1 | Glossary of relevant terms used to describe biological invasion in invasive species and cancers.

Angiogenesis – A term that refers to accessing and establishing new vasculature (for example, within a tumor).

Basement membrane – The thin membrane that separates the epithelium (for example, cancer cells) from the underlying tissues (for example, blood vessels).

Biotic resistance – An ecological term that refers to resistance to natural enemies like herbivores or pathogens.

Circulating tumor cells (CTC) – A cancer term that refers to the subset of cancer cells that can be detected in the blood of a patient diagnosed with a primary solid
tumor or metastasis.

Dispersal corridors – An ecological term that refers to a path that links two or more favorable habitats.

Disseminated tumor cells (DTC) – A cancer term that refers to a subset of cancer cells that can be detected in the bone marrow or other organs that dispersed from
the primary tumor or a secondary tumor.

Drivers – A term that refers to specific mutations that can have large effects (for example, leading to cancer development).

Epithelial to mesenchymal transition – A term that refers to a dynamic change in cells from epithelial phenotype to mesenchymal phenotype.

Extravasation – A term that refers to the invasion process of cancer cells exiting the blood vessels in the distal organ for colonization.

Evolution of increased competitive ability – An ecological concept also known as EICA. Proposed by Blossey and Notzold (1995) this hypothesis proposes that
because of release from enemy pressures, some invasive plants reallocate resources and rapidly evolve toward less defended but more vigorous types.

Evolutionarily Stable Strategy (ESS) – A strategy (often equated to a heritable or phenotypically plastic trait) or coexisting strategies (often equated to a polymorphic
population or coexisting species) that when common in the population or community cannot be invaded by rare alternative strategies.

Fecundity – An ecological term that refers to the ability to reproduce.

Genetic instability – A term that refers to an increase in genomic alterations (e.g., mutation) in the majority of cells during division.

Intravasation – A term that refers to the invasion process of cancer cells entering the blood vessels or lymph vessels.

Lag time – A term used in both ecology and cancer studies to indicate the time that elapsed between initial establishment to proliferation.

Metastasis – A term that refers to the movement of a cancer lineage from a primary tumor to establish in another tissue.

Metastatic potential – A term that refers to the ability of cancer cells to leave the primary tumor and inhabit a distant organ.

Oncogenesis – A term that refers to the initial process of cancer initiation.

Oncogenic cell – A term that refers to a cell that expresses genes that potentially can cause cancer.

Propagule pressure – An ecological term that refers to the number of individuals released into a region.

of “metastatic potential,” but recent studies from the Pan-
Cancer Analysis of Whole Genomes (PCAWG) Consortium
have found that very early events in cancer are associated with
predictable sets of so called “drivers” (Gerstung et al., 2020;
but see concerns raised in Plutynski, 2021). Moreover, invasion
in cancer studies depends strongly on context, including order
of events and clonal composition (Birkbak and McGranahan,
2020). These characteristics contribute to disease state, metastatic
potential, location of metastasis, and even response to therapy.
The detailed studies of the behavior of a variety of human
cancers promises to inform our understanding of genome level
dynamics in the diversity of invasive species and provide insight
for management.

Here, we aim to review the concepts related to the process
of invasion and how they can be applied in parallel to the
study of a broad variety of invasive taxa as well as a broad
variety of metastatic (invasive) cancers. We then briefly
review the applications of genomics technologies in these
different fields, highlighting similarities, and differences.
We emphasize that many findings in cancer research
have not yet been replicated or uncovered in invasive
species due to various limitations. We also emphasize
the opportunities and need for research into questions
that have not been answered in either invasive species or
cancer. In order to identify these questions, we explore
parallels in the recent summaries of 11 (Bock et al., 2015)
and 14 (van Kleunen et al., 2018) open questions in the
ecology and evolution of invasive species and 84 outstanding
questions in cancer research (Dujon et al., 2021; see Table 2
for summary).

THE CONCEPT OF INVASION IN
BIOLOGY

Definitions for biological invasions vary with the diverse aims of
ecological studies (van Kleunen et al., 2015, 2018), but similar
language and concepts have also been applied to cancer (Amend
et al., 2016; de Groot et al., 2017; Ibrahim-Hashim et al., 2017;
Pienta et al., 2020a; Dujon et al., 2021). The idea that cancer
progression is an eco-evolutionary process has been discussed for
over 50 years (Cairns, 1975; Nowell, 1976). de Groot et al. (2017)
recently suggested that “studying cancer as an invasive species
provides insight into the necessary phenotypic characteristics of
the metastatic ‘seed’ and how those traits are selected for.” They
further describe similarities in migration to a “distant secondary
habitat” through the use of “established dispersal corridors.” In
the case of cancers, these are blood vessels, lymphatics, and nerves
(de Groot et al., 2017). Many ecological studies argue that the
invasion process depends on the status of communities which
may not be at an Evolutionarily Stable Strategy (ESS) for several
reasons [e.g., empty niches, or anthropogenic induced changes;
(McGill and Brown, 2007; Maron and Marler, 2008; Thuiller
et al., 2010; Pintor et al., 2011)], which also applies in cancer (de
Groot et al., 2017). Other studies have focused on the mechanisms
that allow for individual species to be invasive (Richardson and
Pyšek, 2006). This approach could be compared to the study of
different successful cancer metastases (e.g., Turajlic et al., 2018),
which has even been referred to as a speciation event (Capp and
Thomas, 2020; Pienta et al., 2020a; Dujon et al., 2021). Several
authors in ecology have also emphasized that the process depends
on propagule pressure and time since introduction (Simberloff,
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TABLE 2 | Similarities in approaches to study invasions in cancer and ecology [based on selected questions identified in Bock et al. (2015), van Kleunen et al. (2018),
and Dujon et al. (2021)].

Topic Spread of cancer Spread of invasive species

(A) Questions about invasion that are not related to genomics

Initiation Do some organs develop more tumors? (seed and soil hypothesis)
(Dujon #9)

Are some ecosystems more prone to invasion?*

How does the risk of cancer initiation change with time? (Dujon #10) How does risk of invasion of an ecosystem change with time?*

Environment How does the tumor microenvironment drive tumor progression?
What are the minimum resources necessary for the survival of
cancer cells? Can targeting resources offer therapeutic
opportunities? (Dujon #10, 24–26, 29)

How does habitat suitability benefit invaders? What mechanisms allow
invasive plants to benefit from resource pulses? (#4 van Kleunen) What are
the minimum resources necessary for habitat suitability? Can management
of resources offer opportunities to control invasion?

How does aging alter the tissue microenvironment thereby selecting
for oncogenic cells? (Dujon #26)

How does disturbance change habitat suitability thereby promote invasion?
Which alien species benefit from disturbance, and why? (#3 van Kleunen)

Enemies What are the key dynamics in the interaction of cancer cells and the
patient immune system? (Dujon #28)

Are invasive species less impacted by enemies? (enemy release
hypothesis)*

Other questions NA?* What will be the future global distribution of alien plants? (#1 van Kleunen)
What drives climatic niche shifts in the alien range? (#6 van Kleunen) How
important are phylogenetic and functional diversity?(#8 van Kleunen) Do
alien plants escape or recruit enemies at the range edges? (#9 van Kleunen)
Do natives have novel weapons to resist alien invaders? (#10 van Kleunen)
How important are mutualists compared with antagonists in driving
invasions? (#11 van Kleunen) How frequent is rapid coevolution of aliens
and natives? (#13 van Kleunen)

(B) Questions that can be addressed with genomics

Initiation Are there differences in propagule pressure among cancers? Is it
important?*

How important is propagule pressure? (#1 in Bock; #2 van Kleunen)

What explains the existence and length of lag phases?* What
molecular level processes differentiate benign versus malignant
tumors? (Dujon #18)

What explains the existence and length of lag phases? (#7 in Bock; #5 van
Kleunen)

What is the cell of origin of a tumor? (Dujon #1) or cells of origin for
metastases?

What is the source population of an invasive species?*

Which subclones confer a fitness advantage? (Dujon #5) Which genotypes are more fit?*

Phenotypic plasticity What is the contribution of plasticity to cancer adaptations and how
central is phenotypic plasticity in cancer and drug resistance during
tumor progression and drug treatment? (Dujon #53)

Does phenotypic plasticity evolve in a predictable way? (Bock #8) Which
strategies of adaptive plasticity are most frequent? (Bock #9)

How does patient phenotypic plasticity (e.g., life-history trait
adjustments and compensatory responses) affect evolution of
cancer cells? (Dujon #14)

How does native species phenotypic plasticity (e.g., life-history trait
adjustments and compensatory responses) affect evolution of invasive
species?*

Heterogeneity What is the role of tumor heterogeneity during metastasis (Dujon
#21)? To what extent is tumor heterogeneity a cause or
consequence of oncogenesis (Dujon #28)? What is the role of
eco-evolutionary feedbacks between cancer cells and their tumor
microenvironment?

What is the role of diversity of native species in dispersal/invasion? To which
extent is genetic diversity cause/consequence of invasion? What traits or
trait combinations, if any, best predict invasion success? (Bock #5; van
Kleunen #7)? Are trait changes in introduced populations really adaptive?
(#12 van Kleunen) What is the genetic basis of observed phenotypic
evolution? (#14 van Kleunen)

Models Can we build genetic models that forecast tumor evolution? (Dujon
#60 and #61)

Can we build genetic models that predict invasiveness?*

Immune system What is the role of the immune system in somatic evolutionary
trajectories leading to cancer? (Dujon #39)

Do invasive plants grow faster and/or produce more seeds but become less
well-defended against enemies (EICA Hypothesis).*

How can we best harness a patient’s immune system to tackle
cancer evolution? (Dujon #40)

How can we choose the best biocontrol agents?*

Other questions NA? Why does hybridization sometimes result in increased colonization success
and sometimes does not (Bock #2)? Whether the accumulation of
deleterious mutations limits invasions and/or if compensatory mechanisms
reduce the severity of expansion load (Bock #4)? Why do some invaders
exhibit strong local adaptation and others do not (Bock #6)? Is the genetic
architecture of invasiveness traits different from that of other traits that
differentiate natural populations or species (Bock #10)? To what extent are
genes “re-used” during the evolution of invaders (Bock #11)?

*Not specifically listed in these references.
# = the question number as defined in the referenced publication.
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2009; Bock et al., 2015), which is similar to the concept of “billions
of failures” in circulating cancer cells that lead to very few
successful metastases (de Groot et al., 2017; Tissot et al., 2019).
Likewise, many studies of invasive species report that improved
fecundity could contribute to their rapid spread and population
growth in the invaded range (Bock et al., 2015), which has obvious
parallels in metastatic cancers (Lloyd et al., 2016; Vittecoq et al.,
2018). In both ecology and cancer, the goal is to understand the
causal processes involved in the transport, establishment, spread,
and eventual adaptations of invasive species. However, many
experimental studies of species invasions are limited in scope,
because they provide only a single snapshot of native and invasive
populations. When genomics approaches have been used, only
a very small representation of genome level mechanisms and
dynamics were assayed (Bock et al., 2015; Richards et al., 2017;
Paun et al., 2019; Richards and Pigliucci, 2020; Mounger et al.,
2021a).

Although limited in genomics prowess, ecological studies
across a tremendous diversity of species have developed an array
of theoretical frameworks to understand the process of invasion
and examine fundamental questions in ecology and evolution
(Gurevitch et al., 2011; Bock et al., 2015; van Kleunen et al.,
2018). There is intense pressure to understand the process of
biological invasions due to their ecological and economic effects
(Simberloff et al., 2013; Bellard et al., 2016b; Lodge et al., 2016;
Diagne et al., 2020). These effects arise from three ecological
characteristics of a successful species invasion: rapid increase in
population, local dominance or monoculture, and rapid range
expansion (Gurevitch et al., 2011). Research has resulted in
many proposed causal explanations of these invasion dynamics,
including propagule pressure (Simberloff, 2009; Britton and
Gozlan, 2013), biotic resistance (Levine et al., 2004; Nunez-Mir
et al., 2017), and evolution of increased competitive ability
(Blossey and Notzold, 1995; Rotter and Holeski, 2018). The
variety of support (and lack thereof) for these explanations
makes it clear that no single factor can explain all biological
invasions or contribute to all of them (Catford et al., 2009;
Gurevitch et al., 2011; van Kleunen et al., 2018). However,
efforts to synthesize these explanations have resulted in valuable
conceptual frameworks that relate ecological and evolutionary
processes to the steps and barriers of the invasion process.

These conceptual frameworks describe species invasion as a
process with several steps, or filters, through which non-native
species introduced to a new range must pass before exhibiting
the characteristics of invasiveness (Lodge, 1993; Rejmánek, 2000;
Richardson et al., 2000; Blackburn et al., 2011; van Kleunen et al.,
2018). A species must be (1) transported and (2) introduced to
the novel range via natural or human-assisted dispersal. Then, the
species needs to (3) survive and become established in the novel
range. Finally, an invasive species is (4) able to reproduce and
spread (Figure 1; Theoharides and Dukes, 2007; Blackburn et al.,
2011; Lloyd et al., 2017; van Kleunen et al., 2018).

The metastatic cascade follows closely the same steps of how
invasive species disperse, colonize, and spread with the exception
that the first step of “transport” is typically broken down into two
parts (green boxes in Figure 1; Chen and Pienta, 2011; Lloyd
et al., 2016). Metastasis includes: (1) intravasation (invasion

into the bloodstream or lymphatics system), (2) circulation
and evasion of the immune system, (3) extravasation (exiting
the bloodstream), (4) establishment and angiogenesis, and (5)
spread (accessing and establishing vasculature; Paterlini-Brechot
and Benali, 2007; Gatenby et al., 2009; Hapach et al., 2019).
Intravasation involves cancer cells from an established tumor
entering or falling into the bloodstream. Such cells are not a
random subset of the tumor’s cancer cells, and location within
the tumor will likely matter (Lloyd et al., 2016, 2017; Ibrahim-
Hashim et al., 2017). Those at the tumor’s edge will have access
to larger, normal blood vessels while those in the interior will
experience the disorganized and poorly perfused vasculature
induced by angiogenesis. The cancer cell’s characteristics will also
matter. For instance, the epithelial to mesenchymal transition
in cancer cells generates a more motile phenotype capable of
squeezing between cells including those forming the walls of
blood vessels (Barriere et al., 2015). So, while intravasation
involves accidental dispersers (Joosse et al., 2015), the cancer cells
that enter the bloodstream as circulating tumor cells (CTCs) are
a weighted average of cancer cell types within the tumor.

Ecological studies offer additional conceptual frameworks that
could be explored more thoroughly with genomic approaches in
both invasive species and cancers (see Table 2B). Forecasts of
invasion risk have been made based on the relationship between
phylogenetic distance between the invaders and members of
the invaded community (van Kleunen et al., 2015, 2018).
A related concept is that species may be “pre-adapted” if
the recipient environment is a close match to the native
environment and the breadth of the native range may be a good
predictor of this possibility (Bossdorf et al., 2005; Bock et al.,
2015). These predictions based on phylogenetic distance among
species can be argued to support multiple outcomes leading to
“Darwin’s naturalization conundrum” (Diez et al., 2008; Thuiller
et al., 2010). For example, “Darwin’s naturalization hypothesis,”
argues that invaders that are phylogenetically unrelated to
local communities should be more successful because they
can exploit unfilled ecological niches in native communities
(Rejmánek, 1996; Thuiller et al., 2010). On the other hand,
closely related species might share similar pre-adaptations to
local environmental conditions or have similar biotic or abiotic
requirements (Thuiller et al., 2010). Regardless, phylogeny does
not always reflect trait differences or niche differentiation, and
often the importance of these different components of invasion
potential are unknown (Thuiller et al., 2010; van Kleunen et al.,
2015, 2018). Recent application of genomic techniques to trace
the “life history” of cancers have found parallels in a diversity
of cancer types (Nik-Zainal et al., 2012; Turajlic et al., 2018;
Gerstung et al., 2020), but this type of evolutionary ecology
framework has not yet been fully explored in the study of cancers.

Many studies in both ecology and cancer have demonstrated
that in addition to the importance of pre- or post-invasion
sources of genetic differences, phenotypic plasticity can be
important. A rich literature in evolutionary ecology has explored
several different scenarios for how invasive species may benefit
from phenotypic plasticity, some of which were outlined by
Richards et al. (2006). Plasticity may allow for invasives to be a
(1) “Jack-of-all trades” with positive fitness across many habitat
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types; (2) “Master-of-some” with highly positive fitness in the
most favorable habitats and conditions, or (3) “Jack-and-Master”
that combines both attributes. However, increased plasticity does
not always translate into positive fitness outcomes (Levis and
Pfennig, 2016; Matesanz et al., 2017; He et al., 2021). In fact,
several meta-analyses (Van Buskirk and Steiner, 2009; Davidson
et al., 2011; Palacio-López and Gianoli, 2011; Arnold et al., 2019)
have not supported the hypothesis that plasticity contributes to
the success of invasive species. In either case, the mechanisms
underlying this plasticity will be mediated by genetic and non-
genetic molecular level processes (Richards et al., 2010; Nicotra
et al., 2010; Herman and Sultan, 2011, 2016; Banta and Richards,
2018). While the fine molecular details of plastic responses have
not yet been assessed in any species (Richards et al., 2017; Bock
et al., 2018; Laitinen and Nikoloski, 2019; Richards and Pigliucci,
2020; Sommer, 2020; Mounger et al., 2021a), the potential to do
so is currently greatest in cancers.

Another important concept that has been explored in
evolutionary ecology is the role of propagule pressure, or the
rate of arrival of non-native individuals. Propagule pressure
can be important not only to the initial step of introduction,
but it can influence survival by overwhelming stochastic
processes, and increasing survival, reproduction, and competitive
dominance. High propagule pressure can enhance genetic
diversity permitting the invasive species to persist and thrive
in a new environment (Simberloff, 2009; Rius et al., 2015b).
Invasive species often exhibit a lag time, where extended periods
of time pass between initial establishment and later development
of invasive characteristics (Simberloff, 2009; Aikio et al., 2010;
Bock et al., 2015; van Kleunen et al., 2018). In ecology, the
length of this lag time remains unpredictable and the mechanisms
at work remain unknown, but rapid evolution has occurred
on the scale of <50 years, and evidence shows that local
adaptation occurs in invasive species (Bock et al., 2015). Similarly,
disseminated cancer cells (DTC) that arrive at and survive in
a novel organ may exhibit long lag periods before expanding
from micrometastases into clinically detectable metastatic tumors
(Birkbak and McGranahan, 2020).

Recent evidence from the Pan Cancer Atlas has traced the life-
history of thousands of cancers and found the lag time from so
called “driver events” to detection can be on the order of years
to decades (Nik-Zainal et al., 2012; Alexandrov et al., 2013b;
Gerstung et al., 2020). Extensive research has detailed several
components of the metastatic process. The quantity of CTCs
with potential to seed new tumors depends on survival while
passing through the bloodstream (Box 1: Figure A). This involves
tolerating potentially destructive shearing forces from moving
swiftly through vasculature, as well as avoiding detection and
mortality from the immune system in the blood (Lloyd et al.,
2016). Additional characteristics such as immune evasion and the
ability to be compressed may enhance the chances of a cancer
cell surviving in the blood. Authors have suggested that several
cancer cells traveling together as a raft (Aceto et al., 2014), or
unusually large cancer cells such as those in a polyaneuploid
state (polyaneuploid cancer cells, PACCs) may be able to circulate
longer and more successfully (Pienta et al., 2021). However,
regardless of characteristics, the half-life of a CTC remains

unknown, yet is vitally important. Blood circulates throughout
the human body on average every 45 seconds, and the number of
times a CTC can circulate influences their number as well as their
likelihood of entering other tissues. CTCs can reach 1–10 per ml
of blood (Yu et al., 2011; Alix-Panabières and Pantel, 2021), and
the number of CTCs in the blood correlates with progression free
survival (5 or more CTCs per 7.5 ml of blood represents a poor
prognosis for breast or prostate cancer patients; Rack et al., 2014;
Pantel and Alix-Panabières, 2019).

In addition to these characteristics that might contribute
to the success of CTCs, only a small fraction of CTCs
are able to exit a blood vessel and enter a novel
tissue or novel location in the same tissue type. Actin
dynamics within a cancer cell can permit pseudopodia
facilitating motility and the ability to move through cell
junctions (diapedesis) (Castro-Giner and Aceto, 2020).
The establishment of a successful metastasis from one
or several of such DTCs represents yet another hurdle.
Several characteristics of the DTC may favor success albeit
it is still a very small probability. Actin mechanics can
be critical for degrading and constructing extra-cellular
matrices (Kumar and Weaver, 2009). The establishing
DTC must overcome additional threats from what can
be a tissue specific immune response. To avoid failure,
the DTC or emerging micrometastasis must overcome
Allee effects (Johnson et al., 2019), and access and
establish vasculature (angiogenesis) (Amend et al., 2016;
Lloyd et al., 2016, 2017).

Despite these hurdles that are difficult to trace, the metastatic
cascade is a simpler and perhaps more accessible microcosm
for the evolutionary ecology of invasive species. The patient is
the entirety of the system, i.e., the entire planet for the cancer
(Pienta et al., 2020a). All the living cells within the patient,
including the cancer cells and normal cells are relatively similar
in size. The pathway to invasion in cancer is straightforward,
occurring through the blood or lymphatics. The cancer cell will
face roughly the same supply of resources, types of resources,
and threats from the immune system. However, the different
organs and tissues of the body differ structurally, functionally,
and metabolically in ways that influence their susceptibility to
metastases (Schild et al., 2018). Like in invasion ecology, the
heritable characteristics of the metastasizing cancer cells matter
(de Groot et al., 2017; Pienta et al., 2020a). They can carry
adaptations for dispersal and pre-adaptations for surviving the
rigors of dispersal and avoiding the immune system (Hanahan
and Weinberg, 2011; de Groot et al., 2017). Similarly, ecological
species invasions can be facilitated by dispersal adaptations such
as burrs on seeds that stick to the fur of animals (or artificial
surfaces) or dispersal events prompted by over-crowding. Also,
there is often an association between the habitat characteristics
of the donor and recipient locations (van Kleunen et al., 2018).
This aligns with Paget’s (1889) seed-and-soil hypothesis for
the relationship between the donor tumor’s tissue type and
the recipient tissue where metastases are likely to occur. Some
authors have even suggested that exosomes released by cancer
cells in the primary tumor “prepare the soil” for the metastatic
“seeds” (Rodrigues et al., 2019). A reasonable comparison
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in ecological invasions could be human habitat disturbances
and constructs that favor the invasion of numerous species
(van Kleunen et al., 2018).

Upon successful establishment, the cancer cells can
evolve further adaptations to successfully exploit their novel
environment. From the perspective of the emerging field of
invasion genomics, principles from invasion ecology in natural
systems offer a conceptual framework for metastases. In return,
the extensive, replicated opportunities for measuring DNA
sequence, epigenetic markers, gene expression, and heritable
characteristics of cancer cells means that oncology offers unique
opportunities for evaluating and testing the genomics of species
invasions (e.g., Box 1: Figure A; Turajlic et al., 2018).

GENOMICS OF INVASION

In both species level ecology and cancer, one major goal is to
identify how genomic level processes translate into the ability of
the organism to respond to complex environmental conditions.
The genomic mechanisms that underlie invasions are particularly
intriguing because of classic evolutionary theory that predicts
how the ability to respond to environmental challenges rests on
heritable phenotypic variation which is presumably genetically
based. The fact that invasions by definition have been assumed
to result from just a few individuals creates a so-called “genetic
paradox” for understanding the success of invaders and their
adaptations to new habitats (Allendorf and Lundquist, 2003;

BOX 1 | The invasion processes in cancer and ecology share commonalities but there are also important differences. The cancer metastasis and successful invasion
process consists of a sequence of steps that are like the steps of ecological invasion (see Figure 1). Here, we highlight examples of genetic and epigenetic
mechanisms involved in invasion in cancer and two different ecological systems. (A) Cancer invasion. Cancer cells invade the basement membrane and enter the
blood vessels (intravasation), circulate in the blood and reach a distal organ (e.g., the liver). Genetic as well as epigenetic alterations govern cancer metastasis. One
of the most studied alterations is the reduction of E-cadherin protein expression, which is responsible for the adhesions between cells. Mutations have been found in
the CDH1 gene that codes for E-cadherin, as well as DNA hypermethylation. Specific site of metastasis has been associated with genomic driver mutations that
occurred in the primary tumor: examples from Turajlic et al. (2018) are depicted where metastases from primary kidney tumors metastasized to lung, bone, liver,
brain, pancreas, and muscle (adrenal, parotid, thyroid glands, skin, and soft tissue not shown). (B) Cane toad invasion. A total of 101 cane toads were introduced to
Australia in 1935 from Central and North America. The invasion traveled from the northeast to southern and northwestern regions of Australia resulting in heritable
differences in physiological, morphological, and behavioral traits. After already surviving a bottleneck from the initial invasion, genetic diversity declined between the
initial site of establishment and the leading edge of the invasion (Selechnik et al., 2019). One potentially important alteration is that genes involved in metabolism and
immune function were upregulated (Rollins et al., 2015). Experimental manipulations also support heritable epigenetic changes at the SCNN1G gene could be
involved in the response to predators (Sarma et al., 2020, 2021). (C) Japanese knotweed invasion. This plant was first introduced from Japan to Europe in the 1840s
and then to North America sometime before 1873 (Del Tredici, 2017). The invasive knotweed Reynoutria japonica has been reported to be a single widespread
genotype, however, the molecular characterization of this species has been limited and cannot exclude potentially important single nucleotide polymorphisms
(Mounger et al., 2021a). On the other hand, epigenetic markers have been associated with differences in habitat and climate (Richards et al., 2012;
Zhang et al., 2016).

(Continued)
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BOX 1 | (Continued)
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Estoup et al., 2016). This has been a mystery in both ecology and
cancer research with several hypotheses about how the invaders
overcome the negative consequences of limited genetic variation
(Baker and Stebbins, 1965; Nowell, 1976; Vogelstein et al., 2013;
Estoup et al., 2016).

In this context, both invasive species studies and cancer
studies have largely focused on the importance of sequence
based differences or mutations (Alexandrov et al., 2013b, 2020;
Vogelstein et al., 2013; Bock et al., 2015). However, evolutionary
responses to challenging environmental conditions rely on
heritable phenotypes, regardless of the underlying mechanisms
of inheritance (Jablonka and Lamb, 1998, 1999; West-Eberhard,
2005; Banta and Richards, 2018: Bonduriansky and Day, 2018).
We now have evidence that the structural and functional
dynamics of genomes along with a variety of epigenetic and
other non-genetic effects can contribute to heritable variation
and thus to adaptation and cancer metastasis (Feinberg et al.,
2006; Jablonka and Raz, 2009; Johannes et al., 2009; Feinberg and
Irizarry, 2010; Timp and Feinberg, 2013; Richards et al., 2017;
Bonduriansky and Day, 2018; Kooke et al., 2019; Richards and
Pigliucci, 2020).

Discoveries and Limitations of Genomic
Studies of Diverse Invasive Species
Genetic markers have been used to identify the genetic make-
up of invasive populations, and understand how genome level
processes contribute to invasion of diverse natural ecosystems
(Bock et al., 2015; Colautti and Lau, 2015; Dlugosch et al.,
2015; Rius et al., 2015b; Mounger et al., 2021a). Studies in the
native and introduced ranges have reported that many invasive
populations undergo only modest reductions in genetic variation
due to multiple introductions (Stepien et al., 2005; Dlugosch
and Parker, 2008a; Snyder and Stepien, 2017; Flucher et al.,
2021), hybridization (Fitzpatrick et al., 2009; Scascitelli et al.,
2010; van Riemsdijk et al., 2018, 2020; Quilodrán et al., 2020),
or Allee effects that result from reverse density dependence or
cooperation (Kramer and Sarnelle, 2008; Aikio et al., 2010; Rius
et al., 2015b). For example, sequences of mitochondrial DNA
revealed multiple invasion sources for both dreissenid mussels
and goby species of fish, and that this diversity was correlated
to rapid spread and colonization success in a variety of habitats
(Stepien et al., 2005). Further, invasive populations of zebra
mussels, quagga mussels, round gobies, tubenose gobies, and
Eurasian ruffe (another fish species) that have established in
the Great Lakes had as much or greater genetic diversity as
native populations (Stepien et al., 2005; Snyder and Stepien,
2017). Recently, reduced representation sequencing (Narum
et al., 2013) has provided much more power to inform studies
of invasion by demonstrating, for instance, the absence of strong
population structure which could indicate repeated human-
assisted dispersal across the invaded range such as in the
pavement ant (Tetramorium immigrans) (Zhang et al., 2019).

On the other hand, lower diversity in invasive populations
may reflect that there was a higher diversity of founding
genotypes initially, and selection in the novel habitat filtered out
unfit individuals (Dlugosch and Parker, 2008b; Vandepitte et al.,
2014). Other studies argue that the process of genetic bottlenecks

can purge deleterious alleles, reveal beneficial cryptic variation
or create new beneficial interactions among genomic elements
(Colautti and Lau, 2015; Dlugosch et al., 2015; Stapley et al.,
2015; Estoup et al., 2016; van Kleunen et al., 2018). The invasive
brown rat (Rattus norvegicus) is a globally successful invader, but
recent studies in China discovered that local populations had
experienced severe bottlenecks and then rapidly differentiated
since establishment in the 1970s, including new alleles associated
with lipid metabolism and immunity genes (Chen et al., 2021).

Despite such bottlenecks, loss of diversity measured by
molecular markers does not necessarily reflect loss of quantitative
trait variation (Dlugosch and Parker, 2008b; Estoup et al.,
2016). A series of studies revealed that rapid phenotypic
evolution facilitated the invasion of the widespread red macroalga
Agarophyton vermiculophyllum despite the fact that the species
experienced a severe genetic bottleneck and increased through
clonal spreading (Krueger-Hadfield et al., 2016; Sotka et al., 2018;
Flanagan et al., 2021). The European starling (Sturnus vulgaris)
in North America was founded by only ∼180 individuals,
but local populations seem to have evolved rapidly and now
show the signature of only a moderate population bottleneck
(Hofmeister et al., 2021). European starlings in North America
show higher levels of genetic diversity than invasive populations
in Australia or South Africa (Bodt et al., 2020). This is
somewhat surprising since the invasion in Australia occurred
across multiple introduction sites and the pattern of rapid
differentiation appears to be explained by distance instead of
response to environment (Rollins et al., 2016; Stuart et al., 2020).

Most genomics studies of invasive species lack the resources
required for understanding the single base pair resolution of
how specific genome level differences might translate into
function and the species’ success. However, transcriptomic
studies can now be conducted in almost any system, providing
a measure of variation in gene expression at the level of
mRNA, which contributes to the formation of proteins, cellular
phenotypes and ultimately the organism’s phenotype (Alvarez
et al., 2015). A few studies have identified candidate genes that
were differentially expressed in invasive populations (Hodgins
et al., 2013; Bock et al., 2015). Studies of populations of
the Argentine ant (Linepithema humile) discovered consistent
differences among invaded compared to native populations
in expression of genes related to biogenic amines (which
modulate behavioral traits like foraging and aggression) and
immune function. Unfortunately, they could not associate these
expression differences with behavioral differences in their study.
Furthermore, interpretation of the functional relevance of some
of the differentially expressed genes was limited by the need for
better annotation (Felden et al., 2019).

Hodgins et al. (2015) compared transcriptomes across 35
species of plants in the Asteraceae, including six major invasive
species. They found no support for the idea that there was
consistent selection on genes that contributed to invasiveness
[but see opposite results with a similar approach in the invasive
green crab, Carcinus maenas (Tepolt and Palumbi, 2020)]. In a
rare comparison of sequence variation and expression variation,
a study of two independent invasions of the Pacific Oyster
(Crassostrea gigas) into the North Sea found little overlap between
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differentially expressed genes and outlier loci. This suggested that
differential gene expression did not necessarily correlate with
changes in allele frequencies (Wegner et al., 2020). However,
as is common in ecological genomics, this study suffered from
limited annotation of the transcriptome and limited coverage of
the genome (using reduced representation RADseq). In general,
identifying underlying molecular level “drivers” is so far limited
to very few studies across widely diverse taxa (Bock et al., 2015).

In addition to using transcriptomics approaches, several
authors have argued that epigenetic mechanisms could be
particularly important for invasive species (Ardura et al., 2017;
Hawes et al., 2018; Marin et al., 2020; Mounger et al., 2021a; but
see Eckert et al., 2021). The case has been made particularly for
those invasive species that are clonal or have low genetic diversity.
Epigenetic mechanisms could provide a non-genetic source of
heritable variation (Verhoeven and Preite, 2014; Douhovnikoff
and Dodd, 2015; Liebl et al., 2015; Rollins et al., 2015; Richards
et al., 2017; Sarma et al., 2020, 2021; Mounger et al., 2021b). In
the last 10 years, there has been an explosion of studies of natural
populations and ecological experiments that provide some
level of information about how epigenetic mechanisms (mainly
DNA methylation) may contribute to organismal responses to
environmental challenges (Jablonka, 2017; Richards et al., 2017;
Richards and Pigliucci, 2020; Stajic and Jansen, 2021). But
so far these ideas and approaches have rarely been applied
to the understanding of invasive species (Hawes et al., 2018;
Marin et al., 2020) and they are almost universally limited
in scope (Paun et al., 2019; Richards and Pigliucci, 2020;
Mounger et al., 2021a).

The recent work in cane toads (Rhinella marina) provides one
excellent example of integrating genomic, transcriptomic, and
epigenomic approaches to understand the process of invasion
(Rollins et al., 2015; Selechnik et al., 2019; Sarma et al., 2020,
2021). A substantial bottleneck occurred during the introduction
of only 101 cane toads into Queensland, Australia in the 1930s
(Shine, 2018; Box 1: Figure B). At present, the toads at the edge of
their range are less genetically diverse than those at the initial site
of introduction, but show a wide variety of heritable differences
in physiological, morphological, and behavioral traits (Phillips
et al., 2008; Rollins et al., 2015; Selechnik et al., 2019). In addition,
this team of researchers suspected that toads at the invasion
front encounter more abundant predators than at the original
site of introduction, which may contribute to higher mortality
rates and select for larger toxin glands. By radio-tracking toads,
researchers were able to see that some toads moved long distances
almost every night in the first 2 years, and inheritance of rapid
dispersal became spatially sorted (Shine et al., 2011). Rollins et al.
(2015) argued that this resulted in assortative mating among
individuals at the front of the invasion between fast-moving
individuals which reinforced the evolution of this trait (Shine
et al., 2011). By measuring genome wide levels of gene expression
with RNAseq, they also showed that metabolic enzymes were
upregulated at the invasion front and that many of the most
highly differentially expressed genes involved energy production,
immune function, and parasite resistance (e.g., PSME4 and
RASGEF1B) (Rollins et al., 2015).

Remarkably, these researchers took advantage of this invasion
gradient to experimentally examine the potential role of

epigenetic mechanisms as well (Sarma et al., 2020, 2021). They
exposed tadpoles to alarm cues and found elevated cortisone
levels as well as decreased methylation at the suppressor of
cytokine signaling 3 (SOC3) and the Sodium Channel Epithelial 1
Subunit Gamma gene (SCNN1G) genes. They further tested the
idea that DNA methylation drives this pattern by manipulating
methylation levels with the drug zebularine but could not
associate changes in DNA methylation to the promoter region
of the glucocorticoid (GC) receptor gene (NR3C1). However,
they did find differences in single cytosine methylation in the
promoter region of SOCS3, which may be involved in predator
avoidance behavior (Sarma et al., 2020). This team then examined
the inheritance of changes in methylation by running a breeding
experiment. They showed that some shifts in DNA methylation
in response to alarm cues were inherited by the next generation.
In particular, they showed demethylation within SCNN1G, which
regulates sodium in epithelial cells and may help to maintain the
epidermis (Sarma et al., 2021). While this series of studies has
not dissected every molecular detail of the invasion response, it
is unparalleled in their exploration of various levels of response.
This research team demonstrated the wide variety of questions
that can be addressed with genomics approaches.

In the last few decades, we have gained increased data
about the genetic structure of a variety of invasive species and
how genetic variation is distributed on the landscape (Bock
et al., 2015), but most of our information is limited to markers
distributed across the genome and very few studies can evaluate
the whole genome. Many studies have only described patterns
of diversity and are limited in their ability to address underlying
adaptive processes (Rius et al., 2015a,b). Rius et al. (2015a) report
that the application of next generation sequencing (NGS) to
invasive species started in 2008 and by 2015 resources had been
developed for many species. NGS had even identified candidate
genes like the detoxification gene cytochrome P450 and other
stress related genes. However, how the translation of DNA
sequence to phenotypes unfolds through the invasion process
requires much more fine scale dissection of the entire genome
and other molecular level processes over time (see e.g., Bock
et al., 2018; reviewed in Pigliucci, 2010; Keller, 2014; Müller,
2017; Bonduriansky and Day, 2018; Richards and Pigliucci,
2020). The increasing application of sequencing and other
“omics” technologies within appropriately designed experiments
promises to provide more powerful insight into the molecular
mechanisms underlying responses to selection and adaptation
(Alvarez et al., 2015; Rius et al., 2015a,b; Mounger et al., 2021a),
but it is yet unclear how far we can go with this approach and
in how many unique species. In this context, cancer genomics
studies provide some important insights.

On the other hand, the diversity represented among invasive
species provides information about the potential for novel
function, particularly in organisms with extreme phenotypes
(Castoe et al., 2013; Bock et al., 2018). A study of invasive
Burmese pythons before and after a major freeze event in Florida
in 2010 found evidence for directional selection in genomic
regions enriched for genes associated with thermosensation,
behavior, and physiology. Several of these genes were linked to
regenerative organ growth, which modulates feeding and fasting
responses in pythons (Card et al., 2018). In addition, ecological
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experimental approaches can be quite creative in testing for the
importance of some of these processes by combining genomics
approaches with, for example, the creation of synthetic hybrids
(Rosenthal et al., 2002; Rieseberg et al., 2003; Lai et al., 2006;
Whitney et al., 2015; Nieto Feliner et al., 2020; Irimia et al., 2021),
and synthetic or recent polyploids (Yoo et al., 2014; Nieto Feliner
et al., 2020; Paape et al., 2020; Shan et al., 2020).

Are Clonal Plant Species a Particularly
Useful Comparison to Cancer?
Some of the world’s most successful invasive plants are thought
to spread by clonal reproduction (e.g., Japanese knotweed Box 1:
Figure C), which at first brush might seem like a good analogy
for invasion in cancer considering that cancers arise within a
host who has the same genotype. Mounger et al. (2021a) recently
reported that clonal plants are potentially over-represented
among invasive plant species. This is surprising because asexual
reproduction is predicted to result in slower rates of evolution.
But clonality may also be adaptive under the circumstances faced
by invasive species and serve as useful subjects to investigate
how a single genome can respond to a myriad of environments
(e.g., Geng et al., 2007; Verhoeven et al., 2010; Gao et al., 2010;
Richards et al., 2012; Shi et al., 2018; Chen et al., 2020). A recent
study in the perennial sunflower, Helianthus tuberosus, provided
a powerful combination of approaches to demonstrate that there
had been selection for the ability to increase clonality (Bock
et al., 2018). The authors compared populations of ancestral
lineages with invasive lineages and found support for increased
ability to respond to well watered conditions by producing
more clonal propagules. As such, this is one of the first studies
to demonstrate the process of genetic accommodation during
invasion (sensu West-Eberhard, 2005; see also Sultan, 2015; Levis
and Pfennig, 2016). In this study, the researchers were able to link
the genomic mechanisms of hybrid vigor and two specific QTL to
the increased ability to respond to water content in the invasive
habitat. We know of no study where the genomic level processes
that underlie the success of entirely clonal lineages have been fully
explored. Genetic variation that arises from somatic mutations
in natural clonal lineages, albeit low, cannot be excluded since
several studies have reported that high rates of somatic mutation
may allow asexual species to maintain abundant genetic variation
and adapt to changing environmental conditions (reviewed in
Schoen and Schultz, 2019; see also discussions in Chen et al.,
2020; Robertson et al., 2020).

Japanese knotweed (Reynoutria japonica aka Fallopia
japonica) is one of the most well−known cases of an invasive
clonal plant. A single octoploid clone of R. japonica has spread
aggressively through a broad range of habitats in temperate
Europe and North America (Box 1: Figure C; Beerling et al.,
1994; Bailey and Conolly, 2000; Grimsby et al., 2007; Gerber
et al., 2008; Bailey et al., 2009; Richards et al., 2012; Zhang et al.,
2016). Unfortunately, not much is known about the levels of
diversity in the native populations of China and Japan. In the
United States, replicates of the same clone of R. japonica collected
from different habitats had different DNA methylation patterns
even after they were grown in a common garden in New York
(Richards et al., 2012). Another study across central Europe

showed that individuals from different populations of this same
R. japonica clone harbored significant epigenetic and phenotypic
variation which was associated with climate (Zhang et al., 2016).
However, both studies were based on anonymous molecular
markers (AFLP and methylation sensitive AFLP) which only
survey a small portion of the genome. They cannot detect single
DNA base changes even in the surveyed fragments (Schrey et al.,
2013; Paun et al., 2019). A recent survey of the same samples
in the United States populations suggested that within this
R. japonica clone there were most likely some single nucleotide
polymorphisms (Robertson et al., 2020; see also VanWallendael
et al., 2020), but whether any of these polymorphisms are
functional remains to be evaluated.

As in the knotweed studies, the low genomic resolution of
studies of most organisms precludes pinpointing the actual
accrual of sequence and methylation polymorphisms and
therefore isolating the importance of genetic and epigenetic
variation (Richards et al., 2017; Paun et al., 2019; Naciri and
Linder, 2020). The whole genome sequencing studies that
have been done (almost entirely in model species) reveal the
importance of genomic redundancy, largely resulting from
multiple episodes of whole genome duplication (polyploidy)
followed by reduction processes (Doyle et al., 2008; Wendel
et al., 2016), which play a major role in diversification
and adaptation in plants and some animals (Van de Peer
et al., 2017). Whole-genome studies in the model plant
Arabidopsis thaliana (as in cancers) show that novel epigenetic
variation can be dramatically shaped by de novo sequence
mutation. For example, studies have found that single
nucleotide polymorphisms can change the methylome by
modifying a methyl transferase or a nucleotide context
where methyltransferases act (Becker et al., 2011; Timp and
Feinberg, 2013; Dubin et al., 2015; Feinberg et al., 2016;
Sasaki et al., 2019).

The relevance of somatic mutations has been clearly
documented in cancers (Nik-Zainal et al., 2012; Alexandrov et al.,
2013b, 2020; Gerstung et al., 2020), and in cancer metastases
(e.g., Turajlic et al., 2018). Mutation could contribute to the
rapid generation of genetic or epigenetic variation in natural
clonal lineages of plants, and in organisms more generally
(Vonholdt et al., 2010; Exposito-Alonso et al., 2018; Hawkins
et al., 2019; Schoen and Schultz, 2019; Yoder and Tiley, 2021).
But it may be unclear how comparable mutation in cancers
is to natural populations of plants and animals. Studies across
plant species have reported a range of mutation rates from
e.g., 7 × 10−9 per base per haploid genome per generation
in Arabidopsis thaliana lines (Ossowski et al., 2010; Exposito-
Alonso et al., 2018) and peach (Xie et al., 2016) to 4 × 10−8

in long lived poplar and oak species (Schmid-Siegert et al.,
2017; Hofmeister et al., 2020). Mutation rates across a diversity
of animal species ranged from 3.6 × 10−9 in bumblebee to
1.5 × 10−8 in chimpanzee (Yoder and Tiley, 2021). This is
roughly comparable to the average generational mutation rate for
single-base substitutions in humans 1–1.5 × 10−8 (Rahbari et al.,
2016). Therefore, studies in human cancer could provide insight
into the mechanisms that underlie rapid organismal response
more generally.
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Unlike in most species, cancer studies have unsurpassed
power to document how mutation rate depends on location
and nucleotide context in the genome as well as tissue types
(Alexandrov et al., 2013a, 2020; Rahbari et al., 2016). Studies have
also identified ‘mutational signatures’ that reflect age, mutagen
exposures and DNA repair mechanisms (Alexandrov et al., 2013a,
2020; Rahbari et al., 2016). Although not as finely detailed in
scale, one important study took advantage of herbarium samples
to demonstrate that this type of de novo mutation occurred
during colonization and expansion in the United States of a single
lineage of A. thaliana (Exposito-Alonso et al., 2018). Arabidopsis
thaliana is an annual selfing plant, which is therefore almost
entirely homozygous across its diploid genome. Exposito-Alonso
et al. (2018) discovered de novo mutations that were associated
with genes related to adaptive traits that may have been selected
during the establishment and expansion of this species.

Epimutations occur much more frequently than genetic
mutations, they do not occur randomly across the genome, and
they occur more often in genic regions than in transposable
elements (reviewed in Richards et al., 2017). A recent whole
genome survey of Populus trichocarpa showed epimutation rates
that were very similar to A. thaliana on a per generation basis
in the range of 10−3 to 10−4 (Hofmeister et al., 2020). Another
study in maize showed that the forward epimutation rate was
about 10 times larger than the backward epimutation rate, and
two orders of magnitude larger than that of DNA mutation
rate (Xu et al., 2020). In humans, the epimutation rate appears
to be lower than in A. thaliana but was also estimated to be
over two orders of magnitude greater than the germline genetic
mutation rate (Carja et al., 2017). Unlike the extensive focus
in cancer, how these mutation and epimutation rates translate
into function has not been explored in invasive organisms,
or in clonal plants more generally. Unfortunately, even with
the most accurate sequencing platforms and assembly methods
currently available, the technological challenges of accurately
detecting mutation and epimutation indicate that this type of
information is not yet within our reach for most non-model
species (Yoder and Tiley, 2021).

What We Know About Genomics of
Cancer Metastasis
Even before the era of cancer genomics, extensive studies had
revealed that “genetic instability” was a hallmark of cancer
(Coffey, 1998; Duesberg et al., 1998). Mutations rates are higher
in cells with genetic instability (Weisenberger et al., 2006;
Hanahan and Weinberg, 2011; Loeb, 2011). Such is the case
for cancer cells. The increased genetic variation that results
from this mutation can result in phenotypic variation that has
different fitness benefits for cells based on their ability to divide,
migrate, and survive environmental conditions (Amend et al.,
2016; Lloyd et al., 2016; Ibrahim-Hashim et al., 2017; Somarelli,
2021). The microenvironment of the tumor selects on this
variation in phenotype and determines which cell lines will die,
proliferate, or metastasize. Cancer cells that metastasize start
in the selective environment of the primary tumor, then travel
through lymphatic tissue or blood vessels to a distant organ

(Figure 1 and Box 1: Figure A). During this journey, metastatic
cancer cells must evade immune cells and ultimately compete
with healthy cells for resources when they reach a distal organ
(Lloyd et al., 2016; Amend et al., 2016), all of which is mediated
by genomic processes.

Cancer genomics was launched in 2006, but the sample
information was limited in many cases (Ledford, 2010; Nature,
2020). Early analyses of cancer genomes showed that they carried
thousands to tens of thousands of somatic mutations along with
aneuploidies and genome doubling (˜30% of cases) (Stratton,
2011; Williams et al., 2019). While the vast majority of mutations
were thought to have no biological function, they have been
informative to understand the evolutionary history of cancers.
Researchers have been able to develop algorithms that predict
evolutionary fates of cell lineages based on population genetics
concepts (Nik-Zainal et al., 2012; Williams et al., 2019). Nik-
Zainal et al. (2012) identified a collection of somatic mutations
shared by all cancer cells within a given breast cancer sample
and used this concept to identify discrete clones and subclones.
In order to do so, they examined the details of one patient
(sequenced to 188× depth) and found that in the aneuploid
tumor there were 70,690 somatic mutations genome-wide, many
of which were in fewer than 5% of the reads for a given
location in the genome. Their model predicted that 26,762 of
these mutations (∼38%; including in genes TP53, PIK3CA,
GATA3, MLL3, SMAD4, and NCOR1) along with trisomy 1q
and several other rearrangements were found in every tumor
cell indicating that some ancestral cell carried all of these
somatic mutations. From this point, they could reconstruct the
emergence of additional subclones as well [i.e., their subclone
labeled cluster C represented 65% of the tumor cells, cluster B
represented 18% of tumor cells, and cluster A accounted for 14%
of tumor cells (Nik-Zainal et al., 2012)]. They concluded that
large-scale chromosomal changes did not start to occur until after
at least 15–20% of the point mutations had already occurred.
Hence, instability at the chromosome level was not usually the
earliest source of mutation in this breast cancer. Across the 20
breast cancer samples, they found a dominant subclonal lineage
represented 50–95% of tumor cells, but a considerable proportion
of somatic genetic variation was in only a fraction of tumor cells.

More recent studies of the PCAWG Consortium of the
International Cancer Genome Consortium (ICGC) and The
Cancer Genome Atlas have provided further evidence of the
power of cancer genomics to contribute to our understanding
of shared and unique evolutionary genomic mechanisms
(Alexandrov et al., 2020; Gerstung et al., 2020; ICGC/TCGA
Pan-Cancer Analysis of Whole Genomes Consortium, 2020).
Gerstung et al. (2020) used whole genome sequencing in cancer
samples from 2,658 unique donors across 38 cancer types. They
took advantage of the same approaches as Nik-Zainal et al.
(2012) using sequence data to measure the number of copies of
different alleles. They used this information to define categories
of early and late clonal variants, the order in which variants arise,
and the most recent common ancestor (MRCA) of all cancer
cells in a tumor sample. Using phylogenetic reconstruction of
mutations as a clock they mapped mutation timing estimates
onto approximate real time to reconstruct the evolutionary

Frontiers in Ecology and Evolution | www.frontiersin.org 12 September 2021 | Volume 9 | Article 681100

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-681100 September 17, 2021 Time: 14:5 # 13

Neinavaie et al. Genomic Processes of Biological Invasions

trajectories of cancer to even before the point of diagnosis.
They presented timing and typical sequences of mutations as
well as how drivers and mutational signatures varied across
each cancer type.

Among the many interesting findings, Gerstung et al. (2020)
identified an increase in diversity of mutated driver genes at later
stages of tumor development, and 50% of all early clonal driver
mutations occured in just nine genes (although see concerns
raised by Plutynski, 2021). In many cases, the earliest events
included TP53 mutations, as well as losses of chromosome 17 and
most other highly recurrent cancer genes, such as KRAS, TERT,
and CDKN2A. Whole genome duplication events occurred after
tumors had accumulated several driver mutations, and many
chromosomal gains and losses typically occurred later. This
confirmed a long-held prediction in colorectal cancer called the
“APC-KRAS-TP53 progression model” of Fearon and Vogelstein
(1990). This finding concurs with several previous studies that
had reported that very early events in cancer evolution occur
in a few common drivers, and a more diverse array of drivers
is involved in late tumor development (Jamal-Hanjani et al.,
2017; Hu et al., 2019). Overall, the study showed that the
spectrum of mutations changed throughout tumor evolution
in 40% of samples. There were some common trends among
tumors as they evolved, but they all followed diverse paths.
Other studies demonstrated large differences in the underlying
mutation rate among individual tumors and tumor types and
emphasized that only a handful of mutations occur at appreciable
frequencies across all cancer types; for example, only mutations
in TP53 and PIK3CA occurred at a frequency of greater than
10% across cancer types in one study (Kandoth et al., 2013).
Further, Alexandrov et al. (2013b, 2020) recently evaluated
84,729,690 somatic mutations from 4,645 whole-genomes and
19,184 exomes across most cancer types and made associations
of signatures to exogenous or endogenous exposures, as well as to
defective DNA-maintenance processes. They identified positive
correlations between the age at cancer diagnosis and the number
of mutations attributable to a signature, and that the underlying
mutational process was active throughout the entire evolution of
the lineage from normal cells.

The application of genomics to the study of metastases
is of particular interest for understanding the genomics of
invasions. The genetic and non-genetic alterations underlying
cancer metastasis vary depending on the type of tumor as well as
the stage of metastasis (Nguyen and Massagué, 2007). Genome-
wide analysis of gene-expression in tumors has been applied
to hematological cancers (Golub et al., 1999; Alizadeh et al.,
2000), followed by solid tumors (Ramaswamy et al., 2003) to find
signatures for predicting metastasis. Genes involved in initiation
of metastasis promote invasion of the basement membrane and
entry into the circulatory system. For example, loss of CASp8
(caspase 8) activation can protect cancer cells from apoptosis
during invasion (Stupack et al., 2006). Epigenetic modifications
can also initiate the metastatic state, particularly since mutations
in epigenetic machinery can reshape the epigenome (Feinberg
et al., 2006; Timp and Feinberg, 2013). Chromatin regulators are
often mutated in cancer [e.g., mutations in the SWI/SNF complex
occur in over 20% of all cancers (Kadoch and Crabtree, 2015)].

Further, a study in patients of glioblastoma multiforme evaluating
SNP-genotypes, methylation, copy number variants, and gene
expression data found that whole genome DNA methylation was
the most informative molecular level predictor of survival (Bernal
Rubio et al., 2018).

Recent studies indicated that even when specific genetic
mutations instigated the invasion process, completion of the
process depended only on non-genetic changes, specifically
epigenetic changes that complement the genetic mutations
(Lambert et al., 2017). Metastatic progression depends on the
expression of genes that have specific functions as the cancer
cell first becomes a CTC, then a DTC and finally an expanding
micrometastasis. The expression of such genes during the
metastatic cascade may provide quite different functions than
they do for cancer cells of the primary tumor. Such genes
include EREG that encodes COX2 and MMP1 (Gupta et al.,
2007; Kuramochi et al., 2012; Qu et al., 2016). These remodel
the vasculature in sites of metastasis and simultaneously, facilitate
intravasation and angiogenesis at the primary tumor site (Gupta
et al., 2007). Genes that are not involved in the primary tumor
but facilitate metastasis at distal sites are classified as “metastasis-
virulent”. An example is CXCR4, a cytokine receptor that
mediates cancer survival in a distant organ where its ligand
CXCR12 is abundant in tissue microenvironments like bone
marrow (Müller et al., 2001; Kang et al., 2003).

Metastatic samples can have higher mutation rates, specific
types of mutations, aneuploidy or whole genome doubling and
non-genetic effects compared to primary cancer cell counterparts
(Alexandrov et al., 2013a,b, 2020; Martincorena et al., 2015).
Chromosome instability also creates aneuploidy and promotes
tumor evolution (Ben-David and Amon, 2020) and can result in
dissimilarities between metastatic and primary tumors. However,
a study of 118 biopsies of colorectal cancer with metastases to the
liver or brain showed little divergence between the primary tumor
and metastasis, and that “driver genes” were acquired early in the
process of tumor progression. In fact, cells that “disseminated
early” were more likely to seed metastases when the primary
tumor was still clinically undetectable (Hu et al., 2019). Similar
findings were reported in a study of two breast cancer patients:
primary tumors and associated metastases were similar in gene
expression and somatic mutation patterns (Hoadley et al., 2016).
On the other hand, clones seeding metastasis in breast cancer
in another study disseminated late from primary tumors and
continued to acquire mutations. Further, distant metastases
acquired driver mutations that were not seen in the primary
tumor, including a wider repertoire of cancer genes than early
drivers, e.g., inactivation of SWI-SNF and JAK2-STAT3 pathways
(Yates et al., 2017).

For the purposes of understanding specific genomic response
to invaded habitats, a particularly compelling study was recently
completed on clear-cell renal cell carcinoma (ccRCC) tumors
(Turajlic et al., 2018). Across 463 primary and 169 matched
metastatic regions from 38 patients, Turajlic et al. (2018)
found the number of driver events was lower in metastases
(mean = 9), compared to primary tumors, and that metastases
were significantly more homogeneous than primary tumors:
456 driver events were shared between primary tumors and
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metastases, 230 were only found in primary tumors, and 39 driver
events were only found in metastases. They further determined
behavior of clonal lineages within the primary tumor by dividing
253 clones in the 38 patients into: (1) clones that were not
represented in the metastatic samples (n = 130 clones, defined
as subclonal in the primary tumor and absent in metastasis), (2)
clones that were maintained (n = 38 clones, defined as the MRCA
clones, clonal in both primary tumor and metastasis), and (3)
clones that were selected (n = 85 clones, defined as subclonal in
the primary and clonal in metastasis; or absent in the primary
and present in metastasis). Comparing selected versus unselected
mutations, they found hallmark genomic alterations in ccRCC
metastasis but also report the fascinating finding of specific and
shared mutations associated with metastases across 18 different
invaded tissues (Turajlic et al., 2018; Box 1: Figure A). This type
of detailed information about genomic modifications associated
with the invasion of “habitat types” is unprecedented in ecological
studies and provides information not only about current status
of populations but evolutionary history and therefore potential
prevention. While each patient exhibited some unique features,
this study also demonstrates the remarkable degree of parallel and
convergent evolution in both the primary and metastatic tumors
of different patients of this cancer type.

THE ILLUSIVE UNIVERSAL
PREDICTOR OF INVASIVE
POTENTIAL-MANAGEMENT ISSUES

There are often intensive management responses to both invasive
species and cancer, although the stakes differ in notable ways.
Untreated, metastatic cancer is inevitably deadly (Wells et al.,
2013), while the impacts of invasive species generally include
economic costs ranging from minor to immense (Bradshaw
et al., 2016; Diagne et al., 2021), and disruption of ecological
communities, in some cases including native species extinction
(Bellard et al., 2016a). Another striking difference between
cancer and invasive species is general agreement that cancer
is bad whereas some or even all stakeholders may see an
invasive species neutrally or positively (e.g., burros in the
Grand Canyon, stocking non-native game species, and non-
native biological control agents). Regardless, several of the
similarities and differences in management approaches could be
addressed by a better understanding of the genomic mechanisms
in context.

It is widely argued that the best way to reduce ecological
and economic costs of invasive species is to interfere with the
transport and establishment steps of invasion (Keller et al.,
2007; Bailey et al., 2011). A primary reason is that once species
have become invasive in a new habitat, eradication is rarely
feasible, except on some islands (Parkes and Panetta, 2009; Moon
et al., 2015). Damage or costs related to damage reduction
become recurring (Liebhold et al., 2016). Cancer treatment is
similar with regards to the importance of cancer prevention
and early detection. Ecologists use species traits or ecological
niche models to identify species of concern and locations of
high risk, whereas doctors can use individual traits, such as
environmental exposures, lifestyle, age, or genetic predispositions

to guide cancer surveillance (Dobson, 2013; Katzke et al., 2015;
Bernal Rubio et al., 2018; Hu et al., 2021). But this often applies
to preventing cancer initiation in the first place. With respect to
preventing metastases, there is growing interest in therapies that
target CTCs (Ortiz-Otero et al., 2020) as well as bolstering normal
tissues and the immune system to prevent the establishment of
DTCs (Risson et al., 2020).

Surveillance of invasive species aimed at preventing
introduction of new propagules often lapses after a species
is established. While understandable, this may be unwise.
Further import of new individuals into an already invaded
habitat likely provides additional heritable variation (e.g., Kolbe
et al., 2004), potentially allowing for faster adaptation to new
habitats or increased success in the invaded range. In cancer
treatment, the focus on removing as many of the cancer cells
as possible has the effect of reducing the variation present,
potentially pushing cancer back toward earlier, less invasive
stages, which seems to be effective for about 50% of the cases
(Pienta et al., 2020a). However, this approach also selects for
those few cells that are able to resist therapy and may require
a different management strategy (Ibrahim-Hashim et al., 2017;
Gatenby and Brown, 2020; Pressley et al., 2021). This line of
reasoning suggests increased focus on preventing introductions
may still be appropriate and cost-effective for existing invaders.
Similarly identifying the molecular features associated with
progression to invasions is a major objective in cancer research
(Srivastava et al., 2018). The potential for this type of biomarker
approach was recently highlighted in a study of colorectal cancer
with metastases to the liver or brain. The early mutations in
“driver genes” were associated with seeding metastases. These
key mutations were in an independent cohort of 2,751 colorectal
cancers (Hu et al., 2019) and could be the targets of therapy,
enhancing a personalized medicine approach. Analysis of
multi-omics data and development of new statistics approaches
that can integrate these data will be an imperative to identify the
relative contributions of different molecular level mechanisms
that underlie cancer progression, invasion and response to
environmental challenges more generally (Bernal Rubio et al.,
2018; Hofmeister et al., 2020; Nam et al., 2021; Teschendorff and
Feinberg, 2021; Yoder and Tiley, 2021).

Once invasion has taken place the management regime
diverges between cancer treatment and invasive species
management. Invasive species management tends to focus on
slowing the spread (Sharov et al., 2002) or protecting specific
habitats (e.g., Short et al., 1992), or even tolerance (Schlaepfer
et al., 2011) and resignation (Regulations.gov, 2020). Cancer
treatment initially tends to take a much more aggressive
treatment approach, often combining several methods with
the goal of eradication and long term suppression of tumors
(Blagosklonny, 2004; Yap et al., 2013; Gatenby and Brown, 2020).
These treatments are often expensive and have intense side
effects, but genomic analysis of tumors may provide directly
relevant information for selecting treatments most likely to be
effective (Bozic et al., 2012).

When detected and treated early enough, most cancers are
curable. Cure generally involves surgical resection of the tumor
and/or radiation therapy. So long as the resected or irradiated
tumor contains all of the cancer cells, then knowledge of
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the genomics becomes less relevant. However, identifying the
whereabouts of all of the cancer cells involves some guesswork.
Hence, neoadjuvant drug therapies prior to surgery help ensure a
contained population of cancer cells, and adjuvant drug therapies
after surgery aim to eliminate undetectable surviving fragments
of the primary tumor or micrometastases elsewhere in the
body. Both neoadjuvant and adjuvant therapies can be improved
based on genetic and molecular markers of the cancer cells’
state and heterogeneity (Dressman et al., 2006; Duran et al.,
2020; Oshi et al., 2020). Upon detection or at the start of
a management program, complete elimination of an invasive
species often succeeds or fails based on the ability to find and
cull all individuals. For both cancer and invasive species, if the
management regime does not kill them all, the cancer and pest
species will evolve resistance (Pressley et al., 2021). In cancer,
understanding the genomics of resistance promises insight to
why initial therapies do not or cannot cure the patient.

Despite the limitations for understanding the translation of
genome level processes into traits in most species, genomics
is becoming part of the invasive species management toolbox
because these approaches can provide accurate diagnostics of
invasive species (Cristescu, 2015; Hamelin and Roe, 2020). We
are unaware of any invasive species management regimes that
have been truly shaped by genomic knowledge (see Stewart
et al., 2009), but molecular analyses can provide taxonomic
clarification, evidence of hybridization and cryptic species,
population structure and origin of invasions for management
purposes (Gaskin et al., 2011; Chown et al., 2015). Studies on
knotweed for instance, have shown that closely related taxa had
dramatically different responses to herbicide application and
that the hybrid Reynoutria x. bohemica is particularly resilient
(Bímová et al., 2001). The genomic mechanisms underlying these
differences have not yet been examined. Genomics approaches
are now being used to identify appropriate biocontrol agents
(Sun et al., 2020; van Steenderen et al., 2021; Harms et al.,
2021). For example, specific cochineal insects in the genus
Dactylopius (Hemiptera: Dactylopiidae) are effective biocontrol
agents of some invasive Opuntia cactus species. But the
different Dactylopius species are so morphologically similar that
numerous misidentifications have contributed to failed attempts
at biological control. van Steenderen et al. (2021) report that
nucleotide sequencing of three gene regions (12S rRNA, 18S
rRNA, and COI) and two inter-simple sequence repeats (ISSR)
were effective in identifying the target species Dactylopius
opuntiae and Dactylopius tomentosus and even different lineages
within D. tomentosus. A study of invasive Ambrosia artemisiifolia
found that the genotype of the leaf beetle Ophraella communa
determined potential success as a biocontrol agent, but the
specific genomic mechanisms of that association were not
investigated (Sun et al., 2020).

CONCLUSION

In the last 50 years, foundational concepts in ecological and
evolutionary genetics have been applied to both the study of
invasive species and the study of cancers. We have discussed

many similarities in the application of genomics to cancer
and invasive species (summarized in Table 2 with reference to
questions outlined recently by Dujon et al., 2021 for cancer
and Bock et al., 2015 and van Kleunen et al., 2018 for
ecological invasions). Cancer cells and invasive species alter
their environment and can cause extinctions of other cells or
organisms because they alter the composition of their habitat
or deplete resources. Ecological studies have a stronger history
of describing this process across a diversity of species and
habitat interactions, but the molecular mechanisms underlying
this could be informed by genomics, as we have seen in cancer
studies (e.g., Box 1: Figure A; Turajlic et al., 2018).

There are some important outstanding questions in invasive
species ecology that do not easily find parallels in cancer
studies. For example: van Kleunen et al. (2018) highlighted the
importance of questions like “What will be the future global
distribution of alien plants?,” “How important are mutualists
compared with antagonists in driving invasions?” and “How
frequent is rapid coevolution of aliens and natives?” which have
some parallels in cancer but do not have obvious analogs in
Dujon et al. (2021; Table 2A). These include, for instance, the
cooperative interactions that might occur between DTCs, or
how clusters of CTCs may increase likelihoods of metastases
(Fabisiewicz and Grzybowska, 2017). This aligns with invasions
in nature where success generally increases with the number
of individuals introduced simultaneously to the novel location
(Barney and Whitlow, 2008).

Bock et al. (2015) highlight important questions that can
be specifically addressed with genomics approaches in invasive
species studies like “why hybridization sometimes results
in increased colonization success and sometimes does not,”
“whether the accumulation of deleterious mutations limits
invasions and/or if compensatory mechanisms reduce the
severity of expansion load,” and “the extent of gene re-use
during the evolution of invaders” which are not particularly
relevant in cancers. However, both van Kleunen et al. (2018) and
Bock et al. (2015) emphasize the importance of the outstanding
question: “What explains the existence and length of lag phases?,”
which is also unknown in cancers (e.g., “What molecular
level processes differentiate benign versus malignant tumors?”;
Table 2B) and has great potential for therapeutic targets. Other
major common themes highlighted in the table address questions
about the molecular level mechanisms involved in initiation and
progression, the importance of plasticity at various stages, the
importance of habitat suitability and our ability to use genomics
in predictive modeling. Genomics approaches promise to inform
our understanding about these outstanding questions in both
cancer and ecological studies.

We have argued that the detailed studies of the behavior
of a variety of human cancers can inform our understanding
of genome level dynamics in the diversity of invasive species
and provide predictive frameworks for management. However,
despite the tremendous efforts of the last 15 years, the transitions
from normal to cancerous conditions or from primary tumor
to metastasis (Turajlic et al., 2018; Hu et al., 2019) are still not
well understood. Even normal cells contain many mutations that
accrue with age, and some genic regions have a higher mutation
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rate than others (Martincorena and Campbell, 2015;
Martincorena et al., 2015, 2018; Gao et al., 2019; Goldmann et al.,
2019; Zahir et al., 2020). It is particularly challenging that there
is no discrete boundary between normal ageing processes and
cancer evolution (Lee-Six et al., 2018, 2019; Moore et al., 2020).
In addition, changes in methylation more strongly predicted
survival in patients with glioblastoma multiforme than genetic
polymorphisms and methylation was strongly associated with
age (Bernal Rubio et al., 2018). Further, the microenvironment
of the pre-tumor is also aging and this could contribute to
tumorigenesis and subsequent progression (Zahir et al., 2020).

As with the pre-invasive stage of invasive species in ecology
(Vandepitte et al., 2014), premalignancy in solid tumors has
not been well studied, partly because of the challenge of early
detection (Gerstung et al., 2020; Zahir et al., 2020). Several
researchers have concluded that a comprehensive understanding
of the progression of cancer requires understanding not only at
the molecular level but also at the phenotypic and ecological level
such as physiological, structural, and environmental information
that occurs spatially and temporally (Ibrahim-Hashim et al., 2017,
2021; Zahir et al., 2020; Nam et al., 2021). While this is also
potentially the holy grail for understanding the progression of
invasive species, in the case of cancer, the stakes are higher and
very immediate to the patient. Hence, Zahir et al. (2020) have
reviewed how sophisticated techniques have been developed for
multiplexing genomic, proteomic and transcriptomic analysis
in situ, while preserving the spatial relationships between cells
within their native tissue architecture and immune context.
These include finely dissected spatial transcriptomic profiling
and single-molecule fluorescence in situ hybridization (smFISH),
where transcripts are directly labeled in tissue sections to image
and visualize their subcellular locations. Cancer studies can
also include manipulations to verify functional relationships
thanks to the Cancer Cell Line Encyclopedia (CCLE), application
of CRISPR loss-of-function methods, cell-viability data for
thousands of compounds which define a “cancer dependency
map,” and single cell sequencing technologies (Tsherniak et al.,
2017; Williams et al., 2019; Teschendorff and Feinberg, 2021).

While this outstanding level of resources may never be
available in any invasive species, the enormous amount of data
that is already accumulated and will continue to accumulate
could be combined with the nuanced, and crafty (out of
necessity) approaches of evolutionary ecologists to provide
a better understanding of the translation of genotype to
phenotype. Doing so is likely to improve risk analysis and
management interventions.
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Rafajlović, M., Scott, P. A., et al. (2020). Spatial variation in introgression
along a toad hybrid zone in France. Biorxiv [preprint] doi: 10.1101/74
6073

van Riemsdijk, I., van Nieuwenhuize, L., Martínez-Solano, I., Arntzen, J. W., and
Wielstra, B. (2018). Molecular data reveal the hybrid nature of an introduced
population of banded newts (Ommatotriton) in Spain. Conserv. Genet. 19,
249–254. doi: 10.1007/s10592-017-1004-0

van Steenderen, C. J. M., Paterson, I. D., Edwards, S., and Day, M. D. (2021).
Addressing the red flags in cochineal identification: the use of molecular
techniques to identify cochineal insects that are used as biological control agents
for invasive alien cacti. Biol. Control Theory Appl. Pest Manag. 152:104426.
doi: 10.1016/j.biocontrol.2020.104426

Frontiers in Ecology and Evolution | www.frontiersin.org 22 September 2021 | Volume 9 | Article 681100

https://doi.org/10.1016/j.ccell.2018.02.001
https://doi.org/10.1111/j.1523-1739.2010.01646.x
https://doi.org/10.1038/s41477-017-0066-9
https://doi.org/10.1146/annurev-ecolsys-110218-024955
https://doi.org/10.1146/annurev-ecolsys-110218-024955
https://doi.org/10.1093/icb/ict012
https://doi.org/10.1073/pnas.1018989108
https://doi.org/10.1016/0006-3207(92)91047-v
https://doi.org/10.1146/annurev.ecolsys.110308.120304
https://doi.org/10.1016/j.tree.2012.07.013
https://doi.org/10.1111/mec.13997
https://doi.org/10.1534/genetics.120.303163
https://doi.org/10.1111/eva.12592
https://doi.org/10.1016/j.bbcan.2016.12.003
https://doi.org/10.1016/j.trecan.2018.06.003
https://doi.org/10.1098/rstb.2020.0121
https://doi.org/10.1111/mec.13089
https://doi.org/10.1111/j.1539-6924.2005.00655.x
https://doi.org/10.1111/j.1539-6924.2005.00655.x
https://doi.org/10.1614/ws-09-011.1
https://doi.org/10.1126/science.1204040
https://doi.org/10.1146/annurev-ecolsys-110512-135803
https://doi.org/10.1146/annurev-ecolsys-110512-135803
https://doi.org/10.1111/mec.15601
https://doi.org/10.1038/nature04323
https://doi.org/10.3897/neobiota.63.54962
https://doi.org/10.1371/journal.pcbi.1008056
https://doi.org/10.1371/journal.pcbi.1008056
https://doi.org/10.1038/s41576-021-00341-z
https://doi.org/10.1038/s41576-021-00341-z
https://doi.org/10.1111/j.1469-8137.2007.02207.x
https://doi.org/10.1038/nrc3486
https://doi.org/10.1111/j.1420-9101.2009.01685.x
https://doi.org/10.1111/j.1420-9101.2009.01685.x
https://doi.org/10.1038/nrg.2017.26
https://doi.org/10.1146/annurev-ecolsys-110617-062654
https://doi.org/10.1146/annurev-ecolsys-110617-062654
https://doi.org/10.1111/mec.13013
https://doi.org/10.1101/746073
https://doi.org/10.1101/746073
https://doi.org/10.1007/s10592-017-1004-0
https://doi.org/10.1016/j.biocontrol.2020.104426
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-681100 September 17, 2021 Time: 14:5 # 23

Neinavaie et al. Genomic Processes of Biological Invasions

Vandepitte, K., de Meyer, T., Helsen, K., van Acker, K., Roldán-Ruiz, I., Mergeay,
J., et al. (2014). Rapid genetic adaptation precedes the spread of an exotic plant
species. Mol. Ecol. 23, 2157–2164. doi: 10.1111/mec.12683

VanWallendael, A., Alvarez, M., and Franks, S. J. (2020). Patterns of population
genomic diversity in the invasive Japanese knotweed species complex. Am. J.
Bot. 108, 857–886. doi: 10.1002/ajb2.1653

Verhoeven, K. J. F., and Preite, V. (2014). Epigenetic variation in asexually
reproducing organisms. Evolution 68, 644–655. doi: 10.1111/evo.1
2320

Verhoeven, K. J. F., Jansen, J. J., Van Dijk, P. J., and Biere, A. (2010). Stress-induced
DNA methylation changes and their heritability in asexual dandelions. New
Phytol. 185, 1108–1118. doi: 10.1111/j.1469-8137.2009.03121.x

Vittecoq, M., Giraudeau, M., Sepp, T., Marcogliese, D. J., Klaassen, M., Renaud, F.,
et al. (2018). Turning natural adaptations to oncogenic factors into an ally in
the war against cancer. Evol. Appl. 11, 836–844. doi: 10.1111/eva.12608

Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A.,
and Kinzler, K. W. (2013). Cancer genome landscapes. Science 339,
1546–1558.

Vonholdt, B. M., Pollinger, J. P., Lohmueller, K. E., Han, E., Parker, H. G., Quignon,
P., et al. (2010). Genome-wide SNP and haplotype analyses reveal a rich history
underlying dog domestication. Nature 464, 898–902. doi: 10.1038/nature0
8837

Wegner, K. M., Lokmer, A., and John, U. (2020). Genomic and transcriptomic
differentiation of independent invasions of the pacific oyster Crassostrea gigas.
Front. Ecol. Evol. 8:371.

Weisenberger, D. J., Siegmund, K. D., Campan, M., Young, J., Long, T. I., Faasse,
M. A., et al. (2006). CpG island methylator phenotype underlies sporadic
microsatellite instability and is tightly associated with BRAF mutation in
colorectal cancer. Nat. Genet. 38, 787–793. doi: 10.1038/ng1834

Wells, A., Grahovac, J., Wheeler, S., Ma, B., and Lauffenburger, D. (2013). Targeting
tumor cell motility as a strategy against invasion and metastasis. Trends
Pharmacol. Sci. 34, 283–289. doi: 10.1016/j.tips.2013.03.001

Wendel, J. F., Jackson, S. A., Meyers, B. C., and Wing, R. A. (2016). Evolution of
plant genome architecture. Genome Biol. 17:37.

West-Eberhard, M. J. (2005). Developmental plasticity and the origin of species
differences. Proc. Natl. Acad. Sci. USA 102(Suppl. 1), 6543–6549. doi: 10.1073/
pnas.0501844102

Whitney, K. D., Broman, K. W., Kane, N. C., Hovick, S. M., Randell,
R. A., and Rieseberg, L. H. (2015). Quantitative trait locus mapping
identifies candidate alleles involved in adaptive introgression and range
expansion in a wild sunflower. Mol. Ecol. 24, 2194–22114. doi: 10.1111/mec.
13044

Williams, M. J., Sottoriva, A., and Graham, T. A. (2019). Measuring
clonal evolution in cancer with genomics. Annu. Rev. Genomics
Hum. Genet. 20, 309–329. doi: 10.1146/annurev-genom-083117-021
712

Xie, Z., Wang, L., Wang, L., Wang, Z., Lu, Z., Tian, D., et al. (2016). Mutation
rate analysis via parent-progeny sequencing of the perennial peach. I. a low
rate in woody perennials and a higher mutagenicity in hybrids. Proc. Biol. Sci.
283:20161016. doi: 10.1098/rspb.2016.1016

Xu, G., Lyu, J., Li, Q., Liu, H., Wang, D., Zhang, M., et al. (2020). Evolutionary
and functional genomics of DNA methylation in maize domestication and
improvement. Nat. Commun. 11:5539. doi: 10.1038/s41467-020-19333-4

Yap, T. A., Omlin, A., and de Bono, J. S. (2013). Development of therapeutic
combinations targeting major cancer signaling pathways. J. Clin. Oncol. 31,
1592–1605. doi: 10.1200/jco.2011.37.6418

Yates, L. R., Knappskog, S., Wedge, D., Farmery, J. H. R., Gonzalez, S.,
Martincorena, I., et al. (2017). Genomic evolution of breast cancer metastasis
and relapse. Cancer Cell 32, 169–184.e705.

Yoder, A. D., and Tiley, G. P. (2021). The challenge and promise of estimating the
de novo mutation rate from whole-genome comparisons among closely related
individuals. Mol. Ecol. doi: 10.1111/mec.16007

Yoo, M.-J., Liu, X., Pires, J. C., Soltis, P. S., and Soltis, D. E. (2014). Nonadditive
gene expression in polyploids. Annu. Rev. Genet. 48, 485–517. doi: 10.1146/
annurev-genet-120213-092159

Yu, M., Stott, S., Toner, M., Maheswaran, S., and Haber, D. A. (2011). Circulating
tumor cells: approaches to isolation and characterization. J. Cell Biol. 192,
373–382. doi: 10.1083/jcb.201010021

Zahir, N., Sun, R., Gallahan, D., Gatenby, R. A., and Curtis, C. (2020).
Characterizing the ecological and evolutionary dynamics of cancer. Nat. Genet.
52, 759–767. doi: 10.1038/s41588-020-0668-4

Zhang, Y. M., Vitone, T. R., Storer, C. G., Payton, A. C., Dunn, R. R., Hulcr,
J., et al. (2019). From pavement to population genomics: characterizing a
long-established non-native ant in north america through citizen science and
ddRADseq. Front. Ecol. Evol. 7:453.

Zhang, Y.-Y., Parepa, M., Fischer, M., and Bossdorf, O. (2016). “Epigenetics of
colonizing species? a study of japanese knotweed in central Europe,” in Invasion
Genetics: The Baker and Stebbins Legacy, eds S. Barrett, R. I. Colautti, K. M.
Dlugosch, and L. H. Rieseberg (Hoboken, NJ: Wiley-Blackwell), 328–340. doi:
10.1002/9781119072799.ch19

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The handling editor declared a past collaboration with one of the authors, JB.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Neinavaie, Ibrahim-Hashim, Kramer, Brown and Richards. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 23 September 2021 | Volume 9 | Article 681100

https://doi.org/10.1111/mec.12683
https://doi.org/10.1002/ajb2.1653
https://doi.org/10.1111/evo.12320
https://doi.org/10.1111/evo.12320
https://doi.org/10.1111/j.1469-8137.2009.03121.x
https://doi.org/10.1111/eva.12608
https://doi.org/10.1038/nature08837
https://doi.org/10.1038/nature08837
https://doi.org/10.1038/ng1834
https://doi.org/10.1016/j.tips.2013.03.001
https://doi.org/10.1073/pnas.0501844102
https://doi.org/10.1073/pnas.0501844102
https://doi.org/10.1111/mec.13044
https://doi.org/10.1111/mec.13044
https://doi.org/10.1146/annurev-genom-083117-021712
https://doi.org/10.1146/annurev-genom-083117-021712
https://doi.org/10.1098/rspb.2016.1016
https://doi.org/10.1038/s41467-020-19333-4
https://doi.org/10.1200/jco.2011.37.6418
https://doi.org/10.1111/mec.16007
https://doi.org/10.1146/annurev-genet-120213-092159
https://doi.org/10.1146/annurev-genet-120213-092159
https://doi.org/10.1083/jcb.201010021
https://doi.org/10.1038/s41588-020-0668-4
https://doi.org/10.1002/9781119072799.ch19
https://doi.org/10.1002/9781119072799.ch19
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	The Genomic Processes of Biological Invasions: From Invasive Species to Cancer Metastases and Back Again
	Introduction
	The Concept of Invasion in Biology
	Genomics of Invasion
	Discoveries and Limitations of Genomic Studies of Diverse Invasive Species
	Are Clonal Plant Species a Particularly Useful Comparison to Cancer?
	What We Know About Genomics of Cancer Metastasis

	The Illusive Universal Predictor of Invasive Potential-Management Issues
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


