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Abstract
Artificial neural networks have been proposed as potential algorithms that could benefit from
being implemented and run on quantum computers. In particular, they hold promise to greatly
enhance Artificial Intelligence tasks, such as image elaboration or pattern recognition. The
elementary building block of a neural network is an artificial neuron, i.e. a computational unit
performing simple mathematical operations on a set of data in the form of an input vector. Here
we show how the design for the implementation of a previously introduced quantum artificial
neuron [npj Quant. Inf. 5, 26], which fully exploits the use of superposition states to encode binary
valued input data, can be further generalized to accept continuous- instead of discrete-valued input
vectors, without increasing the number of qubits. This further step is crucial to allow for a direct
application of gradient descent based learning procedures, which would not be compatible with
binary-valued data encoding.

1. Introduction

Quantum computers hold the promise to greatly enhance the computational power of not-so-distant in
future computing machines [1, 2]. In particular, improving machine learning techniques by means of
quantum computers is the essence of the raising field of the field of QuantumMachine Learning [3–5].
Several models for the quantum computing version of artificial neurons have been proposed [6–12], together
with novel quantum machine learning techniques implementing classification tasks [13–15], quantum
autoencoders [16, 17], quantum convolutional networks [18, 19] and Quantum Boltzmann Machines
[20, 21] to give a non-exhaustive list.

In this context, quantum signal processing leverages the capabilities of quantum computers to represent
and elaborate exponentially large arrays of numbers, and it could be used for enhanced pattern recognition
tasks, i.e. going beyond the capabilities of classical computing machines [22]. In these regards the
development of Neural Networks dedicated for quantum computers [23] is of fundamental importance, due
to the preponderance of this type of classical algorithms in image processing [24, 25].

In the commonly accepted terminology of graph theory, neural networks are directed acyclic graphs
(DAG), i.e. a collection of nodes where information flows only in one direction, without any loop. Each node
is generally defined an artificial neuron, i.e. a simplified mathematical model of natural neurons. In practice,
it consists of an object function that takes some input data, processes them using some internal parameters
(defined weights), and eventually gives an output value. In their simplest form, the so called McCulloch-Pitts
neurons [26] only deal with binary values, while in the most common and most useful form, named
perceptron [27], they accept real, continuously valued inputs and weights.

Continuous inputs are not possible in conventional, digital computers, and these are usually rendered by
using bit strings: a grey scale image pixel is for instance usually rendered in natural numbers on a scale from
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Figure 1. Scheme of a classical perceptron model. The artificial neuron evaluates a weighted sum between the input vector, i⃗, and
the weight vector, w⃗, followed by an activation function, which determines the actual output of the neuron.

0 to 255 using 8-bit binary strings. Some approaches propose to use a similar representation in quantum
computers by assigning several qubits per value [28–30]. However, these approaches are particularly
wasteful, especially in light of the fact that quantum mechanical wavefunctions can be inherently represented
as continuously valued vectors.

A previous work [9] introduced a model for a quantum circuit mimicking a McCulloch-Pitts neuron.
Here we generalize that model to the case of a quantum circuit accepting also continuously valued input
vectors. We thus present a model for a continuous quantum neuron which, as we will see, can be used for
pattern recognition in greyscale images without the need to increase the number of qubits to be employed.
This represents a further memory advantage with respect to classical computation, where an increase in the
number of encoding bits is required to deal with continuous numbers. We employ a phase-based encoding,
and show that it is particularly resilient to noise.

Differently from classical perceptron models, artificial quantum neurons as described, e.g. in
reference [9] can be used to classify linearly non separable sets. In the continuously valued case, we thus
harness the behaviour of our quantum perceptron model to show its ability to correctly classify several
notable cases of linearly non separable sets. Furthermore, we test this quantum artificial neuron for digit
recognition on the MNIST dataset [31], with remarkably good results. We further stress that the present
generalization of the binary-valued artificial neuron model is a crucial step in view of fully exploiting the
great potential allowed from automatic differentiation such as gradient descent. These techniques are
commonly employed, e.g. in supervised and unsupervised learning procedures, and would be impossible to
be applied to the oversimplified McCulloch-Pitts neuron model.

2. Continuously valued quantum neuronmodel

2.1. The algorithm
Let us consider a perceptron model with real valued input and weight vectors, which are respectively
indicated as i⃗ and w⃗, such that ij,wj ∈ R. A schematic representation of the classical perceptron is reported in
figure 1.

Similarly, we define a model of a quantum neuron capable of accepting continuously valued input and
weight vectors, by extending a previous proposal for the quantum computing model of an artificial neuron
only accepting binary valued input data [9]. In order to encode data on a quantum state, we make use of a
phase encoding. Given an input θ = (θ0, . . . ,θN−1) with θi∈[0,π], which consists of the classical data to be
analyzed, we consider the vector:

i⃗= (eiθ0 ,eiθ1 , · · · ,eiθN−1) , (1)

which we will be referring to as the input vector in the following. For data not lying in the interval [0,π] but
more generally in [a, b], a normalization scheme can be used, such that θi → θi−a

b−a π, allowing to transform
the data in the appropriate range. Explicit examples will be given later. With the input vector in equation (1)
we define the corresponding input quantum state of n= log2N qubits:
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|ψi⟩=
1

2n/2

2n−1∑
k=0

ik|k⟩ , (2)

where the states |k⟩ denote the computational basis states of n qubits ordered by increasing binary
representation, {|00 . . .0⟩, |00 . . .1⟩, · · · , |11 . . .1⟩}. Since we are dealing with an artificial neuron, we have to
properly encode another vector, which represents the weights in the form ϕ= (ϕ0, . . . ,ϕN−1) with ϕi∈[0,π],
i.e. the corresponding vector:

w⃗= (eiϕ0 ,eiϕ1 , · · · ,eiϕN−1) (3)

which in turn defines the weight quantum state:

|ψw⟩=
1

2n/2

2n−1∑
k=0

wk|k⟩ . (4)

Notice that (2) and (4) have the same structure, i.e. they consist of an equally weighted superposition of
all the computational basis states, although with varying phases. By means of such encoding scheme, we can
fully exploit the exponentially large dimension of the n qubits Hilbert space, i.e. by only using n qubits it is
evidently possible to encode and analyze data of dimension N = 2n. Due to global phase invariance, the
number of actual independent phases is 2n−1, which does not spoil the overall efficiency of the algorithm, as
it will be shown. We also notice that the class of states represented as 1

2n/2

∑
i e

iαi |i⟩, as (2) and (4) are known
as locally maximally entanglable (LME) states, as introduced in reference [32].

Having defined the input and weight quantum states, their similarity is estimated by considering the
inner product

⟨ψw|ψi⟩ :=
1

2n

2n−1∑
k,j=0

ikw
∗
j ⟨j|k⟩

=
1

2n
i⃗ · w⃗∗ (5)

=
1

2n

(
ei(θ0−ϕ0) + · · ·+ ei(θ2n−1−ϕ2n−1)

)
,

which corresponds to evaluating the scalar product between the input vector in equation (1) and the
conjugated of the weight vector in equation (3), w⃗∗, similarly to the classical perceptron algorithm. Since
probabilities in quantum mechanics are represented by the squared modulus of wavefunction amplitudes, we
consider |⟨ψw|ψi⟩|2, which is explicitly given as (see appendix. A):

|⟨ψw|ψi⟩|2 =
1

2n
+

1

22n−1

2n−1∑
i<j

cos((θj −ϕj)− (θi −ϕi)) . (6)

It is easily checked that |⟨ψw|ψi⟩|2 = 1 for θi = ϕi ∀i, since the two states would coincide in such case.
Equation (6) represents the activation function implemented by the proposed quantum neuron. Even if it

does not remind any of the activation functions conventionally used in classical machine learning
techniques, such as the Sigmoid or ReLu functions [33], its non-linearity suffices to accomplish classification
tasks, as we will discuss in the following sections.

2.1.1. Color invariance and noise resilience
From equation (6), we define the activation function of the quantum artificial neuron as

f(θ,ϕ) = |⟨ψw|ψi⟩|2 . (7)

Keeping ϕ fixed, suppose two different input vectors are passed to the quantum neuron: θ and θ′ = θ+∆,
with∆= (∆, . . . ,∆). Whatever the value of∆, it is easy to infer that both input vectors will result in the
same activation function. Hence, two input vectors only differing by a constant, albeit real valued, quantity
will be equally classified by such model of quantum perceptron. Hence, in the context of image classification,
we can state that the present algorithm has a built in color translational invariance. This should not come as a
surprise, since the activation function actually depends of the differences between phases. In fact, the artificial
neuron tends to recognize as similar any dataset that displays the same overall differences, instead of perfectly
coincident datasets.

3
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Figure 2. Quantum circuit model of a perceptron with continuously valued input and weight vectors.

Next, we assume that the input and weight vectors do coincide, but only up to some noise corrupting the
input vector, such that: θ = ϕ+∆, where∆= (∆0,∆1, . . . ,∆2n−1) represents the small variations, now
assumed to be different on each pixel. Substituting the above values in equation (7), we obtain

f(θ,ϕ) = f(∆) =
1

2n
+

1

22n−1

2n−1∑
i<j

cos(∆j −∆i) . (8)

For simplicity of calculation, we assume the noise factors,∆i, to be distributed according to a uniform
distribution in the interval [−a/2,a/2], the activation function averaged over the probability distribution of
∆i can be calculated as (see appendix B):

⟨f(∆)⟩= 1

2n
+

2n − 1

2n−1

(
1− cos(a)

a2

)
. (9)

Since all the possible input data lie in the interval [0,π], a reasonable noise would be of the order of some
small fraction of π, which implies a< 1. Hence, in the case of small noise, equation (9) can be recast as

⟨f(∆)⟩= 1− 2n − 1

2n
a2

12
+O

(
a6
)

for a≪ 1 . (10)

Thus, the classification of the quantum neuron is only slightly perturbed by the presence of noise corrupting
an input vector otherwise having a perfect activation. By similar calculations, it can be shown that this
property also holds for any kind of input vector, not only those with perfect activation (see appendix B).
With a more a realistic noise model of the errors given as a Gaussian distribution, similar results have been
obtained.

After having outlined the main steps defining the quantum perceptron model for continuously valued
input vectors, we now proceed to build a quantum circuit that allows implementing it on a qubit-based
quantum computing hardware.

2.2. Quantum circuit model of a continuously valued perceptron
A quantum circuit implementing the quantum neuron described above is schematically represented in
figure 2. The first section of the circuit, denoted as U i, transforms the quantum register, initialized into the
reference state |0⟩⊗n, to the input quantum state defined in equation (2); the following operation Uw

performs the inner product between the input and weight quantum state; finally, a multi-controlled CNOT
targeting an ancillary qubit is used to extract the final result of the computation. We now explain in detail
how these transformations can be achieved.

Starting from the n-qubit state, |00 . . .0⟩= |0⟩⊗n, the U i operation creates the quantum input state
Ui|0⟩⊗n = |ψi⟩ (2). Such a unitary can be built by means of a brute force approach. First of all, we apply a
layer of Hadamard gates, H⊗n, which creates the balanced superposition state H⊗n|0⟩⊗n = |+⟩⊗n, with
|+⟩= (|0⟩+ |1⟩)/

√
2. The quantum state |+⟩⊗n consists of an equally weighted superposition of all the

states in the n qubits computational basis, hence we can target each of them and add the appropriate phase to

4
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Ui Uw

qr0 : |0〉 H • • • • H X •

qr1 : |0〉 H R(θ̃1) X R(θ̃2) X R(θ̃3) R(φ̃1)† X R(φ̃2)† X R(φ̃3)† H X •

Ancilla : |0〉

cr0

Figure 3. Scheme of the quantum circuit for the n= 2 qubits case. The parameters are redefined as θ̃i = θi − θ0, ϕ̃i = ϕi −ϕ0, as
detailed in equation (15).

it, in order to obtain the desired result. This action corresponds to the diagonal (in the computational basis)
unitary operation

U(θ) :=


eiθ0 0 · · · 0
0 eiθ1 · · ·
...

...
. . .

...
0 0 · · · eiθ2n−1

 (11)

whose action is to phase shift each state of the computational basis, |i⟩, to eiθi |i⟩, with phases θi ∈ R, that are
(in general) independent from each other. We decompose

U(θ) =
2n−1∏
i=0

U(θi) ,

where U(θi) is the unitary whose action is U(θi)|i⟩= eiθi |i⟩, while leaving all the other states in the
computational basis unchanged. These unitaries are equivalent to a combination of X gates and a
multi-controlled phase shift gate, Cn− 1R(θ), where the phase shift gate is the unitary operation defined as

R(θ)=

[
1 0
0 eiθ

]
[34].

For example, suppose having n= 3 qubits, and consider the state |101⟩ to be phase shifted to eiθ3 |101⟩.
This transformation is achieved by the following quantum circuit:

which implements the desired transformation U(θ3)|101⟩= eiθ3 |101⟩, while leaving all other states of the
computational basis unchanged. Iterating a similar gate sequence for each state of the computational basis
eventually yields the overall unitary operation, (11). So far, we have built the quantum circuit allowing to
encode an arbitrary input vector: given the input i⃗= (eiθ0 ,eiθ2 , · · · ,eiθ2n−1) as in equation (1), we create the
state |ψi⟩ (2), by means of the operation Ui|0⟩⊗n = U(θ)H⊗n|0⟩⊗n = |ψi⟩, whose parameters depend on the
input entries.

The unitary Uw can then be constructed in a similar fashion. First of all, notice that the U i is unitary, thus
reversible. Be w⃗= (eiϕ0 ,eiϕ2 , · · · ,eiϕ2n−1) the weight vector, then the desired inner product ⟨ψw|ψi⟩ (6) resides
in the overlap of the quantum state |ϕi,w⟩= (U(ϕ)H⊗n)†|ψi⟩ with the ground state |0 . . .0⟩. In fact, since
U(ϕ)H⊗n|0⟩⊗n = |ψw⟩ (4), the scalar product is clearly given as

⟨0 . . .0|

|ϕi,w⟩︷ ︸︸ ︷
(U(ϕ)H⊗n)†|ψi⟩=

⟨0 . . .0|H⊗nU(ϕ)†︸ ︷︷ ︸
⟨ψw|

|ψi⟩=

⟨ψw|ψi⟩ . (12)

5
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255 170

85 0

Figure 4. A grayscale image with corresponding pixel intensities. This image can be encoded in the array (255, 170, 85, 0),
ordered from top-left to bottom-right.

In order to extract the result, a final layer of X⊗n gates is applied to all encoding qubits, such that the
desired coefficient now multiplies the component |1⟩⊗n in the superposition:

X⊗n|ϕi,w⟩ = |ϕ̄i,w⟩

=
2n−2∑
j=0

cj|j⟩+ c2n−1|11 . . .1⟩ (13)

with c2n−1 = ⟨ψw|ψi⟩. Thus, the Uw transformation in figure 2 actually consists in the quantum operations
Uw = X⊗nH⊗nU(ϕ)†. By means of a multi-controlled CnNOT, we load the result on an ancillary qubit

CnNOT(|ϕ̄i,w⟩|0⟩a) =
2n−2∑
j=0

cj|j⟩|0⟩a + c2n−1|11 · · ·1⟩|1⟩a . (14)

Eventually, a final measurement of the ancilla qubit will yield result 1, which is interpreted as a firing neuron,
with probability |c2n−1|2 = |⟨ψw|ψi⟩|2 = |⃗i · w⃗∗|2/(22n), which consists in the neuron activation function,
equation (6).

We notice that an input vector containing N = 2n elements only requires n+ 1 qubits to implement the
quantum circuit above, one of them being the ancilla qubit. To avoid introducing an ancilla qubit, an
alternative strategy would be to perform a joint measurement on all n qubits in the state |ϕi,w⟩ given in
equation (12), with the probability of obtaining |0 . . .0⟩ being proportional to the inner product. However,
since machine learning techniques yield their full potential when used with connected structures of multiple
single neurons, and having in mind the idea of implementing the quantum computing version of a
feedforward neural network, it is essential to have a model for which information is easily transferred from
each neuron to the following layer. This can be accomplished by using an ancilla qubit per artificial neuron,
where the quantity of interest can be loaded [35]. The time complexity of this quantum circuit depends
linearly on the dimension of the input vectors N. Indeed, the quantum circuit introduced above requires
O(N) operations to implement all the phase shifts necessary to build the LME states, like equation (2).
Depending of the relation between the input data, θi, other preparation schemes involving less operations
could be devised (see appendix C for a discussion of alternative schemes to implement the quantum neuron
circuit). Finally, it is worth noticing that thanks to global phase invariance, the activation function (6) can be
recast as:

|⟨ψw|ψi⟩|2 =
1

22n

∣∣∣∣2
n−1∑
i=0

ei(θi−ϕi)

∣∣∣∣2

=
1

22n

∣∣∣∣1+ 2n−1∑
i=1

ei(θ̃i−ϕ̃i)
∣∣∣∣2 , (15)

with θ̃i = θi − θ0, ϕ̃i = ϕi −ϕ0. By exploiting this redefinition of the parameters, it is possible to implement
the same transformation but employing fewer gates, since it is equivalent to leaving the state |0⟩⊗n

unchanged during the whole computation. Depending on the actual quantum hardware and data, further
simplifications to the circuit could be obtained in compiling time. In figure 3, the scheme of a quantum
circuit implementing the artificial neuron model is shown for the specific case involving n= 2 qubits.

6
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Figure 5. Results of the image recognition task performed by a quantum artificial neuron, obtained by running the corresponding
quantum circuit with either the Qiskit QASM Simulator backend or the ibmqx2-Yorktown real quantum processor. In addition,
we also report the related analytic values. The target weight vector, ϕtarget, is fixed, andm= 30 random images are given as input
vectors to the quantum artificial neuron. For each input, the corresponding quantum circuit is executed 8192 times. The
checkerboard-like image corresponds to the target weight vectorϕtarget = (π/2,0,0,π,2), while the images displaying largest and
lowest activation, respectively, are the ones labeled as 19 and 12. Input vectors labeled as 9 and 7 are examples of images with high
and low activation, respectively.

3. Results: image recognition and learning

The quantum neuron model introduced above is an ideal candidate to perform classification tasks involving
grayscale images. A grayscale image consists of a grid of pixels whose intensities are usually6 represented by
integer numbers in the range [0, 255], as shown in figure 4.

Since we make use of a phase encoding, all inputs (and weights) to the artificial neuron have to be
normalized in the interval [0, 2π]. In this work we further restrict this domain for two reasons. First, values
in [0,π] and [π, 2π] are fully equivalent, due to the periodicity in phase and the squared modulus in
equation (6); second, for the same reason, states with zero or π phase yield the same activation function,
which in turn means that images with inverted colors (i.e. by exchanging white with black) would be
recognized as equivalent by this perceptron model. Hence, to distinguish a given image from its negative, we
further restrict the input and weight elements to lie in the range [0,π/2]. Thus, an image such as the one

reported in figure 4 is subject to the normalization (255,170,85,0)→ π/2
255 (255,170,85,0), before using it as

an input vector to be encoded into the quantum neuron model.
We implemented and tested the quantum circuit both on simulators and on real quantum hardware, by

using the IBM Quantum Experience7 and Qiskit [36]. The results are reported in the following.

3.1. Numerical results
To better appreciate the potentialities of the continuously valued quantum neuron, we analyse its
performance in recognizing similar images. We fix the weight vector to ϕ= (π/2,0,0,π/2), which
corresponds to the checkerboard pattern represented in the image of figure 5, and then generate a few
random images to be used as inputs to the quantum neuron. For each input, the circuit is executed multiple
times, thus building a statistics of the outcomes. Withm= 30 random generated images, the results of the
classification are depicted in figure 5, which includes the analytic results, the results of numerical simulations
run on Qiskit QASM Simulator backend, and finally the results obtained by executing the quantum circuit
on the ibmqx2-yorktown (accessed in March 2020) real device. Due to errors in the actual quantum
processing device, the statistics of the outcome differ from either the simulated one or the analytic result.
Nevertheless, the same overall behaviour can be easily recognised, thus showing that the quantum neuron
circuit can be successfully implemented also in an actual quantum processor giving reliable results for such
recognition tasks. The images producing the largest activation are the ones corresponding to input vectors
similar to the checkerboard-like weight vector, which confirms the desired behaviour of the quantum neuron
in recognizing similar images. On the contrary, the images with lowest activation are similar to the negative
of the target weight vector, as desired.

6 This encoding of grayscale images employs a single byte (i.e. 8 bits) per pixel on a classical computing register.
7 https://quantum-computing.ibm.com/.
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Figure 6. (a) Minimization of the cost function, L(ϕ) = (1− f(θ,ϕ))2, as a function of iteration steps. (b) Image corresponding
to the target weight vector, θ (left panel), and the weight vector before the optimization, ϕ0 (center panel), and after the
optimization, ϕf (right panel).

4. Learning

The process of finding the appropriate value for the weights to implement a given classification is called
learning, and it is generally based upon an optimization procedure in which a cost function is minimized by
some gradient descent technique. Ideally, the minimum of the cost function corresponds to the targeted
solution.

A simple learning task for our quantum neuron is to recognize a single given input. Starting from an
input vector, θ, we aim at finding a weight vector, ϕ, producing a high activation. Since the activation
function for our quantum neuron is given in equation (6), we know that perfect activation can only be
obtained when the input and weight vectors are exactly coincident, θ = ϕ. This case can easily be checked
numerically, by letting the neuron learn the right weights through a classical optimization technique.

A naive yet efficient choice for the cost function driving the learning process is L(ϕ) = (1− f(θ,ϕ))2, in
which f(θ,ϕ) is the activation function of the artificial neuron with input θ⃗ and weight vector ϕ, as in
equation (7). The minimum of the cost function, zero, is reached when the quantum neuron has full
activation, i.e. f(θ,ϕ) = 1. The minimization process is driven by the Stochastic Perturbation Stochastic
Approximations (SPSA) [37], which is built for optimization processes characterized by the presence of noise
and is thus particularly effective in the presence of probabilistic measurement outputs.

An actual implementation on the QASM simulator leads to the following results. The task is to recognize
the input vector θ⃗ = (π/5, 0, π/3, 0.1). Using the SPSA optimizer, the cost function gets minimized by
varying the weight vector, as reported in figure 6(a), where it is evident that the cost function rapidly
converges to values close to zero after a few iteration steps. The solution to the problem, that is the final
optimized weight vector, is ϕ⃗f = (1.03, 0.19, 1.47, 0.61), whose grayscale representation is plotted in
figure 6(b). Even if the input and weight vector are not numerically equivalent, we can see that the final
weight image actually looks very much like the target one, as expected. In fact, the two images retain almost
the same shades of gray, with the optimized one being a bit shifted towards the brightest end of the spectrum,
and as we previously noticed, the neuron is blind to overall color shifts.

In general, when dealing with a classification task, there is more than one input vector to be classified. Let
us restrict ourselves to the case of a supervised binary classification8, where a each input θ is associated to a

8 This can be generalized in the case of a multi-class classification, by adopting a one versus all approach.
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Figure 7. Classification of two-dimensional data. (a) Input data used as training set. (b) Test set and decision boundary
implemented by the quantum neuron at the end of the learning procedure. The threshold used is t= 0.95. (c) Optimization with
the SPSA optimizer run on the QASM Simulator.

binary label, y, such that y∈ 0, 1. Thus, the learning procedure consists in finding the right parameters (i.e. a
weight vector w⃗) for which the artificial neuron reproduces the correct association of a given input vector
with its corresponding label. In order to implement this dichotomy in the perceptron model, it is common
practice to introduce a threshold value, t: given an input and a weight vector, if the activation of the artificial
neuron is above the value set by t, then the assigned label is 1; otherwise it is 0. Note that the threshold t is
actually a hyperparameter for our model, and in the following simulations it was heuristically optimized in
order to achieve the best classification accuracy.

A common choice for the cost function is the distance of the correct label assignment from the one
implemented by the artificial neuron, which is expressed as

L(ϕ) = 1

M

M∑
i=1

(yi − ỹi)
2 , (16)

whereM is the number of input entries, yi is the correct label associated to input value θi, and ỹi is the label
assigned by the neuron, which is calculated as

ỹi =

{
1 if f(θ,ϕ)> t ,

0 otherwise
. (17)

The learning process then consists in minimizing the cost function, such as the one in equation (16).
Generally speaking, in a supervised learning procedure the inputs are divided into two distinct sets: the

training set, which contains the input values that are used to drive the learning procedure, and the test set,
which contains input vectors used to test the actual classification power of the quantum neuron with data
never analysed before. Now that we have introduced the general learning framework, we can apply it to a few
specific cases.

4.1. Learning of two-dimensional data
As a first example, we consider a classification problem of the form {xi,yi}i=1,...,M, in which xi = (xi1,x

i
2) are

two-dimensional input data, and yi their labels, such as the ones represented in figure 7(a). The color
indicates the label associated to the input value, i.e. red for zero and blue for one. Since the data are
two-dimensional, we only need a single qubit to encode the information in the quantum state. The cost
function (16) is minimized using the SPSA optimizer and its behaviour is reported in figure 7(c). The
learning procedure converges towards a minimum of the cost function, and its value on the test set displayed
in figure 7(b) amounts to Ltest = 0. This can be seen in figure 7(b), where we plot the decision boundary of
the neuron along with the input values of the test set. All the calculations were performed on the QASM
simulator.

4.2. Non separable points using a bias
We have just shown that a single neuron is sufficient to classify some kind of two-dimensional data. The
procedure might fail on more complex structures of the dataset, though. For example, if one needs to classify
data as in figure 8(a), a single qubit encoding of the quantum perceptron model is not enough. However,
using a quantum neuron implemented with two qubits allows to capture more degrees of freedom, thus
helping to successfully tackle the problem. In fact, with n= 2 qubits it is possible to encode 22 = 4

9
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Figure 8. Classification of two-dimensional circles. (a) Input data used as the training set. (b) Test set and decision boundary
implemented by the neuron at the end of the learning procedure. The threshold used in this example is t= 0.95, and the bias
b= 0.25. (c) Optimization by the SPSA optimizer run on the QASM Simulator. The supervised learning procedure was
performed with a batch examples of size 20, which explains why the error is not smooth but presents several spikes.

Figure 9. Examples of images drawn from the MNIST dataset.

parameters, or input data. Two of these are employed to encode the actual data of interest, one can be kept
fixed to zero9, and the last free parameter can be interpreted as a bias. Thus, a convenient encoding scheme is
to consider input vectors of the form θ = (θ0,θ1,θ2,θ3) = (0,x1,x2,0), and weight vectors
ϕ= (ϕ0,ϕ1,ϕ2,ϕ3) = (0,ϕ1,ϕ2,b), where b denotes the bias. After the learning procedure, reported in
figure 8(c), the test set is classified as in figure 8(b).

4.3. MNIST dataset
As a concluding example, it is interesting to show the application of the proposed quantum neuron model to
the classification of the MNIST dataset, composed of 70000 grayscale images of digits ranging from zero to
nine. A selection of sample images extracted from the given dataset are reported in figure 9. We limit
ourselves to the binary problem of correctly classifying the images of zeros and ones. Since each image in the
MNIST dataset is composed of 28× 28 pixels, which is clearly not in the suited form 2n/2 × 2n/2 required to
be encoded on the quantum state of an artificial neuron with N = 2n input data, we modify the images by
adding a number of white redundant pixels, such that the processed images have 32× 32 pixels. A quantum
artificial neuron with n= 10 qubits can thus be used to encode the input images. Here we limit our analysis
to checking whether the activation function introduced in equation (6) is sufficient to discriminate between
the encoded images of zeros and ones. With this goal in mind, we fix the weight vector of the artificial neuron
to a sample ‘one’ selected from the MNIST dataset, and then proceed to the classification with the remaining
input images. Using a threshold of t= 0.85 in equation (17), the cost function evaluated on a test set of
m= 2060 images amounts to L ∼ 0.02, which in turn means an accuracy∼98%. In figure 10 it is shown a
matrix containing the fidelities of the of some zeros and ones from the MNIST dataset evaluated with the
activation function of the quantum neuron. According to the artificial neuron, the ‘ones’ are more similar
among each other with respect to the ‘zeros’: indeed it seems that the neuron specializes in recognizing the ‘1’
shape as the fidelity values are higher in the corresponding region of figure 10. Even if classical machine
learning techniques can yield a classification accuracy above 99%, the present results show a remarkable
degree of precision, also considering that in this particular example just a single quantum neuron has been
used for the classification. In addition to this strategy, we also tried a pooling procedure, in which each image
in the MNIST dataset is first reduced to a 4× 4 image by means of amean pooling filter, and then classified
by the neuron. After the learning, the neuron reaches a best accuracy around 80%. Nonetheless, these

9 Looking at the form of the activation function in (6), it can be seen that it only depends on the differences between the parameters. Thus,
fixing one of the parameters to a constant value can be thought as just choosing a reference point.
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Figure 10.Matrix containing the fidelities of some samples of ‘one’ and ‘zero’ images taken from the MNIST dataset, evaluated
with the activation function in equation (6) and implemented by our quantum neuron model.

preliminary results show the potential of the activation function implemented by the quantum neuron to be
used for recognition of complex patterns, such as numerical digits. Our quantum neuron model performs
well when compared with other proposed quantum algorithms for the classification of the MNIST dataset. In
fact, alternative algorithms have been proposed for this task, some of them using a hybrid classical-quantum
approach, such as leveraging well established classical pre/post processing of data through classical machine
learning techniques [38, 39]. These hybrid approaches may yield higher (although comparable) classification
accuracy when compared to our quantum neuron model. However, we emphasize that in our case the
artificial neuron model is fully quantum in nature. When compared to other works [31, 40] using only
quantum resources and reporting accuracies of the order of 85% to 98%, our model seems to yield
comparable or better results.

5. Conclusions

We have reported on a novel quantum algorithm allowing to implement a generalized perceptron model on a
qubit-based quantum register. This quantum artificial neuron accepts and analyzes continuously valued
input data. The proposed algorithm is translated into a quantum circuit model to be readily run on existing
quantum hardware. It takes full advantage of the exponentially large Hilbert space available to encode input
data on the phases of large superposition states, known as locally maximally entanglable (LME). These LME
states can be constructed with a bottom-up approach, by imprinting each single phase separately. However, it
should be stressed that alternative and possibly more efficient strategies could directly yield such states as
ground states of suitable Hamiltonians, or as stationary states from dissipative processes [32]. The proposed
continuously valued quantum neuron proves to be a good candidate for classification tasks of linearly
non-separable two-dimensional data, mostly related to pattern recognition tasks involving grayscale images.
In this regard, thanks to the phase encoding, the neuron can leverage a built-in ‘color translational’
invariance, as well as significant noise resilience. In particular, the activation function implemented by the
quantum neuron yields very high accuracy in the order of 98% when used to discriminate between images of
zeros and ones from the MNIST dataset, thus indicating the ability to distinguish also complex patterns. A
further step would be to consider multiple layers of connected quantum neurons to build a continuous
quantum feed-forward neural network. In addition, it would be interesting to study the application of phase
encoding to other quantum machine learning techniques, such as quantum autoencoders. An important
future direction would also be to design approximate methods to perform the weight unitary transformation
in a way which scales more favorably with the number of encoding qubits: this could be achieved, for
example, by training suitable variational or adaptive quantum circuits.
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Appendix A. Modulus square

The squared modulus of the collection of complex numbers {zi = rieiγi ∈ C| i= 1, . . . ,N}, is given as

∣∣∣∣∣
N∑
i=1

zi

∣∣∣∣∣
2

=

(
N∑
i=1

zi

) N∑
j=1

z∗j

=
N∑

i,j=1

ziz
∗
j ,

=
N∑
i=j

|zi|2 +
N∑
i̸=j

rirje
i(γi−γj) ,

=
N∑
i=j

r2i + 2
N∑
i<j

rirj cos(γj − γi) , (A1)

where in the last line the following relation has been applied

eix + e−ix = 2cos(x) . (A2)

Setting ri = 1/N and γi = θi −ϕi, respectively, we finally get:

∣∣∣∣∣
N∑
i=1

ei(θi−ϕi)

N

∣∣∣∣∣
2

=
1

N
+

2

N2

N∑
i<j

cos((θj −ϕj)− (θi −ϕi)) , (A3)

which correctly reduces to equation (6) in the main text, upon substituting N = 2n and shifting the
summation indices to start from zero.

Appendix B. Noise resilience

Consider an input vector θ equal to the weight vector ϕ= θ. Now, suppose that the input is corrupted and
transformed into θ′ = θ+∆, with∆= (∆0,∆1, . . . ,∆2n−1). In this case, the activation function in
equation (6) reduces to

f(∆) =
1

2n
+

1

22n−1

2n−1∑
i<j

cos(∆j −∆i) . (B4)

Assuming that the noise values∆i are given by the uniform distribution:

p(∆i) =
1

a
for∆i ∈

[
−a

2
,
a

2

]
, a ∈ R , (B5)

it is possible to evaluate the average activation function:
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⟨f(∆)⟩ =
1

2n
+

1

22n−1

2n−1∑
i<j

⟨cos(∆j −∆i)⟩

=
1

2n
+

1

22n−1

2n(2n − 1)

2
⟨cos(∆j −∆i)⟩ (B6)

where in the last line it is implicitly assumed that ⟨cos(∆j −∆i)⟩ is the same for all i, j. The averaging then
yields

⟨cos(∆j −∆i)⟩ =

ˆ a
2

− a
2

ˆ a
2

− a
2

cos(∆j −∆i)
d∆id∆j

a2

= 2

(
1− cos(a)

a2

)
, (B7)

and substituting back into (B6), we eventually get:

⟨f(∆)⟩= 1

2n
+

2n − 1

2n−1

(
1− cos(a)

a2

)
. (B8)

Consider now the case where the input and weight vectors are different, θ ̸= ϕ. The question is how
much does the activation function change, if the input is corrupted by the presence of noise. As before,
considering an input θ′ = θ+∆, the activation function reads:

f(θ,ϕ,∆) =
1

2n
+

1

22n−1

2n−1∑
i<j

cos(Aij +Dij) . (B9)

with Aij = (θj −ϕj)− (θi −ϕi), and Dij =∆j −∆i. Since cos(Aij +Dij) = cos(Aij)cos(Dij)+ sin(Aij) sin(Dij),
and ⟨sin(Dij)⟩= 0 (using the probability distribution in equation (B5)), it finally results in

⟨f(θ,ϕ,∆)⟩= 1

2n
+

D

22n−1

2n−1∑
i<j

cos(Aij) . (B10)

with D= 2
(

1−cos(a)
a2

)
.

A more realistic noise model would consist of a Gaussian distribution centred in zero with width σ= a/2

p(∆i) =
1√

2π(a/2)2
e
− ∆2

i
2(a/2)2 (B11)

in this case, it can be shown that

⟨cos(∆i −∆j)⟩ =
2

πa2

ˆ ∞

−∞

ˆ ∞

−∞
e−

√
2(∆i+∆j)

2/a2 ×

×cos(∆i −∆j)d∆id∆j

= e−a2/4 . (B12)

This is comparable to the uniform distribution noise model, but less effective in terms of noise resilience,
which is due to the Gaussian tails having the net effect of lowering the mean activation. A narrower Gaussian
would yield better results, of course. Nonetheless, this qualitative behaviour proves the quantum neuron to
have some internal degree of noise resilience.

Appendix C. Alternative schemes for the implementation ofU i andUw operations

Several strategies can be envisioned to reduce the computational complexity of the proposed quantum
algorithm. As an example, the loading of input data could effectively be replaced by a direct call to a quantum
memory, such as a qRAM [41]. In this case, the information to be analyzed would be directly stored in the
form of quantum states coming, e.g. from quantum internet applications or quantum simulators.
Alternatively, one could make use of some specific properties of the LME states used in the main text for the
encoding. Indeed, let Uψ be the unitary operation whose action is to create an LME state from a blank

register, i.e Uψ|0⟩= |ψ⟩. It is then easy to check that, forWk = UψZkU
†
ψ , where Zk is the σz Pauli operator

acting on the k− th qubit, it holds thatWk|ϕ⟩= |ϕ⟩ ∀k if and only if |ϕ⟩= |ψ⟩. This means that the
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Vw(φ, ω)|ψi〉 L(ω; 〈ψw|ψi〉)

Optimize wrt ω

∂L
∂ω

〈ψw|ψi〉

Figure C1. Scheme of the variational circuit for the implementation of the Uw quantum operation.

operators {W1,W2, . . . ,Wn} stabilize the state |ψ⟩. Depending on the values of the phases {αi}2
n−1

i=0 , these
operators {Wk}n−1

k=0 may be quasi-local, meaning that they only act on a smaller subsystem of the whole
nthqubit register. In this case, it can be shown [32, 42] that there exists a quantum dissipative process for
which |ψ⟩ is the only stationary state. Of course, this property strongly depends on the nature of the phases
αi of the target LME state, i.e. correlations in the phases are directly related to a specific preparation scheme.
However, it might be the case that for some special classes of incoming inputs, a clear a priori correlation
exists between the phases, which would allow to replace the ‘brute force’ approach used in the main text with
a more efficient preparation scheme. Finally, it is worth mentioning that more general strategies to load
probability distributions and classical datasets on quantum states are known in the literature [43, 44], whose
application could be investigated also in the present case.

Additional room for improvement could be represented by a more efficient implementation of the inner
product operation Uw. In this case, instead of simply inverting the preparation circuit, one could devise a
variational circuit optimized to output the desired result, see equation (5). For example the circuitry in
figure C1 could be used: where Vw(ϕ,ω) is an operator approximating the unitary Uw, depending on the
variational parameters ω, and the weights of neuron ϕ; and L(ω;⟨ψw|ψi⟩) is a cost function evaluating the
distance between the output from Vw(ϕ,ω) and the desired inner product ⟨ψw|ψi⟩. Optimizing the values
for ω, could yield to an approximate yet efficient implementation for evaluating the inner product gate Uw.
It is also interesting to notice that such optimization procedure could in principle be carried out in
combination with a supervised learning approach in order to simultaneously train the value of the weight
vector and the actual quantum circuit realization of the required operation.

Finally, if an efficient preparation scheme exists for both the quantum input state, |ψi⟩, and the quantum
weight state, |ψw⟩, their inner product could also be evaluated by means of specialized algorithms, such as the
SWAP test or the Bell basis algorithm [45].

ORCID iDs

Stefano Mangini https://orcid.org/0000-0002-0056-0660
Francesco Tacchino https://orcid.org/0000-0003-2008-5956
Dario Gerace https://orcid.org/0000-0002-7442-125X
Chiara Macchiavello https://orcid.org/0000-0002-2955-8759
Daniele Bajoni https://orcid.org/0000-0001-6506-8485

References

[1] Arute F, Arya K and Babbush R et al 2019 Nature 574 505–10
[2] Preskill J 2018 Quantum 2 79
[3] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195
[4] Dunjko V and Briegel H J 2018 Rep. Prog. Phys. 81 074001
[5] Benedetti M, Lloyd E, Sack S and Fiorentini M 2019 Quantum Sci. Technol. 4 043001
[6] Schuld M, Sinayskiy I and Petruccione F 2015 Phys. Lett. A 379 660
[7] Wiebe N, Kapoor A and Svore K M 2016 arXiv: 1602.04799
[8] Cao Y, Guerreschi G G and Aspuru-Guzik A 2017 arXiv: 1711.11240 [quant-ph]
[9] Tacchino F, Macchiavello C, Gerace D and Bajoni D 2019 Npj Quantum Inf. 5 26
[10] Torrontegui E and Garcia-Ripoll J J 2019 EPL 125 30004
[11] Kristensen L B, Degroote M, Wittek P, Aspuru-Guzik A and Zinner N T 2019 arXiv: 1907.06269
[12] Killoran N, Bromley T R, Arrazola J M, Schuld M, Quesada N and Lloyd S 2019 Phys. Rev. Res. 1 033063

14

https://orcid.org/0000-0002-0056-0660
https://orcid.org/0000-0002-0056-0660
https://orcid.org/0000-0003-2008-5956
https://orcid.org/0000-0003-2008-5956
https://orcid.org/0000-0002-7442-125X
https://orcid.org/0000-0002-7442-125X
https://orcid.org/0000-0002-2955-8759
https://orcid.org/0000-0002-2955-8759
https://orcid.org/0000-0001-6506-8485
https://orcid.org/0000-0001-6506-8485
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1088/1361-6633/aab406
https://doi.org/10.1088/1361-6633/aab406
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1016/j.physleta.2014.11.061
https://doi.org/10.1016/j.physleta.2014.11.061
https://arxiv.org/abs/1602.04799
https://arxiv.org/abs/1711.11240
https://doi.org/10.1038/s41534-019-0140-4
https://doi.org/10.1038/s41534-019-0140-4
https://doi.org/10.1209/0295-5075/125/30004
https://doi.org/10.1209/0295-5075/125/30004
https://arxiv.org/abs/1907.06269
https://doi.org/10.1103/PhysRevResearch.1.033063
https://doi.org/10.1103/PhysRevResearch.1.033063


Mach. Learn.: Sci. Technol. 1 (2020) 045008 S Mangini et al
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