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Abstract
Interface structures in complex oxides remain an active area of condensed matter physics research,
largely enabled by recent advances in scanning transmission electron microscopy (STEM). Yet the
nature of the STEM contrast in which the structure is projected along the given direction precludes
separation of possible structural models. Here, we utilize deep convolutional neural networks
(DCNN) trained on simulated 4D STEM datasets to predict structural descriptors of interfaces. We
focus on the widely studied interface between LaAlO3 and SrTiO3, using dynamical diffraction
theory and leveraging high performance computing to simulate thousands of possible 4D STEM
datasets to train the DCNN to learn properties of the underlying structures on which the
simulations are based. We test the DCNN on simulated data and show that it is possible (with
>95% accuracy) to identify a physically rough from a chemically diffuse interface and create a
DCNN regression model to predict step positions. We quantify the applicability of the model to
different thicknesses and the transferability of the approach. The method shown here is general
and can be applied for any inverse imaging problem where forward models are present.

Oxide interfaces have emerged as one of the central topics in condensed matter physics research due to the
multitude of unique behaviors they exhibit, ranging from interfacial conduction between dielectric materials
[1, 2], superconductivity, magnetic effects [3–5], improper ferroelectric responses [6], and large ionic
conductivity [7]. This breadth of functional responses has stimulated outstanding theoretical efforts aimed at
understanding the corresponding functionalities and their relationship with the interface structure. These
discoveries have been enabled by the advances in oxide growth techniques including pulsed laser deposition,
magnetron sputtering, and molecular beam epitaxy, often augmented by the reflection high energy electron
diffraction as a control and monitoring tool that allows for the sub-unit cell precision.

A number of functional mechanisms for emergence of novel physical behaviors at the interfaces have
been identified, ranging from classical semiconducting behaviors associated with mismatch between band
offsets and resultant band bending, charge injection and changes in oxidation states, to symmetry mismatch
across the interface and corresponding penetration of the distortions associated with zone center (e.g.
ferroelastic and polarization) or zone boundary (e.g. octahedra tilts) [8–10] modes. For instance, a broad set
of phenomena has been found to emerge at ferroelectric interfaces both due to the polarization screening
and lattice symmetry breaking [11]. Combined with the field-induced switching, this resulted in significant
interest to these material systems as potential multiferroics. However, the physical effects at the interface can
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compete with chemical interactions such as oxygen vacancy redistribution [12, 13], compensating for the
band offset effects [14] and polarization screening [15]. Many of these phenomena were explored and
understood via recent advances in aberration-corrected scanning transmission electron microscopy (STEM),
where the combination of the direct observations of atomic position enabled the reconstruction of order
parameter fields and chemical strains, whereas electron energy loss spectroscopy (EELS) allowed insight into
local charge states of cations and oxygen stoichiometry.

However, the fundamental limitation of STEM is the fact that the structural and chemical information is
averaged along the beam path, limiting the separability of dissimilar interfacial mechanisms. One of the
outstanding issues in this area is the potential cation mixing at the interfaces [16], i.e. exchange between iso-
or aliovalent cations in the adjacent layers during the growth. As can be readily understood, intermixing is
expected to lead to effective doping in the adjacent layers, forming conductive channels, introducing new
phases, etc. At the same time, in the projected image, intermixing will be indistinguishable from interface
roughness, e.g. presence of substrate steps running across the interface, or island growth. Comparison of
simulated and experimental EELS profiles have been used to determine if similar interfaces are abrupt [17].
However, if the experimental EELS profile across the interface is broader than expected, there is insufficient
sensitivity in the EELS signal to differentiate between diffusion and interface roughness.

Here, we theoretically explore whether the cation intermixing and interface roughening can be
distinguished using 4D STEM. In this technique, the 2D diffraction pattern from the sub-atomically focused
electron beam is detected at each spatial location, giving rise to an information-rich 4D data set. However,
the local diffraction pattern is determined both by the local material structure and the beam parameters
including residual aberrations, spatial and temporal incoherence, obviating direct inversion. Here, we
explore whether deep learning methods can be used to distinguish interface mechanisms from simulated 4D
STEM data.

The main methodology used here is applicable to many inverse problems in imaging and is highlighted in
figure 1. The range of physically realizable models of the material system corresponding to different classes of
behavior or within a (small dimensional) parameter space are created, and their corresponding experimental
fingerprints are modeled using a forward model. The corresponding model parameters or class are used as
structural descriptors. A deep convolutional neural network (DCNN) is trained using the experimental
fingerprints as an input and the structural descriptors as an output. Once trained on the corresponding
training set, the network can be used on the unknown data to identify relevant structural descriptors.
Notably, a similar approach was implemented using back-propagation neural networks for spectral data
[18, 19] however, poor generalizability and the ad-hoc approach to the formation of feature vectors
precluded broad applicability. More recent works have utilized DCNNs for similar inverse problems in
imaging, for instance see [20–22]. The advantage of the convolutional operation being that it leverages shift
invariance and weight sharing: the learned filters can be useful in multiple different parts of the same image,
and by only passing information from small regions to subsequent convolutional layers, the dimensionality is
greatly reduced compared with fully connected networks [23].

As a model system, we explored the most widely studied oxide interface in the recent past: i.e. the
interface between the two band insulators LaAlO3 (LAO) and SrTiO3 (STO) [1, 24, 25]. We began with
structural models as indicated in figures 2(a)–(c). We model the system via a unit-cell-wide cross-section
across the LAO-STO interface as shown in figure 2(a), with varying thicknesses in the [001] direction (typical
of growth on (001) SrTiO3 substrates). The STO substrate is terminated with a TiO2 layer, while the last LAO
layer is terminated with an AlO layer. For maintaining periodic boundary conditions, a single SrO layer is
added to cap the AlO. The section in figure 2(a) is what would be directly imaged by the electron beam.
However, numerous structural possibilities exist in the direction of the beam, i.e. the [001] direction,
including the existence of a buried step which causes roughening (as shown in figure 2(b)) and the B-site
diffusion, i.e. of Ti into the Al sites. We therefore constructed dozens of possible structures where we varied
the position of the buried interface, or alternatively, for a flat interface we varied the percentage of Ti
substituting the Al in the first AlO layer at the interface (figure 2(c)). We then repeated these structures for
varying thicknesses, from 100 Å to 300 Å. Once given the structures, we used the µSTEM simulation code
[26, 27], to compute the convergent beam electron diffraction (CBED) patterns from all the generated
structures. CBEDs are highly sensitive to local electric fields and therefore atomic-scale structural features
[28]. The quantum excitation of phonons algorithm was used. Each CBED dataset was of size
(341×341×13×123) In total the simulation size was on the order of ~350 GB. The multislice routine was
carried out using slices half the dimensions of the basic STO structure, with the total number of slices
dependent on the simulated thickness. The structure was tiled eight times in the y-direction to for the
supercell and 8 configurations were calculated for each slice. This corresponds to a total of 64 configurations
when the quick shifting option in µSTEM is used. Fifty passes were used at each probe position.
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Figure 1. General idea of utilizing forward models in combination with deep learning to solve inverse problems in imaging. If a
large number of forward simulations can be performed for different physically possible structures, then the output can be fed into
a deep learning model and trained on this data to output the structural descriptors from which the forward simulation was
performed. Then, given a new image, the deep learning model can predict the structural descriptor. Note that the input to the
simulations is the structure, and the output of the simulations is the CBED patterns.

Figure 2. Structure and CBED simulations. (a) Idealized structure of the LAO-STO interface, one unit-cell wide. (b) Slice through
the slab showing an example structure with a buried step. (c) Slice through the first Al layer with 20% of the Al atoms randomly
replaced by Ti atoms. (d) Mean intensity of CBED diffraction patterns from one simulation (roughly equivalent to HAADF
image). Each pixel in this image has an associated CBED pattern, some of which are shown in (e), where the CBED patterns
arising from the line profile in (d) are plotted. This image sequence is cropped to the center as shown in the figure, and the
resulting cropped image stack comprises one training example for the deep neural network. About 1200 such training examples
were formed, based on different buried step positions [see (b)] and varying the amount and randomizing the location of the
B-site diffusion [see (c)].

An example of the results of a simulation of a single structure is shown in figure 2(d), where we have
computed the average intensity of each CBED pattern yield what would be roughly equivalent to a dark-field
image. Since the dataset was large, and since the majority of the information is likely to reside at the interface,
we restricted our study to the region shown by the bounded red lines in figure 2(d), which covers an area
from the terminating TiO layer of the STO substrate to about one unit-cell into the LAO layer. To further
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Figure 3. Deep convolutional neural network architecture and results on rough interface vs. chemically diffuse interface. (a)
Network architecture, which consists of several 3D convolutional layers and two dense layers before a final softmax classification
layer. Dropout is used on each layer. The kernel size in the convolutional layers is indicated. (b) Training and validation accuracy
during training of the network. (c) Example predictions on the validation set. (d) Saliency map for a chosen validation example,
for the last convolutional layer, integrated along the 3rd dimension to allow for visualization.

reduce the size to enable deep learning, we then cropped the CBED patterns to only the central portions, as
these are expected to contain the majority of the information. Note that wavelet compression could also be
used in place of this step for forming a reduced representation, but we found it unnecessary. The CBED
patterns along the dotted blue line in figure 2(d) are shown in figure 2(e). After cropping of the image
sequence, one arrives at a single stack of images associated with that particular structure, and more such sets
were generated via changing the location of the line profile (i.e. moving the line across the interface).

As a first step, we attempted to determine whether a DCNN could take these sets of images and
determine (classify) whether they originated from a rough interface (with a buried step), or from an interface
that had some level of B-site diffusion. To do this, we used a DCNN with 3D convolutional layers followed by
an average pooling layer, and then two dense layers, followed by a final softmax layer for the classification for
the task. The full architecture is shown in figure 3(a). It is worth mentioning that the reason for the lack of
pooling (and especially max pooling) after each layer, which is typical for most DCNNs is that this results
information loss on relative positions of features with respect to each other [29]. This information is
important in diffraction and indeed we found that including such layers dramatically reduced the network
accuracy. We also note that we did not employ the regularly used architectures such as ResNet, Inception,
VGG16, etc. The reason for this is twofold. First, we found that increasing the number of layers did not lead
to increased (and in some cases actually decreased) performance, and secondly, we wanted to use the smallest
possible network that would provide strong results. On the other hand, the lack of pooling in our
architecture does increase memory requirements. We also utilized dropout on each layer (15%) for reducing
overfitting and trained the network on two nodes of the Summit supercomputer using the Horovod
distributed framework, for our model built in Keras [30] using the Tensorflow backend. Although we had
~7150 simulations of each class, deep learning typically requires larger datasets to be effective. We therefore
utilized data augmentation, via addition of varying levels of Poisson noise as well as small rotations, as can be
expected in real experiments to artificially inflate the data volume. The data was validated on a set of
simulated data that was not shown to the model during the training phase, consisting of 1430 datasets
selected at random and held back, and augmented during each epoch. We utilized standard stochastic
gradient descent (SGD) (learning rate= 0.04, momentum= 0.0) optimizer and trained for 200 epochs,
resulting in convergence of the model. SGD is an optimization algorithm that is standard practice in the deep
learning community, and is an approximation to traditional gradient descent, well-suited to situations where
it may be computationally too expensive to fully calculate the gradients [31].

The results of the DCNN as a function of training can be seen in figure 3(b). After about 110 epochs the
accuracy is approaches ~97% on the validation set, suggesting that the network is almost perfectly capable of
distinguishing between a rough interface from a chemically diffuse but sharp interface. An example of two
predictions are shown in figure 3(c), where in the first case the DCNN predicts the image sequence shown

4



Mach. Learn.: Sci. Technol. 1 (2020) 04LT01

contains a step (with >99% certainty, as gauged from the softmax layer output), and in the second case, as a
chemically diffuse interface (with 100% from the softmax layer output), both of which are correct. Here we
note that even to a skilled expert in CBED pattern analysis, distinguishing between the two cases is not
straightforward. In fact, the network was trained on patterns derived from structures of different thickness,
which greatly affects the resulting diffraction due to additional scattering as the probe propagates through
the crystal.

This raises an interesting question about how the network is coming to these conclusions. To gain insight,
we explored the use of saliency maps [32] on the convolutional filters in the last convolutional layer of the
network. The idea behind the saliency map is that it highlights regions of the image which cause the greatest
change in the output, in this case, in the step/diffuse classification. The saliency map for a randomly selected
validation image is shown in figure 3(d). Because this is a 3D image, we instead plot the integral along the
3rd dimension for ease of viewing. In fact, rather than focusing on a single part of the image, it seems many
parts of the image appear important to the prediction.

Next, we explored whether we could utilize the same neural network architecture for a more challenging
problem: for rough interfaces (those with buried steps), could the network be trained to determine where
this buried interface resided? We used the same network architecture as in figure 3(a) with the exception that
the last layer be changed to a linear activation as opposed to a softmax one, and the output being just one
value (the step position, as a fraction of the specimen thickness). Two changes had to be made in order for
the network training to converge: (1) the training set had to be combined such that the CBED patterns had to
be averaged across the unit cell, unlike the individual line profile in figure 2(d), and (2) we had to train
separate models for each thickness, unlike in the previous case where a single model could be trained for all
thicknesses. Given the need to separate out data from different thicknesses, and the need to average over the
unit cell, this resulted in substantial dataset reduction: for instance, we used in total 338 simulations for the
training data and 208 simulations for the validation data for training the 200 Å model. The numbers for
datasets reduce for the lower thickness models somewhat, due to less positions that the step can be in but
increase for the models trained on the thicker specimens. As noted previously, the simulated data was
augmented during training each epoch with addition of noise and small rotations, and the same was done to
the validation data.

Shown in figures 4(a)–(d) are the results of the predicted vs. actual step position fractions for four
different thicknesses (100 Å, 150 Å, 200 Å, 250 Å) for the trained models. The results show that for the most
part, the regression models are effective at determining the step position for all the thickness values; however,
this becomes more challenging at the higher thickness. To visualize the difficulty of this task, shown in figure
4(e) is the result of the network’s predictions and the ground truth for two validation datasets for the 200 Å
thickness. The network is correctly able to predict the step position, despite the fact that the differences are
quite small and difficult to detect by eye. We note that the error in the predictions increases for increasing
thickness as shown in figure 5(d). This agrees with our physical intuition, as the presence of multiple
scattering in thicker crystals leads to more effective ‘blurring’, leading to less pronounced changes of the
diffraction patterns with step location, and therefore making the step position determination more difficult.
If the network was instead focused on some (unknown) artefact of the simulations, then it is hard to see why
it would be more difficult to predict step positions for different thicknesses. Thus, we suggest that the network
is indeed paying attention to the relevant features that distinguish between steps at different positions.

Next, we investigated the transferability of the approach to samples of other thickness. During any real
experiment, there will be small thickness variations in the prepared specimens that would be unavoidable
due to the nature of the milling process. We therefore tested the 200 Å model on simulated validation data for
different thicknesses, with the results shown in figures 5(a)–(c). The plot of the model errors with thickness is
shown in figure 5(e), and clearly shows that as the thickness deviates from 200 Å, the error increases, as would
be expected. However, the error increases less for the thinner specimens than for the thicker ones, again
agreeing with physical intuition. The error within 25 Å of the trained model is also reasonable; this suggests
that small thickness variations (~5%–10% of the thickness simulated) can be tolerated in the experiment.

In summary, we have shown using simulated data that 4D STEM can be a powerful tool in distinguishing
between different structures buried within cross-section samples, via leveraging of high-performance
computing and DCNNs. We show that such neural networks have the ability to distinguish chemically
diffuse interfaces in LAO-STO, from an interface that includes a buried step within the cross-sectional slice
studied with very good reliability. In addition, we train a neural network with a similar architecture to
estimate the location of the buried step, if it exists, and show that the estimate is accurate for simulated data
in ~85% of cases. The method here is applied to 4D STEM but can be useful in any imaging situation where
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Figure 4. Step position determination network. Predictions after training of the individual networks for (a) 100 Å, (b) 150 Å, (c)
200 Å and (d) 250 Å thicknesses. (e) Example predictions of step positions and their actual positions (‘True), for slabs of thickness
200 Å. Red lines in (a)–(d) indicate the ideal predictions (where the scatter points should be to minimize the error).

Figure 5. Errors and transferability of model. (a)–(c) Predictions of the trained 200 Å when applied to validation data on other
thicknesses, namely (a) 100 Å, (b) 200 Å, and (c) 250 Å. (d) Sum of squared errors (SSE) for individual all five individual models.
(e) Prediction errors when the 200 Å model is used on validation data of other thicknesses. Red lines in (a)–(c) indicate the ideal
predictions (where the scatter points should be to minimize the error).

multiple structural possibilities exist but the inversion of the acquired images is complex, provided that large
scale simulations of the different structural possibilities is feasible.
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