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Abstract

Aims: The aim of this paper is to develop a novel method for dealitig multiple attribute
group decision making (MAGDM) problems with hesitant fuzmjoimation, in which the
attribute values provided by the decision makers takefohm of hesitant fuzzy elements
(HFEs), the information about the weights of decisiokensis unknown, and the information
about attribute weights is incompletely known or compjetelknown.
Study Design: The developed method includes the following three stages.
Place and Duration of Study:The hesitant fuzzy set (HFS), originally proposed byrd and
Narukawa, is an efficient tool to deal with situations imicki experts hesitate between several
possible values to evaluate the membership degree of amglenzegiven set.
Methodology: The first stage establishes a quadratic programming ntoddetermine the
weights of decision makers by maximizing group consensusebet the individual hesitant
fuzzy decision matrices and the group hesitant fuzzy idecimatrix. The second stage uses the
maximizing deviation method to establish an optimization rodbich derives the optimal
weights of attributes under hesitant fuzzy environmentigr dbtaining the weights of decisian
makers and attributes through the above two stages, thesthyd develops a hesitant fuzzy
TOPSIS (HFTOPSIS) method to determine a solution witrstwetest distance to the hesitant
fuzzy positive ideal solution (HFPIS) and the greatesadc# from the hesitant fuzzy negative
ideal solution (HFNIS).
Results: A practical example is provided to illustrate the proposethod.
Conclusion: The comparison analysis with the other methods showshihatetveloped method
has its great superiority in handling the MAGDM problemthwiiesitant fuzzy information.
Keywords: Hesitant Fuzzy Set (HFS), Multiple AttribuGroup Decision Making (MAGDM),
maximizing group consensus method, maximizing deviation rdefhOPSIS.
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1 Introduction

Due to the fact that the difficulty of establishing the rhership degree of an element to a given
set is sometimes not because we have a margin of(asdm intuitionistic fuzzy set [1], interval-
valued fuzzy set [2], or interval-valued intuitionistizhy set [3]) or some possibility distribution
on the possible values (as in type-2 fuzzy set [4]), bcalee we have some possible numerical
values [5], Torra and Narukawa [5] presented a new concéptsitint fuzzy set (HFS), in which
several numerical values between 0 and 1 are simultaneoslytaisepresent the membership
degree of an element to a given set. Consequently, hefsitamyt set is not only an extension of
fuzzy sets [6] to deal with uncertainty but also an gffit tool that can represent situations in
which several membership functions for a fuzzy set areilgessSince its introduction, hesitant
fuzzy set has attracted increasing attentions [7-18].

Recently, some hesitant fuzzy aggregation operators [[LBe24 been developed for aggregating
hesitant fuzzy information. Based on these hesitant fuzzyegation operators, some methods
[19-24] have been developed for handling the multiple attributésida making (MADM) or
multiple attribute group decision making (MAGDM) problemishmhesitant fuzzy information in
which the attribute values take the form of hesitant fledleynents (HFES) [20] that are expressed
as a set of several possible numerical values. Howévese methods need to perform some
aggregation operations on the input hesitant fuzzy argumenish Wwhve some drawbacks as
follows: (1) when using these methods, the weight vectodeoision makers and attributes are
given by the decision makers (DMs) in advance and tberedre more or less subjective and
insufficient; (2) when using these methods, the dimensainthe aggregated hesitant fuzzy
elements may increase. Especially, if the dimensiornthefinput hesitant fuzzy elements are a
little large, then the dimensions of the aggregated mesiteezy elements will be very large.
Consequently, it may increase the computational complexity andecthe loss of decision
information. However, in many MAGDM problems with hesit&mtzy information, because of
time pressure, lack of knowledge or data, and the decisidersidimited expertise about the
problem domain, the information about the weights of decigsiafkers are unknown, and the
information about the attribute weights is incompletely knowncompletely unknown. In
addition, the larger the computational complexity, the ntione that is used to obtain the optimal
alternative, the higher the decision-making costs. ieyanme these drawbacks, in this paper, we
develop a novel method for hesitant fuzzy MAGDM with incompletaght information. The
new model can be divided into three parts: First, we eskabl quadratic programming model
based on the maximizing group consensus method to objectively detethrdé weights of
decision makers. Second, we further use the maximizing ta@vianethod to establish an
optimization model, based on which the optimal attributeghtsi can be objectively obtained.
Finally, motivated by the TOPSIS, we develop an extendedST®nethod to determine the
optimal alternative, which includes two stages. The fiexjes is called the hesitant fuzzy TOPSIS
(HFTOPSIS), which can be used to calculate the individual relatdseness coefficient of each
alternative to the individual hesitant fuzzy positive idadution (HFPIS). The second stage is the
standard TOPSIS, which is used to calculate the growtivelcloseness coefficient of each
alternative to group PIS and select the optimal one with @neémum group relative-closeness
coefficient. By using several illustrative examples and gamson analysis with the existing
methods, our method not only is capable of handling the hesitant M26&DM problems in
which the weight information of the attributes and decisi@kers is unknown or partly known,
but also can reduce the computational complexity and the infiemriass, which always happens
in the process of information aggregation. Thus, our atkith much appropriate for dealing with
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the ambiguity and hesitancy inherent in hesitant fuzzy MAGDbblgms.

To do so, the rest of this paper is organized as felldw Section 2, we briefly recall some
concepts related to hesitant fuzzy sets. Section 3 devedo novel method based on the
maximizing group consensus method, the maximizing deviation methddHFTOPSIS for
solving the hesitant fuzzy MAGDM problem with incomplete weigliidrmation. In Section 4, an
illustrative example is provided to show the effectiwan@nd practicality of the developed
method. A comparison analysis with the other methods shoveffd®iveness and practicality of
the developed methods in Section 5. Section 6 provides somedioigctemarks.

2 Preliminaries

Torra and Narukawa [5,25] proposed the notion of hesitaztyfsets to manage the situations in
which several numerical values are possible for thenitiein of the membership of an element to
a given set.

Definition 2.1 [5], [25]. Let X be a reference set, a hesitant fuzzy set (H&)n X is in terms
of a functionh, (X) that when applied tX returns a subset ¢0,1].

To be easily understood, we express the HFS by a mathelsgtidaol:
A={(xh ()0 % @)

where hA(x) is a set of some values E@:I] denoting the possible membership degrees of the

elementx X to the setA. For convenience, Xia and Xu [23] calldd= hA(x) a hesitant
fuzzy element (HFE).

Let |, denote the numbers of values in the HIFEFor convenience, the values in the HREare
arranged in a descending order, ile;{ ho()
in h.

Example 2.1.Let X ={x, %, x} . A={(%.,{0.7,0.3) (x { 0.4,0.3,012 (% {. 0.8.9}}.
andh={0.4,0.3,0.2. Then, A is a HFS onX, h is a HFE, and, =3.

i=1,2,-- ,Ih} , Where h°() is theith biggest value

Given three HFEsh, h,, and h,, Torra and Narukawa [5,25] defined the following operations:

@ h =, {1-4:
@hUnh={J  {nOr}: )

@ hNh :Uylmhl,yzmhz{ h Dyz} ' @)
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Xia and Xu [20] defined the following comparison rules féfE4:

/4
Definition 2.2 [20]. For a HFEh = Um{y} , s( h) =21|Lh is called the score function &f,
h

where |, is the number of elements im. For two HFEs,h, and h,, if S(h)> 5( Q) then
h >h,;if s(h)= g h), thenh =h,.

However, in some special situations, this comparison daw not distinguish two HFEs. To
overcome this drawback, we further introduce the variancdifumof a HFE and then develop a
novel method to rank two HFEs.

> ly=s(h)
Definition 2.3. For a HFEh:Uyﬂh{y} , v(h) :"Dhl— is referred to as the variance
h

function of h, where S( h) is the score function of.

The relationship between the score function and the varfancéon is similar to the relationship
between the mean and variance in statistics.

Based on the score function and the variance function, wéogeaecomparison law to compare
any two HFEs:

Definition 2.4. Let h, and h, be any two HFEs, and Iet(h) and v(h) (i =1,2) be the score

functions and the variance functionshyf (i =1, 2), respectively. Then, the following conditions
hold:

@ 1f s(h)> g h). thenh > h,
@ 1f s(h) = h), then
@if v(h)<v(h),thenh >h,
@if v(h)=v(h).thenh =h,

Example 2.2.Let h ={0.5,0.4 andh, ={0.6,0.3 be two HFEs. Then, by Definitions 2.2 and
2.3, we have

s(h)= 04705 0.45 s(h)=—"—"——=045

v(h)= 0.4~ 04$;|05 04|5005 v(h)= 0.3~ 04$;|06— 0.45

Then,s(h) = h) andv(h)<V( h). Thus, by Definition 2.4, we can obtain tHat> h,.

0.15

Let h, and h, be two HFEs. In most caselgl, ¢|h25 for convenience, Iet:max{lm ]hz}. To
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compareh, andh,, Xu and Xia [16] suggested that we should extend theeshdiRE until the

length of both HFEs was the same. The simplest way to@xtee shorter HFE is to append the
same value repeatedly; in principle, any value can be apgpehderactice, the selection of the

appended value depends primarily on the decision makergnesérences. To address this issue,
Xu and Zhang [26] developed the following method:

Definition 2.5 [26]. Assume a HFEh ={h"(i) i=1,2,-- ,Ih} , and stipulate thah™ and h™ are

the maximum and minimum values in the HFB , respectively; then we call
h =nh" + (1—/7) h™ an extension value, wherp (0< 7 <1) is the parameter determined by the
DM according his/her risk preference.

As a result, we can add different values to the HFE ukirmgcording the DM's risk preference.
If 7 =1, then the extension valle = h*, which shows that the DM'’s risk preference is risk-

seeking; if7 =0, thenh = h™, which means that the DM's risk preference is riskrag; if

+ _

1 _
n =§, thenh = h , which indicates that the DM’s risk preference isigkitral. Clearly,

the parameter; provided by the DM reflects his/her risk preference dfetes the final decision
results.

Example 2.3.Let h ={0.4,0.3,01 andh, ={0.8,0.} be two HFEs. It is clear that =3,

Ihz =2, andlhl >Ihz . Therefore, by Xu and Zhang’s method (suppgse0), we can extendn,

to the following: ﬁz :{0.8,0.7,0.]7.

In this paper, we assume that all of the decision makerpessimistic (other situations can be

studied similarly). Xu and Xia [27] proposed a variety aftalice measures for HFEs, including a
hesitant normalized Hamming distance, which is defined sl

a(hh) =1y

i=1

ff(i) _ 'f(i)‘ (4

wherel = max{ } , and hf’(i) and hz”(i) are theth largest values i, and h,, respectively.

[ |
h'h
Example 2.4.Let h :{0.5,0.4,0.B and h, :{0.9,0.8,0.}3 be two HFEs. Then,=3. The

hesitant normalized Hamming distancelpfand h, is computed as

3

d(hh)=2>

i=1

O - rg(‘)‘:?lg(|o.9— 0.5+/0.8- 04| 0.6 Op= 0.36
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3 A Novel Method for Multiple Attribute Group Decision Making
With Hesitant Fuzzy Information

3.1 Problem description

First, a multiple attribute group decision making (MAGDMjoblem with hesitant fuzzy
information can be formulated as follows: LXt:{xl, )g,m,)gﬂ} be a set ofm alternatives,
T

C :{q, cz(;,} be a collection ofn attributes, whose weight vector Vg= (V\{, W, V\q)

with w, D[O,]], i=42;--n, and Zn:Wj =1, and IetD:{dl,dz,---,dp} is a set ofp
j=1

decision makers, whose weight vectorai&(a{,a)z,-u,a)p)T, with &, D[O,]], k=12;--,p,

mxn

p
and Za)K =1 . Let A(k):(aék)) be a hesitant fuzzy decision matrix, where
k=1

ot
qgk) :{(ql_(")) ()‘t=l,2,--- ’Ia(”} is a HFE, which is a set of all of the possible valines the

J
alternativex, [J X satisfies the attribute; [JC, given by the decision makef, (1D

In general, there are benefit attributes (i.e., the biggerattribute values the better) and cost
attributes (i.e., the smaller the attribute valueshhtter) in a MAGDM problem. For such cases,

we need to transform the hesitant fuzzy decision matrAl¥s= (aék)) (k=1,2;--,p) into
mxn

the normalized hesitant fuzzy decision matB¥) :(hj(k)) (k=1,2;--,p) by the following
equation:
al,  for benefit attributec,
bj(k)z c y i=112""lml j:1|2:"’1n1k:1121”"p (5)
(aigk)) , for cost attributec,

Where(aigk))C is the complement o&%k), such tha(agk))c = {1_(%(@ )”(t)

In most situations, it is noted that the numbers ofeleenents in different HFEQEK) of B(k)
(k=1,2;--,p) are different. In order to more accurately calcutiie distance between these
HFEs, we should extend the shorter ones until all of them hhsesame length. Let

| = max{lhgk) i=1,2--m,j=212;-n k= 1,2, p} . By the regulation method proposed by

Xu and Zhang [26], we transform the hesitant fuzzy decisionriceat B(k):(b}k))

mxn

(k=12;--,p) into the corresponding hesitant fuzzy decision matriee) =(h§k))
mxn
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(k=1,2;--,p), such thaﬂhﬁk’ =| foralli=1,2;--m, j=1,2;-- n,andk =1,2;-- ,p.

3.2 A Quadratic Programming Model for Determining the Weights of
Decision Makers

First, we aggregate the individual hesitant fuzzy decision atrioes
HO =(Y) :[{(qu))‘
! mxn

decision matrixH =(hj )mxn =({I’i|‘|t=1,2,--- ,I})mxn, where

t=1,2;-- ,I}] (k=1,2;--,p) into the group hesitant fuzzy

In general, the smaller the deviation between the indiVideaision information and the group
decision information, the larger the consensus betwedandhédual decision information and the
group decision information, the closer that the individual decishformation is to the group

decision information, the more reliable the individual deaisinformation. Therefore, the

criterion of determining the optimal weights of decision makie to minimize the deviation

measure between the individual hesitant fuzzy decisiommicea and the group hesitant fuzzy
decision matrix.

In the following, we consider the issue how to determine thights of decision makers, which
can be classified into two cases:

@) if al HY (k=1,2;--,p) are the same, i.e,HY =H (k=1,2;--,p), then it is

1
reasonable to assign the decision malgrgk =1,2;-- ,p) the same weight-.

(2) If not all of H (k) (k=1,2;--,p) are the same, i.e., there at least exist two mathitéd and
H®) (k,k,0{1,2;--,3 ) such thatH ) # H!")  then we introduce the deviation variables

et e e

¢ (w)=a(Hf, p) == = @

forall i=1,2;--m, j=1,2;--n, k=12;--,p,

and then define the square deviations among-lé‘f? (k=1,2;--,p)and H as below:
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8)

It is obvious that e(a)) is the function with decision makers’ weight vecto
T
w=lw,w, ,w ) .Let G= be a matrix, where
(@@ w,) (%a),..,
1 p m n |

o - mnplzzzz[((hﬁ”)am _(m(q))a(t))(( h{k))”(t) _( hq))a(t)jj

k=1 i=1 j=1t=1
0,0, :172’... P (9)
Thus, Eg. (8) can be rewritten as
e(w) = Gw (10)

Therefore, based on the viewpoint of maximizingugr@onsensus, we construct the following
optimal model to determine decision makers’ weighte context of GDM:

mine(w) = w' Gw

P
= -1
st 4=t W
w20, k=1,2;-- ,p.
Letting E=(L1,--,)", we have
mine(w) = &' Gw

E'w=1, (M-2)
S.t.
w=0

If we take no account of the constrainte@f> 0 temporally, then the model (M-2) becomes
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mine(w) = ' Gw

stE'w=1

Theorem 3.1. Let H™® :(hj(k)) :({(q(k))g(t)‘t:LZ,m,I}j (k=1,2;--,p) be p

(M-3)

hesitant fuzzy decision matrices ahﬂ=(hj )mxn =({I]t|t=1, 2 I}) be the group hesitant
mxn

fuzzy decision matrix derived from Eq. (6). If redt of H® (k=1,2;--,p) are the same, then
the optimal solution to the model (M-3) is

G'E
W= 11
E'G'E (1D
Proof. Because not all oH (k=1,2;--,p) are the same, there at least exist one madris)
(kg D{1,2,--- ,p}) such thatH®) z H . Thus, there existg, D{1,2,--- ,m} v o D{1,2,--- ,n} ,

oty
andt, D{LZ;" J} , satisfying(hg'ﬁ)) (o # h‘;(:") . Therefore, we have
()7 _ o))
(h) ™ -1 | >0
Thus,

o)== 3333 () - 159 | >0 @)

Obviously, according to Eq. (9), we have
goﬂq2 =gq2ql7 Doﬂ_'q2:1727”' !p

As aresult,G = ( gqlqz) is a symmetry matrix. According to Eqgs. (10) ah#)( we have
pxp

e(w) = Gw>0;
Becausew is the weight vector of expertey# 0. Therefore,G = ( gqiqz) is a definite matrix,
pxp
and it is also a nonsingular matrix. In the follagj we can derive the solution to the model (M-3)
by the following procedures:

We first construct the Lagrange function:
L(w,/]):a)TGaH)I(ETa)—l) (13)

where A is the Lagrange multiplier.

Differentiate Eq. (13) with respect @ and A, and then set these partial derivatives equal to
zero, then we have the following equations:
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M:ZGw+AE:O

ow (14)
oL (w,A) CETm-120

oA

We can obtain the optimal solution by solving Eigt)(

_ G'E
E'G'E

0’L(wA) , . . S : .

BecauseaT:ZG is a definite matrlx,e(a)):a) Gw is a strictly convex function.
-1

Consequently,cdjzw_1E is the unique optimal solution to the model (M-3¥hich
completes the proof.]

G'E . . . . .
If o :mz 0, then it is also the unique optimal solution te thodel (M-2); otherwise,

we can utilize the LINGO (Linear Interactive andr®eal Optimizer) software package to solve
the model (M-2).

3.3 Obtaining the Optimal Weights of Attributes by the Maximizing
Deviation Method

Due to the fact that many practical GDM problemes@mplex and uncertain and human thinking
is inherently subjective, the information aboutribtite weights is usually incomplete. For
convenience, letA be a set of the known weight information [27-30lhere A can be
constructed by the following forms, forZ j :

Form 1. A weak ranking:{vvi = vvj} ;

Form 2. A strict ranking:{wi -w 2 a'i} (a, >0);

Form 3. A ranking of differences{vvi —W 2w - vy} Jfor jZKZI;

Form 4. A ranking with multiples:{vvi 2q vvj} (0<a, <1,

Form 5. Aninterval form:{@; sw <a; +£} (0<a, <a, +¢ <1).
The maximizing deviation method was proposed by §&d] to estimate the attribute weights in
MADM problems with numerical information. Accordintg Wang [31], if the performance values
of all the alternatives have small differences urale attribute, it shows that such an attribute
plays a less important role in choosing the bestrsdtive and should be assigned a smaller
weight. On the contrary, if an attribute makes peeformance values of all the alternatives have

obvious differences, then such an attribute playswech important role in choosing the best
alternative and should be assigned a larger wekgpecially, if all available alternatives score
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about equally with respect to a given attributentisuch an attribute will be judged unimportant

by most decision makers and should be assignedyasweall weight. Wang [31] suggests that
zero weight should be assigned to the attributaisfkind.

In the following, based on the maximizing deviatimethod, we construct an optimization model
to determine the optimal relative weights of atitéds under hesitant fuzzy environments. For the

attribute G, OC, the deviation of the alternative [J X to all the other alternatives with respect
to the decision maked, 0 D can be defined as below:

i=1,2,"',m, j=1,2,"',n, k:1’27...,p (15)
Let

j=L2;--n,k=12:--,p (16)

then ng) represents the deviation value of all alternatiteesther alternatives for the attribute

¢; UC with respect to the decision makey [ D.
Further, let

by
S S [$[E el 1) @
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then D(W) represents the deviation value of all alternatit@sother alternatives for all the
attributes with respect to all the decision makers.

From the above analysis, we can construct a n@afiprogramming model to select the weight
vector w by maximizing D (w), as follows:

[ (M-4)

where A is the Lagrange multiplier.

Differentiating Eq. (18) with respect t, (j=12;--n) and A, and setting these partial
derivatives equal to zero, then the following detquations is obtained:

P& K) U(f)_ (k) a(t)
o 22X e
W— | +/]Wj_0 (19)
J
oL 1 )
a_z[;wf 1] 0 (20)

(21)

Putting Eqg. (19) into Eq. (20), we get
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(22)

W. = k=1 i=1 gq=1t=1 (23)

w/ = (24)

which can be considered as the optimal weight vesftattributes.

However, it is noted that there are practical sitves in which the information about the weight
vector is not completely unknown but partially kmowror such cases, we establish the following
constrained optimization model:

maxD (w) = max® (M-5)

n
st. wiA, w,20,j=212-n,>w=1
j=1

It is noted that the model (M-5) is a linear proagraing model that can be solved using the
MATLAB mathematics software package. Suppose tiaiptimal solution to the model (M-5) is

w=(w, W, V\q)T , which can be considered as the weight vectottabates.

3.4 Extended TOPIS Method for the MAGDM with Hesitant Fuzzy
Information

TOPSIS method, initially introduced by Hwang ando¥io[32], is a widely used method for
dealing with MADM problems, which focuses on choggithe alternative with the shortest
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distance from the positive ideal solution (PIS) ahe farthest distance from the negative ideal
solution (NIS). In the following, based on the ab@nalysis, we shall extend the classical TOPIS
method to the MAGDM problems under hesitant fuzayi@nments, in which the information
about the weights of decision makers is unknows, itfformation about attribute weights is
incompletely known or completely unknown, and theilzute values are given in the form of
HFEs.

The flowchart of the extended TOPIS method is plediin Fig. 1.

Form hesitant fuzzy or interval
valued hesitant fuzzy MAGDM

i

Construct hesitant fuzzy or interval-
valued hesitant fuzzy decision matricep
i Stage 1: Problem descriptio

’ Normalization ‘

1

l Regulation ‘

Determine the weights of Stage 2: The maximizing group
decision makers consensus method

L

Determine the attribute weights Stage 3.: T_he maximizing

deviation method The
| y/developed
method
Hesitant fuzzy or interval-
valued hesitant fuzzy TOPSI$
i Stage 4: The extended
TOPSIS
Standard TOPSIS

Fig. 1. The flowchart of the developed methods.

The extended method is composed of the followiegst

Step 1. For a MAGDM problem, the decision makef O D constructs the hesitant fuzzy
decision matrix A® :(agk)) , Where a,.g") is a HFE, given by the DMI, 01D, for the
mxn

alternativex [J X with respect to the attribute, JC. Utilize Eg. (5) to transform the hesitant
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fuzzy decision matricesA® :(aék)) (k=1,2;--,p) into the normalized hesitant fuzzy
decision matriced ¥ :(hgk))mxn (k=21,2;--,p).

Step 2.If the information about the weights of decisionkas is unknown, then we use Eq. (11)
to obtain the weights of decision makers.
Step 3.If the information about the attribute weighte@npletely unknown, then we use Eq. (24)
to obtain the attribute weights; if the informatiabout the attribute weights is partly known, then
we solve the model (M-5) to obtain the attributeghés.

K

Step 4.Determine the hesitant fuzzy positive ideal solut{HFPIS) hfk) :{ hff), 2t Hk)}

n

and the hesitant fuzzy negative ideal solution (H-B;Nhfk) :{h(k) h(;),-~-,Hk)} for each

L IL LI

decision maked, by the following equations:

) = man{ H*} :{ma){(dk))am}‘t: 12.. l} i[=12.-n (25)
hf"j) = miin{ r-h(k)} :{n?in{(m(k) )U(t)H t=1,2;-- 1|} j=12;--n (26)

Step 5.Calculate the separation measudg@ of eachalternativex, from the HFPIShfk) of the
decision makerd, as:

n | ¢ olt

" ZZW‘ ) (1)

df) = wd( 9, )= () = (1) -
i=1

I
In a similar way, calculate the separation measdrfé)sof eachalternative X, from the HFNIS

h®) of the decision maked, as:

n

N ZI:W,' hj(k) ot I{jk) a(t)
dg() :Z‘Wj d( h{k)’ ﬂjk)): =1 t=1 ( ? ( ) o8

Step 6.Calculate the relative closeness coefficient oheglternativex; to the HFPIShEk) of the

decision makerd, as:
(k)
9 - &4
Ci _dfk)+d£k) (29)

After calculating theCi(k) for each decision maket, (k=1,2;--,p), we then form the relative-
closeness coefficient matrix as below:
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Cl(l) Ciz) qp)
) (2 ... (p)

C-= G G G (30)
e ),

Steps 4-6 extend the standard TOPSIS to hesitamy fenvironments and can therefore be called
the hesitant fuzzy TOPSIS (HFTOPSIS). From thigestan our method continues by applying the
standard TOPSIS to the relative-closeness coefficiecision matrix in order to identify the
group positive ideal solution.

Step 7.Identify the group positive ideal solution (GPES)d group negative ideal solution (GNIS),

respectively as follows:
he {max{ } ma>{q(} . ,rpa{@p)}} (31)

h® :{miin{C,(l)} mln{ } mlr{d }} (32)

Step 8. Calculate the separation measud:% and d_Gi of eachalternativex, from the group

positive ideal solutiorh+G and the group negative ideal solutibfi , respectively, as follows:

Za&d(dk ma ¢} ) \d (max ¢%}) 33)

Za;d(dk m|n ‘q‘ mm{ ¢ })‘ (34)

Step 9. Calculate the group relative-closeness coeﬁic@ﬁt of each alternativex;, to group

positive ideal solutiordS as

o__ dS

G- 35
T (35)

Step 10.Rank the alternatives; (i=1,2,-- m) according to the group relative-closeness
coefficientsCiG (i=1,2;-- m) and then select the most desirable one(s). Tigerdhe value of
CiG, the more different betweer and the group negative ideal objefb_(f’i, while the more

similar betweenx, and the group positive ideal objexrtfi . Therefore, the alternative(s) with the
maximum group relative-closeness coefficient shdnélathosen as the optimal one(s).
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4 Illustrative Example

In this section, an investment problem is firstised to demonstrate the applicability and the
effectiveness of our method under hesitant fuzasrenments. Then, the investment problem is
also used to demonstrate the applicability and ithplementation process of the developed
method under interval-valued hesitant fuzzy envinents. Finally, a comparison analysis with
other methods is made to show the superiority ®fdéveloped methods.

Example 4.1.Let us suppose an investment company, which wanitsvest a sum of money in
the best option (adapted from [33-35]). There jEmael with five possible alternativeswhich to

invest the money(1) X, is a car industry(2) X, is a food company(3) X, is a computer
company;(4) X, is an arms companyp) X, is a TV companyThe investment company must
make a decision according to the following fouriltites:(1) c, is the risk analysig?2) c, is the
growth analysis(3) c, is the social-political impact analys{#) c, is the environmental impact
analysis.Suppose thafive possible candidatex, (i :1,2,3,4,5) are to be evaluated by three
decision makersl, (k=1,2,3) under the above four attributes ( j =1,2,3,4). The decision

makers construct, respectively, three hesitantyfulerision matricesA®) = (agk)) (k=1,2,3
5x4

listed in Tables 1-3, whereék) is a HFE denoting all the possible values, givgrihe decision

maker d, , for the alternativex, under the attribute; .

Table 1. Hesitant fuzzy decision matrix A” provided by the decision makerd,

! G C, C; C,

x, (050403} {0.9,0.8,0.6} {0.4,0.3,0.2,0.1} {0.8,7,0.6,0.4,0.3}
x, {0.80.7,0.6,050.3} {0.9,0.7,0.5,0.4} {0.3,0.2} 0{6,0.5,0.4,0.3}

x, {0.7,06} {0.8,0.6,0.5} {0.7,0.5,0.3} {0.4,0.3}

x, {0.7.05) {0.4,0.3} {0.9,0.8,0.7,0.6} {0.5,0.4,0.3}

x, {0907} {0.5,0.3} {0.5,0.4,0.3} {0.8,0.7,0.5}
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Table 2. Hesitant fuzzy decision matriA®? provided by the decision make, .

2 G C, C; c,

x, 10.9,0.807} {0.4,0.3,0.2] {0.8,0.6} {0.7,0.6,0.5]

x, {0.7,0.6,0.5,0.4,0.3}  {0.8,0.7,0.6,0.5} {0.5,0.43). {0.8,0.7,0.6,0.4,0.3}

x, {0301 {0.5,0.3,0.;,0.1} {0.8,0.6,0.3 {0.9,0.8,0.7]

x, {0.9,0.8,0.7} {0.7,0.6} {0.6,0.5,0.3} {0.8,0.6}

x, {0.7,0.6} {0.8,0.7,0.4,0.3} {0.9,0.7,0.6,0.3,0.2} 0{5,0.4}
Table 3.Hesitant fuzzy decision matriA® provided by the decision makel, .

3 (o} C, C, c,

x, 1{0.7,06,0£0.4,0.3 {0.40.50.3 {0.60.5,0.4] {0.8,0.7,0.6,0.}

x, {0.6,0.5,0.3} {0.4,0.3,0.2} {0.9,0.7} {0.7,0.5}

x, {0.8,06,0.9 {0.2,0.1} {0.6,0.4,0.,0.2,0.3  {0.9,0.7,0.6,0.%}

x, {0.9,0.6} {0.8,0.6,0.5,0.3,0.1} {0.7,0.5,0.3} {0.8,7,0.6}

x, {0.8,0.7,0.6] {0.6,0.5,0.4] {0.7,0.6,0.5] {0.9,0.7,0.5]

In what follows, we utilize the developed methodital the best alternative(s). We now discuss
two different cases.

Case 1:Assume that the information about the attributégims is completely unknown; in this
case, we use the following steps to get the mastalde alternative(s).

Step 1.Considering that all the attributes (j=1,2,3,4) are the benefit type attributes, the

hesitant fuzzy decision matrices) = (qgk))s , (k =1,2,3) do not need normalization. Suppose

that all the decision makers (DMsk €1, 2,3) are pessimistic, then we utilize Definition 2 t

transform the hesitant fuzzy decision matricé‘ék)=(agk)) ( k=1,2,3) into the
5x4

corresponding hesitant fuzzy decision matri¢e&) :(hj(k))s \ (k=1,2,3) (see Tables 4-6),
such thatlh(k) =5 foralli=1,2,3,4,% j=1,2,3,4,andk=1,2,3.
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Table 4.Hesitant fuzzy decision matriki @ provided by the decision makek .

4 G G G Cy
{0.5,0.4,0.3,0.3,02 {0.9,0.8,0.6,0.6,0.6 {0.4,0.3,0.2,0.1,0.1 {0.8,0.7,0.6,0.4,0.2
{0.8,0.7,0.6,0.5,0.3} {0.9,0.7,0.5,0.4,0.4} {0.3%0.2,0.2,0.2} {0.6,0.5,0.4,0.3,0.3}
{0.7,0.6,0.6,0.6,0.6 {0.80.60.5,0.5,0.} {0.7,0.5,0.3,0.3,0} {0.4,0.30.3,0.3,0.}
{0.7,0.5,0.5,0.5,0.5} {0.4,0.3,0.3,0.3,0.3} {0.980.7,0.6,0.6} {0.5,0.4,0.3,0.3,0.3}
{0.9,0.7,0.7,0.7,0.7}  {0.5,0.3,0.3,0.3,0.3} {0.5400.3,0.3,0.3}  {0.8,0.7,0.5,0.5,0.5}

KX XXX

Table 5.Hesitant fuzzy decision matriki @ provided by the decision make, .

5 Cl C2 C3 C 4

x_ 10.9080707,0} {04030:0203 {0.80606060} {0.7,060.5050%
x, {0.7,06,050.4,03} {0.8,0.7060505 {0.500.30303} {0.80.7,0.6,0.4,0.3}
x, {0.301,01,010} {05030:01,03 {0.80.6,05050} {0.9,0.80.0.7,0.}
x, {0.908070707 {0.706060606} {0.6%0.30303} {0.80.60.60.6,0.6}
x, {0.7,06,0.60.6,0€ {0.80.704,0305 {090.7,06030z {050404,0.4,0}

Table 6.Hesitant fuzzy decision matriki @ provided by the decision makel .

6 Cl C2 C3 C4

x_ 10.7.0.60504,0.} {04,0501010} {06050+:0404 {0.80.7,0.604,0}
x, {0.6,05030303} {0.4,03020202 {0.910.7,0.7,07} {0.7,050.5,05,0.5}
x, {0.806,05050} {020101010} {0.6040:0203} {0.90.70.6,050.}
x, {0.9,0.60.6,0606} {0.806050301} {0.790.3,0.3,03} {0.8,0.7,0.6,0.6,0.6}
x, {0.80.7,06,0606} {0.605040404} {0.760.50.505} {0.9,0.7,0505,0.5}

Step 2:Utilize Eqg. (11) to get the weights of the decisinakers:

111
w= v v o
(3 3 3)

Step 3.Considering that the information about the attdbweights is completely unknown, we
utilize Eq. (24) to get the optimal weight vectérattributes:

w=(0.2694,0.2850,0.2694,0.17:

Step 4.Utilize Egs. (25) and (26) to determine the HFFH@ (k=1,2,3) and the HFNISh®
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(k=1,2,3) for each decision maket, (k=1,2,3), respectively:

={{0.9,0.7,0.7,0.7,0}7{, 0.9,0.8,0.6,0.6}0{6.9,0.8,0.7,0.6,0}6{, 0.8,0.7,0.6,0.5}}.
{{0.5,0.4,0.3,0.3,0}3{, 0.4,0.3,0.3,0.3}0{8.3,0.2,0.2,0.1,0}1{, 0.4,0.3,0.3,0.3}}.
{{0.9,0.8,0.7,0.7,0}7{, 0.8,0.7,0.6,0.6}0{6.9,0.7,0.6,0.6,0}6{, 0.9,0.8,0.7,0.7}}.

{0.3,0.1,0.1,0.1,042{, 0.4,0.3,0.2,0.1}0{0.5,0.4,0.3,0.3,0}2{, 0.5,0.4,0.4,0.4}}.
{0.9,0.7,0.6,0.6,0}6{, 0.8,0.6,0.5,0.4}0{#.9,0.7,0.7,0.7,0}7{, 0.9,0.7,0.6,0.6}.
h¥ ={{0.6,0.5,0.3,0.3,0}3{, 0.2,0.1,0.1,0.1}0{0.6,0.4,0.3,0.2,0}1{, 0.7,0.5,0.5,0.4}}.

h
he
h
h
he

Step 5: Utilize Egs. (27) and (28) to calculate the se@anameasuresjf‘f) and df‘f) of each
alternative x; of the decision maked, :

d¥ =0.2477, d¥ =0.1612, d¥ =0.247¢, dY =0.1618, d"% =0.2002, d*) =0.2088,

d¥% =0.2080, d¥ =0.201¢, d¥ =0.2031, d“ =0.205¢,

d® =0.160C, d? =0.287¢, d? =0.202¢, d'? =0.244€, d? =0.3137, d? =0.133€,

d® =0.108¢, d'? =0.3395, d!? =0.180¢, d'? =0.266¢,

d® =0.2384,d? =0.1016, d? =0.1799, d? =0.1601, d¥ =0.266¢, d? =0.0732,
d®=0.1179, d¥ =0.2221, d® =0.087z, d¥¥ =0.2527.

Step 6: Utilize Eg. (29) to calculate the relative closemesefficientci(") of each alternativex,

to the HFPIShEk) of the decision maked, as

c =0.394g, c =0.3955, C{! =0.5105, C{ =0.4915, C! =0.5034,
c® =0.6424 c? =0.5465 C{? =0.299¢, c? =0.7587, C? =0.595¢,
c® =0.2987, cl? =0.4709, c{ =0.2152, C{) =0.6532, C\? =0.7434.

Then, we construct the relative-closeness coeffiaieatrix as below:

0.3945 0.6424 0.2987
0.3955 0.5465 0.470
C=|0.5105 0.2990 0.215
0.4915 0.7587 0.653
0.5034 0.5956 0.74

%3

Step 7.Utilize Egs. (31) and (32) to identify the groupsgiive ideal solution (GPIS) and group
negative ideal solution (GNIS), respectively, dtofes:

h? ={0.5105,0.7587,0.743.
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h® ={0.3945,0.2990,0.215:

Step 8. Utilize Eqgs. (33) and (34) to calculate the serianameasuresdfi and d_Gi of each

alternativex; from the group positive ideal solutidﬁlG and the group negative ideal solutibfi ,
respectively, as follows:

d® =0.2257, d°=0.1422, d%=0.1999, dS =0.1681, d% =0.329:, d =0.0387,
dS =0.0364, d% =0.3316, dS =0.0567, dS =0.311¢

Step 9. Utilize Eq. (35) to calculate the group relatideseness coefﬁcien‘CiG of each

alternative x; to group positive ideal solutiodfi as:
ClG =0.3868, CZ,G =0.4568, C;? =0.105], Cf =0.901], C5G =0.8459

Step 10: Rank the alternatives; (i=1,2,3,4,5) according to the group relative-closeness
coefficient CiG (1=1,2,3,4,%). Clearly, X, = X, = %, > X > X%, and thus the best alternative is
X, -

Case 2:The information about the attribute weights is fyakinown and the known weight
information is given as follows:

4

A :{0.15s w <025 0Zw,< 025 08ws 0408w 082 0= 1 Z,SZ W= 1}
j=1

Step 1'. See Step 1.

Step 2': See Step 2.
Step 3': Utilize the model (M-5) to construct the single-®ttjve model as follows:

maxD(w) = 4.1600 + 4.4008,+ 4.160Q+ 2.720f
s.t. wOA

By solving this model, we get the optimal weight ciee of attributes
W:(0.1500,0.2000,0.3000,0.35ﬁ(.

Step 4'.See Step 4.
Step 5': Utilize Egs. (27) and (28) to calculate the seﬁanameasuresjf‘f) and dfik) of each
alternative x; of the decision maked, :

d®% =0.2280, d¥ =0.172¢, d =0.268¢, d" =0.132¢, d¥ =0.2370, d =0.163C,
d¥ =0.1970, d¥ =0.203¢, d¥ =0.187¢, d¥ =0.213¢,
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d® =0.162C, d? =0.247C, d'? =0.213c, d'? =0.196¢, d? =0.207¢C, d? =0.202C,
d® =0.134¢, d®?=0.275¢ d? =0.214C, d? =0.195¢C,

d® =0.2140, d% =0.1010, dY =0.1470, d¥ =0.1680, d'¥ =0.239¢, d¥ =0.076C,
d®=0.1220, d%? =0.1930, d¥ =0.094¢, d? =0.221¢.

Step 6’: Utilize Eq. (29) to calculate the relative closemeeefficientci(k) of each alternative;

to the hesitant fuzzy linguistic PIXE") of the decision maked, as

c =0.430¢, c =0.330c, c{! =0.4075, c{! =0.5075, C!¥ =0.5325,
c®=0.603¢, Cc{?=0.4792 c{? =0.493¢, Cc{? =0.6724, C!? =0.476¢,
c® =0.3206, c!? =0.533¢, c{? =0.2415, c{? =0.6127, c!? =0.7016.

Then, we construct the relative-closeness coeffiaieatrix as below:

0.4300 0.6039 0.32
0.3300 0.4792 0.533
C=|0.4075 0.4939 0.241
0.5075 0.6724 0.612
0.5325 0.4768 0.70

%3

Step 7'. Utilize Egs. (31) and (32) to identify the groupspiive ideal solution (GPIS) and group
negative ideal solution (GNIS), respectively asdfok:

h¢ ={0.5325,0.6724,0.70}
h® ={0.3300,0.4768,0.24}.

Step 8. Utilize Eqgs. (33) and (34) to calculate the sepanr;\measuresdfi and d_Gi of each
alternative x; from the GPIShf and the GNISh®, respectively, as follows:
dS =0.184C, d% =0.1022, dS =0.1880, dS =0.0982, dS =0.254€, d$ =0.031F,
dS =0.038C, d<, =0.2482, d, =0.0652, d$, =0.2209
Step 9'. Utilize Eq. (35) to calculate the group relatideseness coefficienCiG of each
alternative x; to group positive ideal solutiodfi as:

C’=0.357], C; =0.3431, CJ=0.1102, CJ =0.867; CZ=0.7721
Step 10: Rank the alternativex, (i =1,2,3,4,%) according to the group relative-closeness
coefficient C® (i =1,2,3,4,5. Clearly, x, = X, = X = % = %, and thus the best alternative is
X, -
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5 Comparison Analysis with the Other Hesitant FuzzyMultiple
Attribute Decision Making (Madm) Methods

In this section, we will perform a comparison as@ybetween our new method and the other
existing hesitant fuzzy multiple attribute decisiomaking methods, and then highlight the
advantages of the new method over the other egistiethods.

5.1 Comparison with the Hesitant Fuzzy MADM MethodsBased on TOPSIS

Zhang and Wei [36] extended the TOPSIS method veldp a methodology for solving MADM
problems with hesitant fuzzy information. Recent§y and Zhang [26] developed a method
based on TOPSIS and the maximizing deviation metioodsolving MADM problems with
hesitant fuzzy information, in which the attributalues provided by the decision makers are
expressed in hesitant fuzzy elements and the irdtiom about attribute weights is incomplete.
Moreover, they extended the developed method teniat-valued hesitant fuzzy situations.
Compared with Zhang and Wei's method and Xu andnglsamethod, the newly developed
method has the following advantages: Zhang and sMeiéthod and Xu and Zhang's method
focus on the MADM problems. However, in real-lifiye to the increasing complexity of socio-
economic environment, it is less and less posditnea single decision maker to consider all
relevant aspects of the problem. Therefore, maggrizations employ groups to make decision,
which is called as group decision making (GDM). @ethod gives a TOPSIS based procedure to
solve a MAGDM problem under hesitant fuzzy envirems. First, in our method, a quadratic
programming model is established to determine thights of decision makers, which is not be
considered in Zhang and Wei's method [36] and Xadi Zhang’s method [26]. Second, Zhang and
Wei's method [36] doesn’t consider the weights difilButes. Though Xu and Zhang [26]
established an optimization model to determineatiebute weights, this model determined the
attribute weights from only an individual hesitdutzzy decision matrix, and it cannot determine
the importance weights of attributes under grougisien making environments. Our method can
derive the optimal weights of attributes from aidividual hesitant fuzzy decision matrices.
Finally, the TOPSIS methods proposed by Zhang amd [86] and Xu and Zhang [26] only
included a stage; while the extended TOPSIS prapbgeour method includes two stages: The
first stage is called the hesitant fuzzy TOPSISTBPSIS), which can be used to calculate the
individual relative closeness coefficient of eadteraative to the individual hesitant fuzzy PIS.
The second stage is the standard TOPSIS, whickeid to calculate the group relative-closeness
coefficient of each alternative to group PIS ani@éctethe optimal one with the maximum group
relative-closeness coefficient.

5.2 Comparison with the Hesitant Fuzzy MADM Method Based on
Hesitant Fuzzy Aggregation Operators

Recently, some hesitant fuzzy aggregation oper&tave been developed for aggregating hesitant
fuzzy information [19-24], such as the HFWA, HFWGHFWA, GHFWG, HFOWA, HFOWG,
GHFOWA, GHFOWG, HFHA, HFHG, GHFHA, GHFHG, HFPWA, RWVG, HFPA, HFPG,
GHFPA, GHFPG, WGHFPA, WGHFPG, HFPOWA, HFPOWG, GHWPE GHFPOWG,
HFPWA, and HFPWG operators. Furthermore, basedheset operators, some hesitant fuzzy
MADM methods [19-24] have also been developed évisg the MADM or MAGDM problems
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with hesitant fuzzy information. However, it is io&d that these existing operators and methods
have some inherent drawbacks, which are shownllasv

(1) The existing operators and methods perfornaggregation on the input hesitant fuzzy
arguments. Accordingly, the dimension of the datiW¢FE may increase as such an
aggregation is done, which may increase the cortipatd complexity and therefore
lead to the loss of information. In contrast, owethod does not need to perform such an
aggregation but directly deals with the input hatitfuzzy arguments, thereby does not
increase the dimension of the derived HFE andnetdie original decision information
as much as possible.

(2) Our method utilizes the maximizing group corses method and the maximizing
deviation method to determine the weight valuesdefision makers and attributes,
respectively, which is more objective and reasaalhile the existing methods [19-24]
ask the DMs to provide the weights of decision malend attributes in advance, which
is subjective and sometime cannot yield the pergaassults.

In order to clearly demonstrate the comparison ltgswe use the hesitant fuzzy weighted
averaging (HFWA) operator-based MAGDM method [2D}evisit Example 4.1, which includes
the following steps:

Step 1:Utilize the HFWA operator [20]:

(ool ') =00 8 =Uo o, ()

i=1,2,3,4,5 j=12,34

to aggregate all the individual hesitant fuzzy diexi matrix Al = (agk)) (k=1,2,3) into the
5x4
collective hesitant fuzzy decision matrik = (a”) o which is not be listed here because of space

5%
limitations. In order to be consistent with Exampld, the same weights for decision makers

. . 1 1 1 _ .
obtained, i.e. _;_3,' @, —5, and @, —§ are adopted here. Lél—(l%) , where Iaj is the

5x4
dimension of the collective hesitant fuzzy elemepnt

45 27 24
75 48 12
L=(l,), =12 24 45
12 20 36
12 24 45

P 2N B~ OD

Step 2.Utilize the HFWA operator [23]:

4 4 t; w;
HFWA(ail’ 82 da a4) = El( VY @) = U11:1,2,--»la1 171,20 by, ta= 1,251, tg= 1,241 M{l_ I,:! (1_(81'1 ) ) }
(i=1,2,3,4,5
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to aggregate all the preference vallaags(j :1,2,3,19 in theith line of A, and then derive the

collective overall preference valug (i :1,2,3,4,5) of the alternativex (i =1,2,3,4,5). In
order to be consistent with Example 4.1, the sanwghts for attributes obtained, i.e.,
w, =0.2694, w, =0.285C, w; =0.2694, andw, =0.176Z2 are adopted here. We will not list
the collective overall preference values here bseani space limitations. The dimensions of the
collective overall preference valug (i =1,2,3,4,5 are shown bellows:

|, =174960C |, =172800(, I, =31104C |, =15552C, |, =23328C

Step 3.According to Definition 2.2, we calculate the sz:maluess(ar) (i=1,2,3,4,5 of g
(i=1,2,3,4,5:

s(a)=0.5747, s(a)=0.5651 s(a)=0.5328 s(a)=0.6422 s(a)=0.6206
Step 4 Get the priority of the alternatives (i =1,2,3,4,5) by ranking S(a) (i=1,2,3,4,5 as
follows: X, > X5 = X = % > %. Thus, the best alternative ig .

It is easy to see that the optimal alternative iobth by the Xia and Xu’ method is the same as our
method, which shows the effectiveness, precise@ssreasonableness of our method. However,
it is noticed that the ranking order of the alteives obtained by our method is

X, = X5 = X, = X > X%, which is different from the ranking order obtainkey the Xia and Xu’
method. Concretely, the ranking order betwegrand X, obtained by the two methods are just

converse, i.e.X, >~ X for our method whilex, > x, for the Xia and Xu’ method. The main

reason is that the Xia and Xu’' method performs ggregation operation on the input hesitant
fuzzy arguments, while our method does need tooparsuch an operation on the input hesitant

fuzzy arguments. It is noted that the dimenslignof the collective overall preference valag is

very larger, which increases the computational derify. In contrast, our method has a less
computational complexity. By using the MATLAB mathatics software under the same
conditions, the time (12 hours) that is used taiobthe optimal alternative with the Xia and Xu’
method is far more than the one (1 second) thasésl to obtain the optimal alternative with our
method. Therefore, our method not only is approerfar handling the situations in which the
weight information of the attributes and decisioakers is unknown or partly known, but also can
reduce the computational complexity and the infdiomaloss, which always happens in the
process of information aggregation. Thus, compangth the other hesitant fuzzy MADM
methods, our method has its great superiority alidg with the ambiguity and hesitancy inherent
in MAGDM problems with hesitant fuzzy information.

6 Conclusion

In this paper, we have proposed a novel methodhésitant fuzzy MAGDM problems with
incomplete weight information, which involves thigerts:

(1) First, inspired by the idea that a set of group e should have a maximum degree of

1889



British Journal of Mathematics & Computer Scien€&3}, 1865-1893, 2014

agreement solution, we have first used the maximgizhe group consensus method to
establish a quadratic programming model for deteimgi the optimal weights of decision
makers under hesitant fuzzy situations. This pastuees the rationality of the individual
hesitant fuzzy decision information.

(2) Then, based on the idea that a larger weight shioeldssigned to the attribute with a
larger deviation value among alternatives, we héurgher presented a maximizing
deviation method to determine the optimal attributeights under hesitant fuzzy
environments. This part eliminates the influencesabjectivity of attribute weights
provided by the decision makers in advance.

(3) Furthermore, we have proposed an extended TOPSIBochdor solving MAGDM
problems with hesitant fuzzy information, whichlundes two stages: the HFTOPSIS and
the standard TOPSIS. The former is used to caktlet relative closeness coefficient of
each alternative to the HFPIS; while the latteused to calculate the group relative-
closeness coefficient of each alternative to GB#ged on which we rank the considered
alternatives and then select the optimal one vhighrhaximum group relative-closeness
coefficient. The extended TOPSIS method not onllyesba MAGDM problem with
hesitant fuzzy information but also can avoid the&slof hesitant fuzzy information in the
process of information aggregation.

Finally, an investment example has been usedustitite the effectiveness and practicality of the
developed methods. A comparison analysis has &ep bonducted to illustrate the advantages of
the developed methods over the other hesitant filXpPM methods.
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