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Abstract 
 
Aims: The aim of this paper is to develop a novel method for dealing with multiple attribute 
group decision making (MAGDM) problems with hesitant fuzzy information, in which the 
attribute values provided by the decision makers take the form of hesitant fuzzy elements 
(HFEs), the information about the weights of decision makers is unknown, and the information 
about attribute weights is incompletely known or completely unknown. 
Study Design: The developed method includes the following three stages. 
Place and Duration of Study: The hesitant fuzzy set (HFS), originally proposed by Torra and 
Narukawa, is an efficient tool to deal with situations in which experts hesitate between several 
possible values to evaluate the membership degree of an element to a given set. 
Methodology: The first stage establishes a quadratic programming model to determine the 
weights of decision makers by maximizing group consensus between the individual hesitant 
fuzzy decision matrices and the group hesitant fuzzy decision matrix. The second stage uses the 
maximizing deviation method to establish an optimization model, which derives the optimal 
weights of attributes under hesitant fuzzy environments. After obtaining the weights of decision 
makers and attributes through the above two stages, the third stage develops a hesitant fuzzy 
TOPSIS (HFTOPSIS) method to determine a solution with the shortest distance to the hesitant 
fuzzy positive ideal solution (HFPIS) and the greatest distance from the hesitant fuzzy negative 
ideal solution (HFNIS). 
Results: A practical example is provided to illustrate the proposed method. 
Conclusion: The comparison analysis with the other methods shows that the developed method 
has its great superiority in handling the MAGDM problems with hesitant fuzzy information. 

Keywords:  Hesitant Fuzzy Set (HFS), Multiple Attribute Group Decision Making (MAGDM), 
maximizing group consensus method, maximizing deviation method, TOPSIS. 
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1 Introduction 
 
Due to the fact that the difficulty of establishing the membership degree of an element to a given 
set is sometimes not because we have a margin of error (as in intuitionistic fuzzy set [1], interval-
valued fuzzy set [2], or interval-valued intuitionistic fuzzy set [3]) or some possibility distribution 
on the possible values (as in type-2 fuzzy set [4]), but because we have some possible numerical 
values [5], Torra and Narukawa [5] presented a new concept of hesitant fuzzy set (HFS), in which 
several numerical values between 0 and 1 are simultaneously used to represent the membership 
degree of an element to a given set. Consequently, hesitant fuzzy set is not only an extension of 
fuzzy sets [6] to deal with uncertainty but also an efficient tool that can represent situations in 
which several membership functions for a fuzzy set are possible. Since its introduction, hesitant 
fuzzy set has attracted increasing attentions [7-18]. 
 
Recently, some hesitant fuzzy aggregation operators [19-24] have been developed for aggregating 
hesitant fuzzy information. Based on these hesitant fuzzy aggregation operators, some methods 
[19-24] have been developed for handling the multiple attribute decision making (MADM) or 
multiple attribute group decision making (MAGDM) problems with hesitant fuzzy information in 
which the attribute values take the form of hesitant fuzzy elements (HFEs) [20] that are expressed 
as a set of several possible numerical values. However, these methods need to perform some 
aggregation operations on the input hesitant fuzzy arguments, which have some drawbacks as 
follows: (1) when using these methods, the weight vectors of decision makers and attributes are 
given by the decision makers (DMs) in advance and therefore are more or less subjective and 
insufficient; (2) when using these methods, the dimensions of the aggregated hesitant fuzzy 
elements may increase. Especially, if the dimensions of the input hesitant fuzzy elements are a 
little large, then the dimensions of the aggregated hesitant fuzzy elements will be very large. 
Consequently, it may increase the computational complexity and cause the loss of decision 
information. However, in many MAGDM problems with hesitant fuzzy information, because of 
time pressure, lack of knowledge or data, and the decision makers’ limited expertise about the 
problem domain, the information about the weights of decision makers are unknown, and the 
information about the attribute weights is incompletely known or completely unknown. In 
addition, the larger the computational complexity, the more time that is used to obtain the optimal 
alternative, the higher the decision-making costs. To overcome these drawbacks, in this paper, we 
develop a novel method for hesitant fuzzy MAGDM with incomplete weight information. The 
new model can be divided into three parts: First, we establish a quadratic programming model 
based on the maximizing group consensus method to objectively determine the weights of 
decision makers. Second, we further use the maximizing deviation method to establish an 
optimization model, based on which the optimal attribute weights can be objectively obtained. 
Finally, motivated by the TOPSIS, we develop an extended TOPSIS method to determine the 
optimal alternative, which includes two stages. The first stage is called the hesitant fuzzy TOPSIS 
(HFTOPSIS), which can be used to calculate the individual relative closeness coefficient of each 
alternative to the individual hesitant fuzzy positive ideal solution (HFPIS). The second stage is the 
standard TOPSIS, which is used to calculate the group relative-closeness coefficient of each 
alternative to group PIS and select the optimal one with the maximum group relative-closeness 
coefficient. By using several illustrative examples and comparison analysis with the existing 
methods, our method not only is capable of handling the hesitant fuzzy MAGDM problems in 
which the weight information of the attributes and decision makers is unknown or partly known, 
but also can reduce the computational complexity and the information loss, which always happens 
in the process of information aggregation. Thus, our method is much appropriate for dealing with 
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the ambiguity and hesitancy inherent in hesitant fuzzy MAGDM problems. 
 
To do so, the rest of this paper is organized as follows. In Section 2, we briefly recall some 
concepts related to hesitant fuzzy sets. Section 3 develops a novel method based on the 
maximizing group consensus method, the maximizing deviation method and HFTOPSIS for 
solving the hesitant fuzzy MAGDM problem with incomplete weight information. In Section 4, an 
illustrative example is provided to show the effectiveness and practicality of the developed 
method. A comparison analysis with the other methods shows the effectiveness and practicality of 
the developed methods in Section 5. Section 6 provides some concluding remarks. 
 

2 Preliminaries 
 
Torra and Narukawa [5,25] proposed the notion of hesitant fuzzy sets to manage the situations in 
which several numerical values are possible for the definition of the membership of an element to 
a given set. 
 
Definition 2.1 [5], [25]. Let X  be a reference set, a hesitant fuzzy set (HFS) A  on X  is in terms 

of a function ( )Ah x  that when applied to X  returns a subset of [ ]0,1 . 

 
To be easily understood, we express the HFS by a mathematical symbol: 
 

( ){ }, AA x h x x X= ∈                                                                    (1) 

 

where ( )Ah x  is a set of some values in [ ]0,1 , denoting the possible membership degrees of the 

element x X∈  to the set A . For convenience, Xia and Xu [23] called ( )Ah h x=  a hesitant 

fuzzy element (HFE). 
 
Let hl  denote the numbers of values in the HFE h . For convenience, the values in the HFE h  are 

arranged in a descending order, i.e., ( ){ }1,2, ,i
hh h i lσ= = L , where ( )ihσ  is the ith biggest value 

in h . 

Example 2.1. Let { }1 2 3, ,X x x x= , { } { } { }{ }1 2 3, 0.7,0.5 , , 0.4,0.3,0.2 , , 0.8,0.7A x x x= , 

and { }0.4,0.3,0.2h = . Then, A  is a HFS on X , h  is a HFE, and 3hl = . 

 
Given three HFEs, h , 1h , and 2h , Torra and Narukawa [5,25] defined the following operations: 

(1) { }1c

h
h Uγ

γ
∈

= − ; 

 

(2) { }
1 1 2 2

1 2 1 2,h h
h hU Uγ γ

γ γ
∈ ∈

= ∨ ;                                                                                            (2) 

 

(3) { }
1 1 2 2

1 2 1 2,h h
h hI Uγ γ

γ γ
∈ ∈

= ∧ .                                                                                            (3) 
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Xia and Xu [20] defined the following comparison rules for HFEs: 
 

Definition 2.2 [20]. For a HFE { }
h

h
γ

γ
∈

=U , ( ) h

h

s h
l
γ

γ
∈=

∑
 is called the score function of h , 

where hl  is the number of elements in h . For two HFEs, 1h  and 2h , if ( ) ( )1 2s h s h> , then 

1 2h h> ; if ( ) ( )1 2s h s h= , then 1 2h h= . 

 
However, in some special situations, this comparison law can not distinguish two HFEs. To 
overcome this drawback, we further introduce the variance function of a HFE and then develop a 
novel method to rank two HFEs. 
 

Definition 2.3. For a HFE { }
h

h
γ

γ
∈

=U , ( )
( )

h

h

s h

v h
l

γ
γ

∈

−
=
∑

 is referred to as the variance 

function of h , where ( )s h  is the score function of h . 

 
The relationship between the score function and the variance function is similar to the relationship 
between the mean and variance in statistics. 
 
Based on the score function and the variance function, we develop a comparison law to compare 
any two HFEs: 
 
Definition 2.4. Let 1h  and 2h  be any two HFEs, and let ( )is h  and ( )iv h  ( 1,2i = ) be the score 

functions and the variance functions of ih  ( 1,2i = ), respectively. Then, the following conditions 
hold: 
 

(1) If ( ) ( )1 2s h s h> , then 1 2h h> . 

(2) If ( ) ( )1 2s h s h= , then 

① if ( ) ( )1 2v h v h< , then 1 2h h> . 

② if ( ) ( )1 2v h v h= , then 1 2h h= . 

 
Example 2.2. Let { }1 0.5,0.4h =  and { }2 0.6,0.3h =  be two HFEs. Then, by Definitions 2.2 and 

2.3, we have 

( )1

0.4 0.5
0.45

2
s h

+= =       ( )2

0.3 0.6
0.45

2
s h

+= =  

( )1

0.4 0.45 0.5 0.45
0.05

2
v h

− + −
= =          ( )2

0.3 0.45 0.6 0.45
0.15

2
v h

− + −
= =  

Then, ( ) ( )1 2s h s h=  and ( ) ( )1 2v h v h< . Thus, by Definition 2.4, we can obtain that 1 2h h> . 

Let 1h  and 2h  be two HFEs. In most cases, 
1 2h hl l≠ ; for convenience, let { }

1 2
max ,h hl l l= . To 
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compare 1h  and 2h , Xu and Xia [16] suggested that we should extend the shorter HFE until the 
length of both HFEs was the same. The simplest way to extend the shorter HFE is to append the 
same value repeatedly; in principle, any value can be appended. In practice, the selection of the 
appended value depends primarily on the decision makers’ risk preferences. To address this issue, 
Xu and Zhang [26] developed the following method: 
 

Definition 2.5 [26]. Assume a HFE ( ){ }1,2, ,i
hh h i lσ= = L , and stipulate that h+  and h−  are 

the maximum and minimum values in the HFE h , respectively; then we call 

( )1h h hη η+ −= + −  an extension value, where η  (0 1η≤ ≤ ) is the parameter determined by the 

DM according his/her risk preference. 
 
As a result, we can add different values to the HFE using h  according the DM’s risk preference. 

If 1η = , then the extension value h h+= , which shows that the DM’s risk preference is risk-

seeking; if 0η = , then h h−= , which means that the DM’s risk preference is risk-averse; if 

1

2
η = , then 

2

h h
h

+ −+= , which indicates that the DM’s risk preference is risk-neutral. Clearly, 

the parameter η  provided by the DM reflects his/her risk preference and affects the final decision 

results. 
 

Example 2.3. Let { }1 0.4,0.3,0.1h =  and { }2 0.8,0.7h =  be two HFEs. It is clear that 
1

3hl = , 

2
2hl = , and 

1 2h hl l> . Therefore, by Xu and Zhang’s method (suppose 0η = ), we can extend 2h  

to the following: { }2 0.8,0.7,0.7h = . 

 
In this paper, we assume that all of the decision makers are pessimistic (other situations can be 
studied similarly). Xu and Xia [27] proposed a variety of distance measures for HFEs, including a 
hesitant normalized Hamming distance, which is defined as follows: 
 

( ) ( ) ( )
1 2 1 2

1

1
,

l
i i

i

d h h h h
l

σ σ

=
= −∑                                                                      (4) 

where { }
1 2

max ,h hl l l= , and ( )
1

ihσ  and ( )
2

ihσ  are the ith largest values in 1h  and 2h , respectively. 

Example 2.4. Let  { }1 0.5,0.4,0.3h =  and { }2 0.9,0.8,0.6h =  be two HFEs. Then, 3l = . The 

hesitant normalized Hamming distance of 1h  and 2h  is computed as 
 

( ) ( ) ( ) ( )
3

1 2 1 2
1

1 1
, 0.9 0.5 0.8 0.4 0.6 0.3 0.3667

3 3
i i

i

d h h h hσ σ

=
= − = − + − + − =∑ . 

       
                                                                                                                                                                                     



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(13), 1865-1893, 2014 
 
 

1870 
 

3  A Novel Method for Multiple Attribute Group Deci sion Making 
With Hesitant Fuzzy Information 

 
3.1 Problem description 
 
First, a multiple attribute group decision making (MAGDM) problem with hesitant fuzzy 

information can be formulated as follows: Let { }1 2, , , mX x x x= L  be a set of m  alternatives, 

{ }1 2, , , nC c c c= K  be a collection of n  attributes, whose weight vector is ( )1 2, , ,
T

nw w w w= L , 

with [ ]0,1jw ∈ , 1,2, ,j n= L , and 
1

1
n

j
j

w
=

=∑ , and let { }1 2, , , pD d d d= L  is a set of p  

decision makers, whose weight vector is ( )1 2, , ,
T

pω ω ω ω= L , with [ ]0,1kω ∈ , 1,2, ,k p= L , 

and 
1

1
p

k
k

ω
=

=∑ . Let ( ) ( )( )k k
ij

m n
A a

×
=  be a hesitant fuzzy decision matrix, where 

( ) ( )( ) ( )
( )1,2, , k
ij

t
k k

ij ij a
a a t l

σ = = 
 

L  is a HFE, which is a set of all of the possible values that the 

alternative ix X∈  satisfies the attribute jc C∈ , given by the decision maker kd D∈ . 

In general, there are benefit attributes (i.e., the bigger the attribute values the better) and cost 
attributes (i.e., the smaller the attribute values the better) in a MAGDM problem. For such cases, 

we need to transform the hesitant fuzzy decision matrices ( ) ( )( )k k
ij

m n
A a

×
=  ( 1,2, ,k p= L ) into 

the normalized hesitant fuzzy decision matrix ( ) ( )( )k k
ij

m n
B b

×
=  ( 1,2, ,k p= L ) by the following 

equation: 

( )
( )

( )( )
, for benefit attribute

, for cost attribute

k
ij j

k
cij k

ij j

a c
b

a c


= 


,    1,2, ,i m= L , 1,2, ,j n= L , 1,2, ,k p= L    (5) 

where ( )( )c
k

ija  is the complement of ( )k
ija , such that ( )( ) ( )( ) ( )

( )1 1,2, , k
ij

c t
k k

ij ij a
a a t l

σ = − = 
 

L . 

In most situations, it is noted that the numbers of the elements in different HFEs ( )k
ijb  of ( )kB  

( 1,2, ,k p= L ) are different. In order to more accurately calculate the distance between these 
HFEs, we should extend the shorter ones until all of them have the same length. Let 

( ){ }max 1,2, , ,  1,2, , , 1,2, ,k
ijb

l l i m j n k p= = = =L L L . By the regulation method proposed by 

Xu and Zhang [26], we transform the hesitant fuzzy decision matrices ( ) ( )( )k k
ij

m n
B b

×
=  

( 1,2, ,k p= L ) into the corresponding hesitant fuzzy decision matrices ( ) ( )( )k k
ij

m n
H h

×
=  
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( 1,2, ,k p= L ), such that ( )k
ijh

l l=  for all 1,2, ,i m= L , 1,2, ,j n= L , and 1,2, ,k p= L . 

 
3.2 A Quadratic Programming Model for Determining the Weights of 

Decision Makers 
 
First, we aggregate the individual hesitant fuzzy decision matrices 

( ) ( )( ) ( )( ){ }1,2, ,
t

k k k
ij ij

m n
m n

H h h t l
×

×

 = = = 
 

L  ( 1,2, ,k p= L ) into the group hesitant fuzzy 

decision matrix ( ) { }( )1,2, ,t
ij ijm n m n

H h h t l
× ×

= = = L , where 

 

                                    ( )( ) ( )( ) ( )

1
1

1,2, ,
pp t

k k
ij k ij k ij

k
k

h h h t l
σ

ω ω
= =

  = ⊕ = = 
  
∑ L                               (6) 

 
In general, the smaller the deviation between the individual decision information and the group 
decision information, the larger the consensus between the individual decision information and the 
group decision information, the closer that the individual decision information is to the group 
decision information, the more reliable the individual decision information. Therefore, the 
criterion of determining the optimal weights of decision makers is to minimize the deviation 
measure between the individual hesitant fuzzy decision matrices and the group hesitant fuzzy 
decision matrix. 
 
In the following, we consider the issue how to determine the weights of decision makers, which 
can be classified into two cases: 
 

(1) If all ( )kH  ( 1,2, ,k p= L ) are the same, i.e.,  ( )kH H=  ( 1,2, ,k p= L ), then it is 

reasonable to assign the decision makers kd  ( 1,2, ,k p= L ) the same weight 
1

p
. 

(2) If not all of ( )kH  ( 1,2, ,k p= L ) are the same, i.e., there at least exist two matrices ( )1kH  and 
( )2kH  ( { }1 2, 1,2, ,k k p∈ L ) such that ( ) ( )1 2k kH H≠ , then we introduce the deviation variables 

                  ( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

1 11,

pl t tl t k qk t
ij q ijij ij

t qk k t
ij ij ij

h hh h
e d h h

l l

σ σσ σ ω
ω = ==

−−
= = =

∑ ∑∑
      (7) 

 
for all 1,2, ,i m= L , 1,2, ,j n= L , 1,2, ,k p= L , 

and then define the square deviations among all ( )kH  ( 1,2, ,k p= L ) and H  as below: 
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( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )
1

1

1

2

1 1 1 1

2

1 1 1 1 1

2

1 1 1 1 1

1

1

1

1

1

p m n l t
k t

ij ij
k i j t

p pm n l t t
k q

ij q ij
k i j t q

p pm n l t t
k q

q ij ij
k i j t q

p t t
k q

q ij ij
q

e h h
mnpl

h h
mnpl

h h
mnpl

h h
mnpl

σ σ

σ σ

σ σ

σ σ

ω

ω

ω

ω

= = = =

= = = = =

= = = = =

=

 = − 
 

 
= − 

 

  = −  
  

  = −     

∑∑∑∑

∑∑∑∑ ∑

∑∑∑∑ ∑

∑ ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

2

2

2

1 2

1 2

1 2

1 2

1 2

1 1 1 1 1

1 1 1 1 1 1

1

1

p pm n l t t
k q

q ij ij
k i j t q

p p pm n l t t t t
k q k q

q q ij ij ij ij
k i j t q q

t t t t
k q k q

q q ij ij ij ij

h h

h h h h
mnpl

h h h h
mnpl

σ σ

σ σ σ σ

σ σ σ σ

ω

ω ω

ω ω

= = = = =

= = = = = =

  −     

   = − −       

 = − − 
 

∑∑∑∑ ∑

∑∑∑∑ ∑∑

1 21 1 1 1 1 1

p p p m n l

q q k i j t= = = = = =

  
  

  
∑∑ ∑∑∑∑

     (8) 

 

It is obvious that ( )e ω  is the function with decision makers’ weight vector 

( )1 2, , ,
T

pω ω ω ω= L . Let ( )
1 2q q p p

G g
×

=  be a matrix, where 

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )
1 2

1 2
1 1 1 1

1 p m n l t t t t
k q k q

q q ij ij ij ij
k i j t

g h h h h
mnpl

σ σ σ σ

= = = =

   = − −   
   

∑∑∑∑ , 

1 2, 1,2, ,q q p= L  (9) 
Thus, Eq. (8) can be rewritten as 

( ) Te Gω ω ω=                                                                            (10) 

 
Therefore, based on the viewpoint of maximizing group consensus, we construct the following 
optimal model to determine decision makers’ weights in the context of GDM: 
 

                                               

( )

1

min

1,
s.t.

0, 1,2, , ,

T

p

k
k

k

e G

k p

ω ω ω

ω

ω
=

=


=


 ≥ =

∑

L

                                               (M-1) 

Letting ( )1,1, ,1
T

E = L , we have 

                                                 

( )min

1,
s.t.

0

T

T

e G

E

ω ω ω

ω
ω

=

 =
 ≥

                                                         (M-2) 

If we take no account of the constraint of 0ω ≥  temporally, then the model (M-2) becomes 
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( )min

s.t. 1

T

T

e G

E

ω ω ω

ω

=

=
                                                        (M-3) 

Theorem 3.1. Let ( ) ( )( ) ( )( ) ( )
1,2, ,

t
k k k

ij ij
m n

m n

H h h t l
σ

×
×

  = = =  
  

L  ( 1,2, ,k p= L ) be p  

hesitant fuzzy decision matrices and ( ) { }( )1,2, ,t
ij ijm n m n

H h h t l
× ×

= = = L  be the group hesitant 

fuzzy decision matrix derived from Eq. (6). If not all of ( )kH  ( 1,2, ,k p= L ) are the same, then 
the optimal solution to the model (M-3) is 
 

1

1T

G E

E G E
ω

−
∗

−=                                                                  (11) 

 

Proof. Because not all of ( )kH  ( 1,2, ,k p= L ) are the same, there at least exist one matrix ( )0kH  

( { }0 1,2, ,k p∈ L ) such that ( )0kH H≠ . Thus, there exists { }0 1,2, ,i m∈ L , { }0 1,2, ,j n∈ L , 

and { }0 1,2, ,t l∈ L , satisfying ( )( ) ( ) ( )0
0 0

0 0 0 0

t
k t

i j i jh h
σ σ≠ . Therefore, we have 

( )( ) ( ) ( )0
0 0

0 0 0 0

2

0
t

k t
i j i jh h

σ σ − > 
 

 

 
Thus, 

( ) ( )( ) ( ) ( )
2

1 1 1 1

1
0

p m n l t
k t

ij ij
k i j t

e h h
mnpl

σ σω
= = = =

 = − > 
 

∑∑∑∑                     (12) 

 
Obviously, according to Eq. (9), we have 

1 2 2 1q q q qg g= ,              1 2, 1,2, ,q q p∀ = L  

As a result, ( )
1 2q q p p

G g
×

=  is a symmetry matrix. According to Eqs. (10) and (12), we have 

( ) 0Te Gω ω ω= > ; 

Because ω  is the weight vector of experts, 0ω ≠ . Therefore, ( )
1 2q q p p

G g
×

=  is a definite matrix, 

and it is also a nonsingular matrix. In the following, we can derive the solution to the model (M-3) 
by the following procedures: 
 
We first construct the Lagrange function: 

                                          ( ) ( ), 1T TL G Eω λ ω ω λ ω= + −                                                (13) 

where λ  is the Lagrange multiplier. 
 
Differentiate Eq. (13) with respect to ω  and λ , and then set these partial derivatives equal to 
zero, then we have the following equations: 
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( )

( )

,
2 0

,
1 0T

L
G E

L
E

ω λ
ω λ

ω
ω λ

ω
λ

∂
= + = ∂


∂ = − = ∂

                                                     (14) 

 
We can obtain the optimal solution by solving Eq. (14) 
 

1

1T

G E

E G E
ω

−
∗

−=  

Because 
( )2

2

,
2

L
G

ω λ
ω

∂
=

∂
 is a definite matrix, ( ) Te Gω ω ω=  is a strictly convex function. 

Consequently, 
1

1T

G E

E G E
ω

−
∗

−=  is the unique optimal solution to the model (M-3), which 

completes the proof.  � 
 

If 
1

1
0

T

G E

E G E
ω

−
∗

−= ≥ , then it is also the unique optimal solution to the model (M-2); otherwise, 

we can utilize the LINGO (Linear Interactive and General Optimizer) software package to solve 
the model (M-2). 
 
3.3 Obtaining the Optimal Weights of Attributes by the Maximizing 

Deviation Method 
 
Due to the fact that many practical GDM problems are complex and uncertain and human thinking 
is inherently subjective, the information about attribute weights is usually incomplete. For 
convenience, let ∆  be a set of the known weight information [27-30], where ∆  can be 
constructed by the following forms, for i j≠ : 

Form 1. A weak ranking: { }i jw w≥ ; 

Form 2. A strict ranking: { }i j iw w α− ≥  ( 0iα > ); 

Form 3. A ranking of differences: { }i j k lw w w w− ≥ − , for j k l≠ ≠ ; 

Form 4. A ranking with multiples: { }i i jw wα≥  ( 0 1iα≤ ≤ ); 

Form 5. An interval form: { }i i i iwα α ε≤ ≤ +  (0 1i i iα α ε≤ ≤ + ≤ ). 

 
The maximizing deviation method was proposed by Wang [31] to estimate the attribute weights in 
MADM problems with numerical information. According to Wang [31], if the performance values 
of all the alternatives have small differences under an attribute, it shows that such an attribute 
plays a less important role in choosing the best alternative and should be assigned a smaller 
weight. On the contrary, if an attribute makes the performance values of all the alternatives have 
obvious differences, then such an attribute plays a much important role in choosing the best 
alternative and should be assigned a larger weight. Especially, if all available alternatives score 
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about equally with respect to a given attribute, then such an attribute will be judged unimportant 
by most decision makers and should be assigned a very small weight. Wang [31] suggests that 
zero weight should be assigned to the attribute of this kind. 
 
In the following, based on the maximizing deviation method, we construct an optimization model 
to determine the optimal relative weights of attributes under hesitant fuzzy environments. For the 
attribute jc C∈ , the deviation of the alternative ix X∈  to all the other alternatives with respect 

to the decision maker kd D∈  can be defined as below: 
 

( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )

1 1

1

,

m l t t
k k

ij qjm
q tk k k

ij ij qj
q

h h

D d h h
l

σ σ

= =

=

−
= =

∑∑
∑  

 
1,2, ,i m= L , 1,2, ,j n= L , 1,2, ,k p= L                 (15) 

Let 
 

( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )

1 1 1

1 1 1

,

m m l t t
k k

ij qjm m m
i q tk k k k

j ij ij qj
i i q

h h

D D d h h
l

σ σ

= = =

= = =

−
= = =

∑∑∑
∑ ∑∑  

                            1,2, ,j n= L , 1,2, ,k p= L                                                                (16) 
 

then ( )k
jD  represents the deviation value of all alternatives to other alternatives for the attribute 

jc C∈  with respect to the decision maker kd D∈ . 

Further, let 
 

                                   

( ) ( )

( )

( ) ( )( )
( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1

,

p n
k

k j j
k j

p n m
k

k j ij
k j i

p n m m
k k

k j ij qj
k j i q

p n m m l t t
k k

k j ij qj
k j i q t

l t t
k k

k ij qj j
t

D w w D

w D

w d h h

w h h

l

h h w

σ σ

σ σ

ω

ω

ω

ω

ω

= =

= = =

= = = =

= = = = =

=

 
=  

 

  =   
  

   
=         

  
−   

  =

−
=

∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑∑∑

∑
1 1 1 1

p n m m

k j i q

l

= = = =

 
 
 

∑ ∑∑∑

           (17) 
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then ( )D w  represents the deviation value of all alternatives to other alternatives for all the 

attributes with respect to all the decision makers. 
 
From the above analysis, we can construct a non-linear programming model to select the weight 

vector w  by maximizing ( )D w , as follows: 

 

                                    ( )
( )( ) ( ) ( )( ) ( )

1 1 1 1 1

2

1

max

s.t. 0, 1,2, , , 1

p n m m l t t
k k

k ij qj j
k j i q t

n

j j
j

h h w

D w
l

w j n w

σ σ
ω

= = = = =

=

 
− 

 =

≥ = =

∑ ∑∑∑∑

∑L

     (M-4) 

 
To solve this model, we construct the Lagrange function: 
 

                          ( )
( )( ) ( ) ( )( ) ( )

1 1 1 1 1 2

1

, 1
2

p n m m l t t
k k

k ij qj j n
k j i q t

j
j

h h w

L w w
l

σ σ
ω

λλ = = = = =

=

 
− 

  = + − 
 

∑ ∑∑∑∑
∑  (18) 

where λ  is the Lagrange multiplier. 
 
Differentiating Eq. (18) with respect to jw  ( 1,2, ,j n= L ) and λ , and setting these partial 

derivatives equal to zero, then the following set of equations is obtained: 
 

                                  

( )( ) ( ) ( )( ) ( )

1 1 1 1 0

p m m l t t
k k

ij qj k
k i q t

j
j

h h
L

w
w l

σ σ
ω

λ= = = =

−
∂ = + =
∂

∑∑∑∑
                     (19) 

 

2

1

1
1 0

2

n

j
j

L
w

λ =

 ∂ = − = ∂  
∑                                                                        (20) 

 
It follows from Eq. (19) that 
 
 

                                   

( )( ) ( ) ( )( ) ( )

1 1 1 1

p m m l t t
k k

ij qj k
k i q t

j

h h

w
l

σ σ
ω

λ
= = = =

− −
=
∑∑∑∑

                                    (21) 

 
Putting Eq. (19) into Eq. (20), we get 
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( )( ) ( ) ( )( ) ( )
2

1 1 1 1 1

pn m m l t t
k k

ij qj k
j k i q t

h h

l

σ σ
ω

λ = = = = =

 
− − 

 =
∑ ∑∑∑∑

                        (22) 

 
Then, by combining Eqs. (21) and (22), we have 
 

                                     

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

1 1 1 1

2

1 1 1 1 1

p m m l t t
k k

ij qj k
k i q t

j
pn m m l t t

k k
ij qj k

j k i q t

h h

w

h h

σ σ

σ σ

ω

ω

= = = =

= = = = =

−
=

 
− 

 

∑∑∑∑

∑ ∑∑∑∑

                       (23) 

 
By normalizing jw  ( 1,2, ,j n= L ), we make their sum into a unit, and get 

 

                                       

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )
1 1 1 1

1 1 1 1 1 1

p m m l t t
k k

ij qj k
j k i q t

j n pn m m l t t
k k

j ij qj k
j j k i q t

h h
w

w
w h h

σ σ

σ σ

ω

ω

= = = =∗

= = = = = =

−
= =

−

∑∑∑∑

∑ ∑∑∑∑∑
                (24) 

 
which can be considered as the optimal weight vector of attributes. 
 
However, it is noted that there are practical situations in which the information about the weight 
vector is not completely unknown but partially known. For such cases, we establish the following 
constrained optimization model: 
 

                                    ( )
( )( ) ( ) ( )( ) ( )

1 1 1 1 1

1

max max

s.t. , 0, 1,2, , , 1

p n m m l t t
k k

k ij qj j
k j i q t

n

j j
j

h h w

D w
l

w w j n w

σ σ
ω

= = = = =

=

 
− 

 =

∈ ∆ ≥ = =

∑ ∑∑∑∑

∑L

  (M-5) 

 
It is noted that the model (M-5) is a linear programming model that can be solved using the 
MATLAB mathematics software package. Suppose that the optimal solution to the model (M-5) is 

( )1 2, , ,
T

nw w w w= L , which can be considered as the weight vector of attributes. 

 
3.4 Extended TOPIS Method for the MAGDM with Hesitant Fuzzy 

Information 
 
TOPSIS method, initially introduced by Hwang and Yoon [32], is a widely used method for 
dealing with MADM problems, which focuses on choosing the alternative with the shortest 
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distance from the positive ideal solution (PIS) and the farthest distance from the negative ideal 
solution (NIS). In the following, based on the above analysis, we shall extend the classical TOPIS 
method to the MAGDM problems under hesitant fuzzy environments, in which the information 
about the weights of decision makers is unknown, the information about attribute weights is 
incompletely known or completely unknown, and the attribute values are given in the form of 
HFEs. 
 
The flowchart of the extended TOPIS method is provided in Fig. 1. 

Fig. 1. The flowchart of the developed methods. 
 
The extended method is composed of the following steps: 
 
Step 1. For a MAGDM problem, the decision maker kd D∈  constructs the hesitant fuzzy 

decision matrix ( ) ( )( )k k
ij

m n
A a

×
= , where ( )k

ija  is a HFE, given by the DM kd D∈ , for the 

alternative ix X∈  with respect to the attribute jc C∈ . Utilize Eq. (5) to transform the hesitant 

S ta g e  4 :  T h e  e x t e n d e d  
T O P S I S

H e s i t a n t  f u z z y  o r  in te r v a l -
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D e t e r m in e  th e  a t t r i b u te  w e ig h t s

S ta g e  2 :  T h e  m a x im i z in g  g r o u p  
c o n s e n s u s  m e t h o d

S t a g e  3 :  T h e  m a x im i z in g  
d e v i a t i o n  m e th o d
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C o n s t r u c t  h e s i t a n t  f u z z y  o r  i n t e r v a l -
v a lu e d  h e s i ta n t  f u z z y  d e c i s i o n  m a t r ic e s
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fuzzy decision matrices ( ) ( )( )k k
ij

m n
A a

×
=  ( 1,2, ,k p= L ) into the normalized hesitant fuzzy 

decision matrices ( ) ( )( )k k
ij

m n
H h

×
=  ( 1,2, ,k p= L ). 

Step 2. If the information about the weights of decision makers is unknown, then we use Eq. (11) 
to obtain the weights of decision makers. 
Step 3. If the information about the attribute weights is completely unknown, then we use Eq. (24) 
to obtain the attribute weights; if the information about the attribute weights is partly known, then 
we solve the model (M-5) to obtain the attribute weights. 

Step 4. Determine the hesitant fuzzy positive ideal solution (HFPIS) ( ) ( ) ( ) ( ){ }1 2, , ,k k k k
nh h h h+ + + += L  

and the hesitant fuzzy negative ideal solution (HFNIS) ( ) ( ) ( ) ( ){ }1 2, , ,k k k k
nh h h h− − − −= L  for each 

decision maker kd  by the following equations: 

 

                        ( ) ( ){ } ( )( ) ( ){ }max max 1,2, ,
t

k k k
j ij ij

i i
h h h t l

σ

+
 = = = 
 

L                   1,2, ,j n= L   (25) 

( ) ( ){ } ( )( ) ( ){ }min min 1,2, ,
t

k k k
j ij ij

i i
h h h t l

σ

−
 = = = 
 

L                     1,2, ,j n= L     (26) 

Step 5. Calculate the separation measures ( )k
id+  of each alternative ix  from the HFPIS ( )kh+  of the 

decision maker kd  as: 

                                ( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )

1 1

1

,

n l t t
k k

j ij jn
j tk k k

i j ij j
j

w h h

d w d h h
l

σ σ

+
= =

+ +
=

−
= =

∑∑
∑                       (27) 

In a similar way, calculate the separation measures ( )k
id−  of each alternative ix  from the HFNIS 

( )kh−  of the decision maker kd  as: 

                                ( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )

1 1

1

,

n l t t
k k

j ij jn
j tk k k

i j ij j
j

w h h

d w d h h
l

σ σ

−
= =

− −
=

−
= =

∑∑
∑                       (28) 

Step 6. Calculate the relative closeness coefficient of each alternative ix  to the HFPIS ( )kh+  of the 

decision maker kd  as: 

                                                 ( )
( )

( ) ( )

k
k i

i k k
i i

d
C

d d
−

+ −

=
+

                                                                 (29) 

After calculating the ( )k
iC  for each decision maker kd  ( 1,2, ,k p= L ), we then form the relative-

closeness coefficient matrix as below: 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2
1 1 1

1 2
2 2 2

1 2

p

p

p
m m m m p

C C C

C C C
C

C C C
×

 
 
 =  
 
 
 

L

L

L L L L

L

                                          (30) 

Steps 4-6 extend the standard TOPSIS to hesitant fuzzy environments and can therefore be called 
the hesitant fuzzy TOPSIS (HFTOPSIS). From this stage on our method continues by applying the 
standard TOPSIS to the relative-closeness coefficient decision matrix in order to identify the 
group positive ideal solution. 
 
Step 7. Identify the group positive ideal solution (GPIS) and group negative ideal solution (GNIS), 
respectively as follows: 

                                      ( ){ } ( ){ } ( ){ }{ }1 2max ,max , ,max pG
i i i

i i i
h C C C+ = L                              (31) 

 
( ){ } ( ){ } ( ){ }{ }1 2min ,min , ,min pG
i i ii i i

h C C C− = L                                    (32) 

 

Step 8. Calculate the separation measures G
id+  and G

id−  of each alternative ix  from the group 

positive ideal solution Gh+  and the group negative ideal solution Gh− , respectively, as follows: 

 

                               ( ) ( ){ }( ) ( ) ( ){ }( )
1 1

,max max
p p

k k k kG
i k i i k i i

i i
k k

d d C C C Cω ω+
= =

= = −∑ ∑               (33) 

 

                               ( ) ( ){ }( ) ( ) ( ){ }( )
1 1

,min min
p p

k k k kG
i k i i k i i

i i
k k

d d C C C Cω ω−
= =

= = −∑ ∑                (34) 

 

Step 9. Calculate the group relative-closeness coefficient G
iC  of each alternative ix  to group 

positive ideal solution G
id+  as: 

 

                                          
G

G i
i G G

i i

d
C

d d
−

+ −

=
+

                                                                        (35) 

 
Step 10. Rank the alternatives ix  ( 1,2, ,i m= L ) according to the group relative-closeness 

coefficients G
iC  ( 1,2, ,i m= L ) and then select the most desirable one(s). The larger the value of 

G
iC , the more different between ix  and the group negative ideal object G

id− , while the more 

similar between ix  and the group positive ideal object Gid+ . Therefore, the alternative(s) with the 
maximum group relative-closeness coefficient should be chosen as the optimal one(s). 
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4 Illustrative Example 
 
In this section, an investment problem is firstly used to demonstrate the applicability and the 
effectiveness of our method under hesitant fuzzy environments. Then, the investment problem is 
also used to demonstrate the applicability and the implementation process of the developed 
method under interval-valued hesitant fuzzy environments. Finally, a comparison analysis with 
other methods is made to show the superiority of the developed methods. 

 
Example 4.1. Let us suppose an investment company, which wants to invest a sum of money in 
the best option (adapted from [33-35]). There is a panel with five possible alternatives in which to 
invest the money: (1) 1x  is a car industry; (2) 2x  is a food company; (3) 3x  is a computer 

company; (4) 4x  is an arms company; (5) 5x  is a TV company. The investment company must 

make a decision according to the following four attributes: (1) 1c  is the risk analysis; (2) 2c  is the 

growth analysis; (3) 3c  is the social–political impact analysis; (4) 4c  is the environmental impact 

analysis. Suppose that five possible candidates ix  ( )1,2,3,4,5i =  are to be evaluated by three 

decision makers kd  ( 1,2,3k = ) under the above four attributes jc  ( 1,2,3,4j = ). The decision 

makers construct, respectively, three hesitant fuzzy decision matrices ( ) ( )( )
5 4

k k
ijA a

×
=  ( 1,2,3k = ) 

listed in Tables 1-3, where ( )k
ija  is a HFE denoting all the possible values, given by the decision 

maker kd , for the alternative ix  under the attribute jc . 

 

Table 1. Hesitant fuzzy decision matrix ( )1A  provided by the decision maker 1d  
 

1 
1c  2c  3c  4c  

1x  
{0.5,0.4,0.3} {0.9,0.8,0.6} {0.4,0.3,0.2,0.1} {0.8,0.7,0.6,0.4,0.3} 

2x  
{0.8,0.7,0.6,0.5,0.3} {0.9,0.7,0.5,0.4} {0.3,0.2} {0.6,0.5,0.4,0.3} 

3x  
{0.7,0.6} {0.8,0.6,0.5} {0.7,0.5,0.3} {0.4,0.3} 

4x  
{0.7,0.5} {0.4,0.3} {0.9,0.8,0.7,0.6} {0.5,0.4,0.3} 

5x  
{0.9,0.7} {0.5,0.3} {0.5,0.4,0.3} {0.8,0.7,0.5} 
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Table 2. Hesitant fuzzy decision matrix ( )2A  provided by the decision maker 2d . 
 

2 
1c  2c  3c  4c  

1x  {0.9,0.8,0.7}  {0.4,0.3,0.2} {0.8,0.6} {0.7,0.6,0.5} 

2x  {0.7,0.6,0.5,0.4,0.3} {0.8,0.7,0.6,0.5} {0.5,0.4,0.3} {0.8,0.7,0.6,0.4,0.3} 

3x  {0.3,0.1}  {0.5,0.3,0.2,0.1}  {0.8,0.6,0.5}  {0.9,0.8,0.7} 

4x  {0.9,0.8,0.7} {0.7,0.6} {0.6,0.5,0.3} {0.8,0.6} 

5x  {0.7,0.6} {0.8,0.7,0.4,0.3} {0.9,0.7,0.6,0.3,0.2} {0.5,0.4} 

 

Table 3. Hesitant fuzzy decision matrix ( )3A  provided by the decision maker 3d . 

 
3 

1c  2c  3c  4c  

1x  {0.7,0.6,0.5,0.4,0.3}  {0.4,0.3,0.1}  { 0.6,0.5,0.4} {0.8,0.7,0.6,0.4}  

2x  {0.6,0.5,0.3} {0.4,0.3,0.2} {0.9,0.7} {0.7,0.5} 

3x  {0.8,0.6,0.5}  {0.2,0.1} {0.6,0.4,0.3,0.2,0.1}  {0.9,0.7,0.6,0.5}  

4x  {0.9,0.6} {0.8,0.6,0.5,0.3,0.1} {0.7,0.5,0.3} {0.8,0.7,0.6} 

5x  {0.8,0.7,0.6} {0.6,0.5,0.4} {0.7,0.6,0.5} {0.9,0.7,0.5} 

 
In what follows, we utilize the developed method to find the best alternative(s). We now discuss 
two different cases. 
 
Case 1: Assume that the information about the attribute weights is completely unknown; in this 
case, we use the following steps to get the most desirable alternative(s). 
Step 1. Considering that all the attributes jc  ( 1,2,3,4j = ) are the benefit type attributes, the 

hesitant fuzzy decision matrices ( ) ( )( )
5 4

k k
ijA a

×
=  ( 1,2,3k = ) do not need normalization. Suppose 

that all the decision makers (DMs) ( 1,2,3k = ) are pessimistic, then we utilize Definition 2.5 to 

transform the hesitant fuzzy decision matrices ( ) ( )( )
5 4

k k
ijA a

×
=  ( 1,2,3k = ) into the 

corresponding hesitant fuzzy decision matrices ( ) ( )( )
5 4

k k
ijH h

×
=  ( 1,2,3k = ) (see Tables 4-6), 

such that ( ) 5k
ijh

l =  for all 1,2,3,4,5i = , 1,2,3,4j = , and 1,2,3k = . 
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Table 4. Hesitant fuzzy decision matrix ( )1H  provided by the decision maker 1d . 

 
4 

1c  2c  3c  4c  

1x  {0.5,0.4,0.3,0.3,0.3} {0.9,0.8,0.6,0.6,0.6} {0.4,0.3,0.2,0.1,0.1} {0.8,0.7,0.6,0.4,0.3} 

2x  {0.8,0.7,0.6,0.5,0.3} {0.9,0.7,0.5,0.4,0.4} {0.3,0.2,0.2,0.2,0.2} {0.6,0.5,0.4,0.3,0.3} 

3x  {0.7,0.6,0.6,0.6,0.6} { 0.8,0.6,0.5,0.5,0.5}  {0.7,0.5,0.3,0.3,0.3}  {0.4,0.3,0.3,0.3,0.3}  

4x  {0.7,0.5,0.5,0.5,0.5} {0.4,0.3,0.3,0.3,0.3} {0.9,0.8,0.7,0.6,0.6} {0.5,0.4,0.3,0.3,0.3} 

5x  {0.9,0.7,0.7,0.7,0.7} {0.5,0.3,0.3,0.3,0.3} {0.5,0.4,0.3,0.3,0.3} {0.8,0.7,0.5,0.5,0.5} 

 

Table 5. Hesitant fuzzy decision matrix ( )2H  provided by the decision maker 2d . 
 
5 

1c  2c  3c  4c  

1x  {0.9,0.8,0.7,0.7,0.7}  {0.4,0.3,0.2,0.2,0.2}  {0.8,0.6,0.6,0.6,0.6}  {0.7,0.6,0.5,0.5,0.5}  

2x  {0.7,0.6,0.5,0.4,0.3} {0.8,0.7,0.6,0.5,0.5} {0.5,0.4,0.3,0.3,0.3} {0.8,0.7,0.6,0.4,0.3} 

3x  {0.3,0.1,0.1,0.1,0.1}  {0.5,0.3,0.2,0.1,0.1}  {0.8,0.6,0.5,0.5,0.5}  {0.9,0.8,0.7,0.7,0.7}  

4x  {0.9,0.8,0.7,0.7,0.7} {0.7,0.6,0.6,0.6,0.6} {0.6,0.5,0.3,0.3,0.3} {0.8,0.6,0.6,0.6,0.6} 

5x  {0.7,0.6,0.6,0.6,0.6} {0.8,0.7,0.4,0.3,0.3} {0.9,0.7,0.6,0.3,0.2} {0.5,0.4,0.4,0.4,0.4}  

 

Table 6. Hesitant fuzzy decision matrix ( )3H  provided by the decision maker 3d . 

 
6 

1c  2c  3c  4c  

1x  {0.7,0.6,0.5,0.4,0.3}  {0.4,0.3,0.1,0.1,0.1}  { 0.6,0.5,0.4,0.4,0.4}  {0.8,0.7,0.6,0.4,0.4}  

2x  {0.6,0.5,0.3,0.3,0.3} {0.4,0.3,0.2,0.2,0.2} {0.9,0.7,0.7,0.7,0.7} {0.7,0.5,0.5,0.5,0.5} 

3x  {0.8,0.6,0.5,0.5,0.5}  {0.2,0.1,0.1,0.1,0.1}  {0.6,0.4,0.3,0.2,0.1}  {0.9,0.7,0.6,0.5,0.5}  

4x  {0.9,0.6,0.6,0.6,0.6} {0.8,0.6,0.5,0.3,0.1} {0.7,0.5,0.3,0.3,0.3} {0.8,0.7,0.6,0.6,0.6} 

5x  {0.8,0.7,0.6,0.6,0.6} {0.6,0.5,0.4,0.4,0.4} {0.7,0.6,0.5,0.5,0.5} {0.9,0.7,0.5,0.5,0.5} 

 
Step 2: Utilize Eq. (11) to get the weights of the decision makers: 
 

1 1 1
, ,

3 3 3
ω  =  

   
 

Step 3. Considering that the information about the attribute weights is completely unknown, we 
utilize Eq. (24) to get the optimal weight vector of attributes: 
 

( )0.2694,0.2850,0.2694,0.1762
T

w =
 

 

Step 4. Utilize Eqs. (25) and (26) to determine the HFPIS ( )kh+  ( 1,2,3k = ) and the HFNIS ( )kh−  
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( 1,2,3k = ) for each decision maker kd  ( 1,2,3k = ), respectively: 
 

( ) { } { } { } { }{ }1 0.9,0.7,0.7,0.7,0.7 , 0.9,0.8,0.6,0.6,0.6 ,0.9,0.8,0.7,0.6,0.6 , 0.8,0.7,0.6,0.5,0.5h+ =  

( ) { } { } { } { }{ }1 0.5,0.4,0.3,0.3,0.3 , 0.4,0.3,0.3,0.3,0.3 ,0.3,0.2,0.2,0.1,0.1 , 0.4,0.3,0.3,0.3,0.3h− =  

( ) { } { } { } { }{ }2 0.9,0.8,0.7,0.7,0.7 , 0.8,0.7,0.6,0.6,0.6 ,0.9,0.7,0.6,0.6,0.6 , 0.9,0.8,0.7,0.7,0.7h+ =  

( ) { } { } { } { }{ }2 0.3,0.1,0.1,0.1,0.1 , 0.4,0.3,0.2,0.1,0.1 ,0.5,0.4,0.3,0.3,0.2 , 0.5,0.4,0.4,0.4,0.3h− =  

( ) { } { } { } { }{ }3 0.9,0.7,0.6,0.6,0.6 , 0.8,0.6,0.5,0.4,0.4 ,0.9,0.7,0.7,0.7,0.7 , 0.9,0.7,0.6,0.6,0.6h+ =  

 ( ) { } { } { } { }{ }3 0.6,0.5,0.3,0.3,0.3 , 0.2,0.1,0.1,0.1,0.1 ,0.6,0.4,0.3,0.2,0.1 , 0.7,0.5,0.5,0.4,0.4h− =  

Step 5: Utilize Eqs. (27) and (28) to calculate the separation measures ( )k
id+  and ( )k

id−  of each 

alternative ix  of the decision maker kd : 
 

( )1
1 0.2477d+ = , ( )1

1 0.1613d− = , ( )1
2 0.2473d+ = , ( )1

2 0.1618d− = , ( )1
3 0.2002d+ = , ( )1

3 0.2088d− = , 
( )1
4 0.2080d+ = ,   ( )1

4 0.2010d− = , ( )1
5 0.2031d+ = ,   ( )1

5 0.2059d− = , 
( )2
1 0.1600d+ = , ( )2

1 0.2875d− = , ( )2
2 0.2029d+ = , ( )2

2 0.2446d− = , ( )2
3 0.3137d+ = , ( )2

3 0.1338d− = , 
( )2
4 0.1080d+ = , ( )2

4 0.3395d− = , ( )2
5 0.1809d+ = ,   ( )2

5 0.2665d− = , 
( )3
1 0.2384d+ = , ( )3

1 0.1016d− = , ( )3
2 0.1799d+ = , ( )3

2 0.1601d− = , ( )3
3 0.2668d+ = , ( )3

3 0.0732d− = , 
( )3
4 0.1179d+ = ,   ( )3

4 0.2221d− = , ( )3
5 0.0873d+ = ,   ( )3

5 0.2527d− = . 

Step 6: Utilize Eq. (29) to calculate the relative closeness coefficient ( )k
iC  of each alternative ix  

to the HFPIS ( )kh+  of the decision maker kd  as 
 

( )1
1 0.3945C = ,  ( )1

2 0.3955C = , ( )1
3 0.5105C = , ( )1

4 0.4915C = , ( )1
5 0.5034C = , 

( )2
1 0.6424C = ,  ( )2

2 0.5465C = , ( )2
3 0.2990C = , ( )2

4 0.7587C = , ( )2
5 0.5956C = , 

( )3
1 0.2987C = ,  ( )3

2 0.4709C = , ( )3
3 0.2152C = , ( )3

4 0.6532C = , ( )3
5 0.7434C = . 

 
Then, we construct the relative-closeness coefficient matrix as below: 
 

5 3

0.3945 0.6424 0.2987

0.3955 0.5465 0.4709

0.5105 0.2990 0.2152

0.4915 0.7587 0.6532

0.5034 0.5956 0.7434

C

×

 
 
 
 =
 
 
 
 

 

 
Step 7. Utilize Eqs. (31) and (32) to identify the group positive ideal solution (GPIS) and group 
negative ideal solution (GNIS), respectively, as follows: 

{ }0.5105,0.7587,0.7434Gh+ =  
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{ }0.3945,0.2990,0.2152Gh− =  

 

Step 8. Utilize Eqs. (33) and (34) to calculate the separation measures G
id+  and G

id−  of each 

alternative ix  from the group positive ideal solution Gh+  and the group negative ideal solution Gh− , 
respectively, as follows: 
 

1 0.2257Gd+ = , 1 0.1423Gd− = , 2 0.1999Gd+ = , 2 0.1681Gd− = , 3 0.3293Gd+ = , 3 0.0387Gd− = , 

4 0.0364Gd+ = , 4 0.3316Gd− = , 5 0.0567Gd+ = , 5 0.3113Gd− =  
 

Step 9. Utilize Eq. (35) to calculate the group relative-closeness coefficient G
iC  of each 

alternative ix  to group positive ideal solution Gid+  as: 
 

1 0.3868GC = ,  2 0.4568GC = ,   3 0.1051GC = ,  4 0.9011GC = ,   5 0.8459GC =  

 
Step 10: Rank the alternatives ix  ( 1,2,3,4,5i = ) according to the group relative-closeness 

coefficient G
iC  ( 1,2,3,4,5i = ). Clearly, 4 5 2 1 3x x x x xf f f f , and thus the best alternative is 

4x . 
 
Case 2: The information about the attribute weights is partly known and the known weight 
information is given as follows: 

4

1 2 3 4
1

0.15 0.25, 0.2 0.25, 0.3 0.4, 0.35 0.5, 0, 1,2,3,4, 1j j
j

w w w w w j w
=

 
∆ = ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≥ = = 

 
∑

Step 1’. See Step 1. 
Step 2’: See Step 2. 
Step 3’: Utilize the model (M-5) to construct the single-objective model as follows: 
 

( ) 1 2 3 4max 4.1600 4.4000 4.1600 2.7200

s.t.

D w w w w w

w

 = + + +


∈∆
 

 
By solving this model, we get the optimal weight vector of attributes 

( )0.1500,0.2000,0.3000,0.3500
T

w = . 

 
Step 4’. See Step 4. 

Step 5’: Utilize Eqs. (27) and (28) to calculate the separation measures ( )k
id+  and ( )k

id−  of each 

alternative ix  of the decision maker kd : 
 

( )1
1 0.2280d+ = , ( )1

1 0.1720d− = , ( )1
2 0.2680d+ = , ( )1

2 0.1320d− = , ( )1
3 0.2370d+ = , ( )1

3 0.1630d− = , 
( )1
4 0.1970d+ = ,   ( )1

4 0.2030d− = , ( )1
5 0.1870d+ = ,  ( )1

5 0.2130d− = , 
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( )2
1 0.1620d+ = , ( )2

1 0.2470d− = , ( )2
2 0.2130d+ = , ( )2

2 0.1960d− = , ( )2
3 0.2070d+ = , ( )2

3 0.2020d− = , 
( )2
4 0.1340d+ = ,   ( )2

4 0.2750d− = , ( )2
5 0.2140d+ = ,  ( )2

5 0.1950d− = , 
( )3
1 0.2140d+ = , ( )3

1 0.1010d− = , ( )3
2 0.1470d+ = , ( )3

2 0.1680d− = , ( )3
3 0.2390d+ = , ( )3

3 0.0760d− = , 
( )3
4 0.1220d+ = ,   ( )3

4 0.1930d− = , ( )3
5 0.0940d+ = ,  ( )3

5 0.2210d− = . 

Step 6’: Utilize Eq. (29) to calculate the relative closeness coefficient ( )k
iC  of each alternative ix  

to the hesitant fuzzy linguistic PIS ( )kX+  of the decision maker kd  as 
 

( )1
1 0.4300C = ,  ( )1

2 0.3300C = , ( )1
3 0.4075C = , ( )1

4 0.5075C = , ( )1
5 0.5325C = , 

( )2
1 0.6039C = ,  ( )2

2 0.4792C = , ( )2
3 0.4939C = , ( )2

4 0.6724C = , ( )2
5 0.4768C = , 

( )3
1 0.3206C = ,  ( )3

2 0.5333C = , ( )3
3 0.2413C = , ( )3

4 0.6127C = , ( )3
5 0.7016C = . 

 
Then, we construct the relative-closeness coefficient matrix as below: 
 

5 3

0.4300 0.6039 0.3206

0.3300 0.4792 0.5333

0.4075 0.4939 0.2413

0.5075 0.6724 0.6127

0.5325 0.4768 0.7016

C

×

 
 
 
 =
 
 
 
 

 

 
Step 7’. Utilize Eqs. (31) and (32) to identify the group positive ideal solution (GPIS) and group 
negative ideal solution (GNIS), respectively as follows: 
 

{ }0.5325,0.6724,0.7016Gh+ =  

{ }0.3300,0.4768,0.2413Gh− =  

 

Step 8’. Utilize Eqs. (33) and (34) to calculate the separation measures G
id+  and G

id−  of each 

alternative ix  from the GPIS Gh+  and the GNIS Gh− , respectively, as follows: 

1 0.1840Gd+ = , 1 0.1022Gd− = , 2 0.1880Gd+ = , 2 0.0982Gd− = , 3 0.2546Gd+ = , 3 0.0315Gd− = , 

4 0.0380Gd+ = , 4 0.2482Gd− = , 5 0.0652Gd+ = , 5 0.2209Gd− =  

Step 9’. Utilize Eq. (35) to calculate the group relative-closeness coefficient G
iC  of each 

alternative ix  to group positive ideal solution Gid+  as: 

1 0.3571GC = ,  2 0.3431GC = ,   3 0.1102GC = ,  4 0.8673GC = ,   5 0.7721GC =  

Step 10’: Rank the alternatives ix  ( 1,2,3,4,5i = ) according to the group relative-closeness 

coefficient G
iC  ( 1,2,3,4,5i = ). Clearly, 4 5 1 2 3x x x x xf f f f , and thus the best alternative is 

4x . 
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5 Comparison Analysis with the Other Hesitant Fuzzy Multiple 
Attribute Decision Making (Madm) Methods 

 
In this section, we will perform a comparison analysis between our new method and the other 
existing hesitant fuzzy multiple attribute decision making methods, and then highlight the 
advantages of the new method over the other existing methods. 
 
5.1 Comparison with the Hesitant Fuzzy MADM Methods Based on TOPSIS 
 
Zhang and Wei [36] extended the TOPSIS method to develop a methodology for solving MADM 
problems with hesitant fuzzy information. Recently, Xu and Zhang [26] developed a method 
based on TOPSIS and the maximizing deviation method for solving MADM problems with 
hesitant fuzzy information, in which the attribute values provided by the decision makers are 
expressed in hesitant fuzzy elements and the information about attribute weights is incomplete. 
Moreover, they extended the developed method to interval-valued hesitant fuzzy situations. 
Compared with Zhang and Wei’s method and Xu and Zhang’s method, the newly developed 
method has the following advantages: Zhang and Wei’s method and Xu and Zhang’s method 
focus on the MADM problems. However, in real-life, due to the increasing complexity of socio-
economic environment, it is less and less possible for a single decision maker to consider all 
relevant aspects of the problem. Therefore, many organizations employ groups to make decision, 
which is called as group decision making (GDM). Our method gives a TOPSIS based procedure to 
solve a MAGDM problem under hesitant fuzzy environments. First, in our method, a quadratic 
programming model is established to determine the weights of decision makers, which is not be 
considered in Zhang and Wei’s method [36] and Xu and Zhang’s method [26]. Second, Zhang and 
Wei’s method [36] doesn’t consider the weights of attributes. Though Xu and Zhang [26] 
established an optimization model to determine the attribute weights, this model determined the 
attribute weights from only an individual hesitant fuzzy decision matrix, and it cannot determine 
the importance weights of attributes under group decision making environments. Our method can 
derive the optimal weights of attributes from all individual hesitant fuzzy decision matrices. 
Finally, the TOPSIS methods proposed by Zhang and Wei [36] and Xu and Zhang [26] only 
included a stage; while the extended TOPSIS proposed by our method includes two stages: The 
first stage is called the hesitant fuzzy TOPSIS (HFTOPSIS), which can be used to calculate the 
individual relative closeness coefficient of each alternative to the individual hesitant fuzzy PIS. 
The second stage is the standard TOPSIS, which is used to calculate the group relative-closeness 
coefficient of each alternative to group PIS and select the optimal one with the maximum group 
relative-closeness coefficient. 
 
5.2  Comparison with the Hesitant Fuzzy MADM Methods Based on 

Hesitant Fuzzy Aggregation Operators 
 
Recently, some hesitant fuzzy aggregation operators have been developed for aggregating hesitant 
fuzzy information [19-24], such as the HFWA, HFWG, GHFWA, GHFWG, HFOWA, HFOWG, 
GHFOWA, GHFOWG, HFHA, HFHG, GHFHA, GHFHG, HFPWA, HFPWG, HFPA, HFPG, 
GHFPA, GHFPG, WGHFPA, WGHFPG, HFPOWA, HFPOWG, GHFPOWA, GHFPOWG, 
HFPWA, and HFPWG operators. Furthermore, based on these operators, some hesitant fuzzy 
MADM methods [19-24] have also been developed for solving the MADM or MAGDM problems 
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with hesitant fuzzy information. However, it is noticed that these existing operators and methods 
have some inherent drawbacks, which are shown as follows: 
 

(1)  The existing operators and methods perform an aggregation on the input hesitant fuzzy 
arguments. Accordingly, the dimension of the derived HFE may increase as such an 
aggregation is done, which may increase the computational complexity and therefore 
lead to the loss of information. In contrast, our method does not need to perform such an 
aggregation but directly deals with the input hesitant fuzzy arguments, thereby does not 
increase the dimension of the derived HFE and retains the original decision information 
as much as possible. 

(2)  Our method utilizes the maximizing group consensus method and the maximizing 
deviation method to determine the weight values of decision makers and attributes, 
respectively, which is more objective and reasonable; while the existing methods [19-24] 
ask the DMs to provide the weights of decision makers and attributes in advance, which 
is subjective and sometime cannot yield the persuasive results. 

 
In order to clearly demonstrate the comparison results, we use the hesitant fuzzy weighted 
averaging (HFWA) operator-based MAGDM method [20] to revisit Example 4.1, which includes 
the following steps: 
 
Step 1: Utilize the HFWA operator [20]: 
 

( ) ( ) ( )( ) ( )( ) ( )( )( )( ) ( ) ( )1 2 31 2 3

33
1 2 3

1,2, , , 1,2, , , 1,2, ,1
1

HFWA , , 1 1
k

k

a a aij ij ij

t
k k

ij ij ij k ij ijt l t l t lk
k

a a a a a
ω

ω
= = == =

 
= ⊕ = − − 

 
∏L L LU  

1,2,3,4,5i = , 1,2,3,4j = .                                                                                                                                          
 

to aggregate all the individual hesitant fuzzy decision matrix ( ) ( )( )
5 4

k k
ijA a

×
=  ( 1,2,3k = ) into the 

collective hesitant fuzzy decision matrix ( )
5 4ijA a
×

= , which is not be listed here because of space 

limitations. In order to be consistent with Example 5.1, the same weights for decision makers 

obtained, i.e., 1

1

3
ω = , 2

1

3
ω = , and 3

1

3
ω =  are adopted here. Let ( )

5 4ijaL l
×

= , where  
ijal  is the 

dimension of the collective hesitant fuzzy element ija . 

( )
5 4

45 27 24 60

75 48 12 40

12 24 45 24

12 20 36 18

12 24 45 18

ijaL l
×

 
 
 
 = =
 
 
 
 

 

 
Step 2. Utilize the HFWA operator [23]: 

 ( ) ( ) ( )( )
1 2 3 31 2 3 4

44

1 2 3 4 1,2, , , 1,2, , , 1,2, , , 1,2, ,1
1

HFWA , , , 1 1
L L L LU

j
j

a a a ai i i i

wt

i i i i j ij ijt l t l t l t lj
j

a a a a w a a
= = = == =

  = ⊕ = − − 
  

∏  

( 1,2,3,4,5i = )         
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to aggregate all the preference values ija  ( )1,2,3,4j =  in the ith line of A, and then derive the 

collective overall preference value ia  ( )1,2,3,4,5i =  of the alternative ix  ( 1,2,3,4,5i = ). In 

order to be consistent with Example 4.1, the same weights for attributes obtained, i.e., 

1 0.2694w = , 2 0.2850w = , 3 0.2694w = , and 4 0.1762w =  are adopted here. We will not list 
the collective overall preference values here because of space limitations. The dimensions of the 

collective overall preference value ia  ( )1,2,3,4,5i =  are shown bellows: 

 

1
1749600al = ,      

2
1728000al = ,     

3
311040al = ,    

4
155520al = ,      

5
233280al =  

 
Step 3. According to Definition 2.2, we calculate the score values ( )is a  ( 1,2,3,4,5i = ) of ia  

( 1,2,3,4,5i = ): 
 

( )1 0.5747s a = ,    ( )2 0.5651s a = ,    ( )3 0.5328s a = ,    ( )4 0.6422s a = ,    ( )5 0.6206s a =  

Step 4. Get the priority of the alternatives ix  ( 1,2,3,4,5i = ) by ranking ( )is a  ( 1,2,3,4,5i = ) as 

follows: 4 5 1 2 3x x x x xf f f f . Thus, the best alternative is 4x . 
 
It is easy to see that the optimal alternative obtained by the Xia and Xu’ method is the same as our 
method, which shows the effectiveness, preciseness, and reasonableness of our method. However, 
it is noticed that the ranking order of the alternatives obtained by our method is 

4 5 2 1 3x x x x xf f f f , which is different from the ranking order obtained by the Xia and Xu’ 

method. Concretely, the ranking order between 1x  and 2x  obtained by the two methods are just 

converse, i.e., 2 1x xf  for our method while 1 2x xf  for the Xia and Xu’ method. The main 
reason is that the Xia and Xu’ method performs an aggregation operation on the input hesitant 
fuzzy arguments, while our method does need to perform such an operation on the input hesitant 
fuzzy arguments. It is noted that the dimension 

ial  of the collective overall preference value ia  is 

very larger, which increases the computational complexity. In contrast, our method has a less 
computational complexity. By using the MATLAB mathematics software under the same 
conditions, the time (12 hours) that is used to obtain the optimal alternative with the Xia and Xu’ 
method is far more than the one (1 second) that is used to obtain the optimal alternative with our 
method. Therefore, our method not only is appropriate for handling the situations in which the 
weight information of the attributes and decision makers is unknown or partly known, but also can 
reduce the computational complexity and the information loss, which always happens in the 
process of information aggregation. Thus, compared with the other hesitant fuzzy MADM 
methods, our method has its great superiority in dealing with the ambiguity and hesitancy inherent 
in MAGDM problems with hesitant fuzzy information. 
 

6 Conclusion 
 
In this paper, we have proposed a novel method for hesitant fuzzy MAGDM problems with 
incomplete weight information, which involves three parts: 
 

(1) First, inspired by the idea that a set of group members should have a maximum degree of 
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agreement solution, we have first used the maximizing the group consensus method to 
establish a quadratic programming model for determining the optimal weights of decision 
makers under hesitant fuzzy situations. This part ensures the rationality of the individual 
hesitant fuzzy decision information. 

(2) Then, based on the idea that a larger weight should be assigned to the attribute with a 
larger deviation value among alternatives, we have further presented a maximizing 
deviation method to determine the optimal attribute weights under hesitant fuzzy 
environments. This part eliminates the influence of subjectivity of attribute weights 
provided by the decision makers in advance. 

(3) Furthermore, we have proposed an extended TOPSIS method for solving MAGDM 
problems with hesitant fuzzy information, which includes two stages: the HFTOPSIS and 
the standard TOPSIS. The former is used to calculate the relative closeness coefficient of 
each alternative to the HFPIS; while the latter is used to calculate the group relative-
closeness coefficient of each alternative to GPIS, based on which we rank the considered 
alternatives and then select the optimal one with the maximum group relative-closeness 
coefficient. The extended TOPSIS method not only solves a MAGDM problem with 
hesitant fuzzy information but also can avoid the loss of hesitant fuzzy information in the 
process of information aggregation. 
 

Finally, an investment example has been used to illustrate the effectiveness and practicality of the 
developed methods. A comparison analysis has also been conducted to illustrate the advantages of 
the developed methods over the other hesitant fuzzy MADM methods. 
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