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Abstract

In this paper, the qualitative analysis methods of dynamical systems are used to investigate the
periodic travelling wave solutions of ZK (2, 4,-2) equation. The phase portrait bifurcation of
the travelling wave system corresponding to the equation is given. The explicit expressions of
the periodic travelling wave solutions are obtained by using the portraits. The graph of the
solutions are given with the numerical simulation.
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1 Introduction

The study of travelling wave solutions in particular, solitons, of Partial Deffierential Equations
(what called PDEs), for various nonlinear evolution equations in mathematical physics plays an
important role in soliton theory. To obtain the travelling wave solutions for PDEs, a lot of
systematic methods have been developed for soliton equations, such as the inverse scattering
method, the Backlund and the Darboux transformations, the tanh-function method, the
homogeneous balance method, the extended tanh-function method and others [1-7,18].

The ZK equation governs the behavior of weakly nonlinear ion-acoustic waves in aplasma
comprising cold ions and hot isothermal electrons in the presence of a uniform magnetic field [8].
The ZK equation, which is a more isotropic two-dimensional, was first derived for
describing weakly nonlinear ion-acoustic waves in a strongly magnetized lossless plasma in two-
dimension [9].

Recently, the following ZK equation
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( ) 0,t x xx yy xu auu b u u    （1.1）

was investigated by BK. Shivamoggi [10], A. M. Wazwaz [11] and VE. Zakharov etc [9] with
various distinct approaches.

More recently, by using the sine-cosine method and the tanh method, A. M. Wazwaz [12]
investigated the ZK (n, -n, 2n) equation,

2( ) [ ( ) ( ) ] 0,n n n n
t x xx yy xu a u b u u k u    （1.2）

and the ZK (n,2n,-n) equation,

2( ) [ ( ) ( ) ] 0,n n n n
t x xx yy xu a u b u u k u    (1.3)

Where , ,a b k are three non-zero real numbers, and obtained a family of solutions:
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other exact explicit solutions were listed in [13]. However, the bifurcation behavior of the
travelling wave solutions for corresponding travelling wave equations haven't studied in its
parameter space. It is very important to understand the dynamical behavior of solutions for the
travelling wave equations, the related investigation of (1.2) and (1.3) hasn't been mentioned in the
literatures. In this paper, we shall continue to study and obtain the periodic travelling wave
solutions of Eq. (1.3) for 2n  (simply called Z K(2,4,2) equation), which employs bifurcation
method of dynamical systems [13,14] to investigate the following equation:

2 4 2 2( ) [ ( ) ( ) ] 0,t x xx yy xu a u b u u k u    (1.4)

Taking the transformation ( , , ) ( ) ( ),u x y t x y ct      where c is the wave speed, then
(1.4) becomes

2 4 2 2( ) [ ( ) ( ) ] 0,c a u b k u            (1.5)

where"`" is the derivative with respect to . Taking the integration once on both sides leads to
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2 4 2 2( ) [ ( ) ( ) ] ,c a u b k u g          (1.6)

where g is the integration constant. Clearly, (1.6) is equivalent to the following two-dimensional
system

d ,
d

y



2 2dy ,
d

g c a py
q

 
 

  
 (1.7)

where 6 2 , 2 2 ,p b k q k b    which has the first integral

2 2 2 21 2
2 2( )

2

p p p p
q q q qg c ay h

p p q p q
   
  

   
 

(1.8)

Or

2 2
2 22( , ) ( )

2

p p
q q g c aH y y h

p p q p q
        

 
. (1.9)

Obviously system (1.7) is a five-parameter planar dynamical system depending on the parameter
group ( , , , , ).g c a p q Since the phase orbits defined by the vector fields of Eq. (1.7) determine all
traveling wave solutions of system (1.3), we should investigate the bifurcations of phase portraits
of system (1.7) in the phase plane ( , )y as the parameters , , ,g c a p and q are changed.

The rest of this paper is organized as follows: in Section 2, we discuss the bifurcations of phase
portraits of system (1.7), where explicit parametric conditions will be derived. In Section 3, we
give exact explicit parametric representations for periodic solutions of Eq. (1.4) for 2.n 
Section 4 contains the concluding remarks.

2 Bifurcations and Phase Portraits of System (1.7)

In this section, we discuss the existence of periodic solutions of (1.3) by the bifurcation method
[14-17]. System (1.7) has the same phase orbits as the following system

d ,
d

q y 

 2 2dy ,

d
g c a py 


    (2.1)

except for the straight line 0,  where d = dq   .

If 20, 4 0,pg c ag   system (1.7) has four equilibrium points:
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1 1 2 2( ,0), ( ,0)A A  and (0, ),S Y  where

2 2

1 2
4 4

,
2 2

c c ag c c ag
a a

 
    
 


and .gY

p


For the function defined by (1.9), we denote that

2
22( ,0) ( ), 1, 2,

2

p
q

i i i i i
g c ah H i
p p q p q

        
 

(0, ) 0.sh H Y  

If 2
1 1

2 0,
2

g c a
p p q p q

   
 

i.e., 22 ,pag c
p q



we have 1( ,0) (0, ) 0.H H Y   

Let ( , )i iM y be the coeficient matrix of the linearized system of (2.1) at an equilibrium

point ( , )i iy , ( , )i iJ y is the corresponding Jacobi determinant of the ( , )i iM y .Then, if

0, 0, 0,p qg ag   22 ,pag c
p q



we have

2
2 2

1
4

( ,0) ( 4 ) 0, (0, ) 2 0,
2

q c ag
J c c ag J Y pqY

a



       

2
2

2 1
4

( ,0) ( 4 ) 0, ( ( ,0)) 0.
2

q c ag
J c c ag Trace M

a
 


     

By the theory of planar dynamical systems [13,14], we know that for an equilibrium point
( , )i iy of a planar integrable system, if 0J  then the equilibrium point is a saddle point;

if 0J  and 1( ( ,0)) 0Trace M   then it is a center point; if 0J  and
2

1( ( ( ,0))) 4 ( , ) 0i iTrace M J y   then it is a node; if 0J  and the Poincare index of the

equilibrium point is zero then it is a cusp; if 0J  and the index of the equilibrium point is not
zero then it is a high order equilibrium point. Using the above qualitative analysis, we can obtain
the bifurcation curves and phase portraits under various parameter conditions.

Thus, the equilibrium point 1A is a saddle point, the equilibrium points S and 2A are center
points.

For our purpose, in the parameter region: 20, 4 0,pg c ag   22 ,pag c
p q



we show the

phase portraits of system (1.7) in Fig. 1.
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3 Exact Explicit Periodic Solutions of (1.4)

Lemma 3.1. When 1h h , the periodic orbits of the periodic annulus surrounding

1( ,0) approach to the boundary curves. Let ( , )y   be a point in the periodic orbits of

system (1.6). Then, the periodic travelling wave solution is defined by 1h h .

In the following, we give exact explicit parametric representations of periodic solutions.

Case (I). 0, 0, 0, 0, 0,a q p g c     22 .pag c
p q



In this case, we have
2

1
4 9( 1 )

2 2
c c ag c p q

a a p q

   
   

 
and the phase portraits of

system (1.7) is shown in Fig. 1(1-1). Notice that 1( ) ( ) 0,H A H S  periodic orbit surrounding

the center point 1
9( ( 1 ),0)

2
c p qA
a p q


 


are

2 2
2 2

2 2

( ) ( )[ ( ) ( 2)].
(2 ) (2 )

a c p q c p qy
p q a p q a p q

  
    
  

(3.1)

Substituting (3.1) into the first equation of (1.7) and integrating it, we get

2 2

dd
( )[ ( ) ]
(2 )

a c p qD
p q a p q







 
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that is

1 2 2

d ,
( )( )
(2 )

a
p q c p qD

a p q









 

 


 (3.2)

where
2 2

2
2 2

( )( 2),
(2 )

c p qD
a p q


 


( )
(2 )

c p qB
a p q


 


, which implies the following parametric

representations:

9( ) ( 1 ) sin( ).
2
c p q aD
a p q p q

  
   

 
(3.3)

(3.3) gives a periodic solution and the profile is shown in Fig. 2(2-1).

Remark. To the best of our knowledge, the solution (3:3) of Eq. (1.4) has not been reported in
literature.

Case (II). 0, 0, 0, 0, 0,a q p g c     22 .pag c
p q



In this case, we have the phase portrait of system (1.7) shown in Fig. 1(1-2). Paralleled to the
Cases (I), system (1.7) has a parametric representation of the periodic orbit as (3.3). It gives
another periodic solution and the profile is shown in Fig. 2 (2-2).

4 Conclusion

In this paper, we used the qualitative analysis methods of dynamical systems to investigate the
periodic solutions of ZK (2, 4, -2) equation. As a result, we obtained two of new exact periodic



British Journal of Mathematics & Computer Science 4(13), 1849-1856, 2014

1855

solutions. The phase portrait bifurcation of the travelling wave system corresponding to the
equation is given. The graph of the solutions are given with the numerical simulation. The phase
portrait bifurcation of the travelling wave system corresponding to the equation is given. The
graph of the solutions are given with the numerical simulation. Based on the ideas of finding limit
cycles by Abelian integral, see [19,20], we will also investigate the isolated travelling waves of
the system in the next paper.
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