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Abstract
This work aims to make three-dimensional (3D) tomographic techniques more flexible and
accessible to in-situ measurements in practical apparatus by allowing arbitrary camera
placements that benefit applications with more restrictive optical access. A highly customizable,
in-house developed tomographic method is presented, applying smoothness priors through
Laplacian matrices and hull constraints based on 3D space carving. The goal of this paper is to
showcase a reconstruction method with full user control that can be adopted to various 3D field
reconstructions. Simulations and experimental measurements of unsteady premixed CH4/air and
ethanol (C2H5OH) diffusion pool flames were evaluated, comparing arbitrarily placed cameras
around the probed domain to the more commonly used in-plane-half-circle camera arrangement.
Reconstructions reproduced expected topological field features for both flame types. Results
showed slight decrease in reconstruction quality for arbitrarily placed cameras compared to
in-plane-half-circle arrangement. However, at lower numbers of camera views (Nq ⩽ 6)
arbitrary placement showed better results. The introduced methodology will be useful for
optically limited setups in terms of handling a priori information, camera placement and 3D
field evaluation.

Keywords: 3D, tomography, diagnostics, combustion, inverse problem

(Some figures may appear in colour only in the online journal)

1. Introduction

Advancement in areas of science and technology look for
constant improvement and development of measurement
techniques to cover both specific problems and to increase
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flexibility and applicability. Research in combustion related
areas such as modeling, device performance or pollut-
ant reduction require detailed experimental flame studies.
Improvements can lead to better efficiency in many energy
conversion processes and allow for new alternative fuels to be
utilized. Studies of flame position and topology, that is crucial
for determining heat transfer and flame quenching, is import-
ant together with other processes such as ignition or stabiliz-
ation, especially for less studied alternative fuels. Similarly,
reduction of harmful pollutants including soot and NOx emis-
sion is not only important to combat global warming but also
to reduce risks to human health [1].
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However, the inherent three-dimensional (3D) nature of
flames calls for accurate and versatile measurement tech-
niques. Enhanced 3D flame information can, for example,
help to further improve existing burner devices and their
designs. Multiple well-established techniques exist for acquir-
ing 3D flame information but many of these techniques pro-
duce time averaged or spatially interpolated information from
multiple planar measurements such as two-dimensional (2D)
laser-induced fluorescence imaging [2, 3]. Solutions for time
and spatially resolvedmeasurements utilizing scannable lasers
and high-speed cameras exist, but such equipment is expens-
ive and its application in turbulent flame conditions can be
a challenge. Therefore, alternative non-intrusive diagnostic
techniques, that have the potential to allow for both spa-
tially and temporally resolved 3D flame information is of high
interest.

A 3D tomographic reconstruction is one such measure-
ment technique that has been applied in multiple fields such
as medicine, chemistry, biology, and fluid dynamics. Typic-
ally, this approach is employed to 3D geometries, movements,
flow fields and species distributions. Although the presented
approach with arbitrary camera positions can be universally
applied, 3D flame visualization is here being used for proof-of-
concept. Volumetric flame field measurements utilizing tomo-
graphic methods have seen an increase of use within the field
of combustion diagnostics due to its non-intrusive nature and
ability to estimate 3D flame information [4]. Further, com-
bination with other measurement techniques such as laser
absorption spectroscopy [5, 6], particle image velocimetry
[7] schlieren techniques [8, 9] or volumetric laser-induced
fluorescence [10–12] has proven fruitful. The technique allows
improvements on 3D measurements focusing on flame fea-
tures such as flame position, topology, species location, acous-
tic oscillations, soot formation, and soot volume fraction for
not only laminar, but also unsteady and turbulent flames.

Spatially reconstructing 3D flame chemiluminescence
(CTC) fields emitted from different excited species during
combustion, such as CO∗, C2

∗, CH∗, and OH∗, can greatly
help investigate flame properties like flame propagation, geo-
metry, wrinkling, curvature, surface density and identification
of recirculation or precession zones. Especially the study of
CH∗ and OH∗ is important, as they are known markers for
reaction and post flame zone respectively. Floyed et al initially
introduced computed tomography of CTC by reconstructing
a premixed CH4/air flame in three dimensions using multiple
camera views and also extended it to reconstruction of CH∗

field in a CH4 and O2 matrix burner flame [13, 14]. Com-
bined with high-speed imaging, the technique has been used
to acquire temporally resolvedOHfluorescence fields [10] and
measurements of combustion intermediates such as polycyc-
lic aromatic hydrocarbons and CH2O [15]. A 3D temperat-
ure measurements have likewise been performed combining
the technique with two-line OH excitation [11].Measurements
of 3D soot volume fraction in turbulent jet diffusion flames
were studied by Meyer et al [16] showing the versatility of the
technique.

At the heart of the tomographic technique lies an inverse
problem and one of the most used solvers, in the field of

Figure 1. Image of cylinder head for large bore marine engines with
24 optical access ports (marked by red circles). Reproduced with
permission from John Hult, MAN Energy Solutions.

combustion diagnostics, is the algebraic reconstruction tech-
nique (ART), known for allowing easy implementation of
a priori information in between iterations [13, 17]. Other
algorithms have similarly been utilized due to individual
strengths, a few examples include simultaneous ART with
increased parallelizability [18], multiplicative ART or its sim-
ultaneous counterpart that due to their multiplicative nature
always keeps zero intensity values as zero, beneficial in some
flame field topologies [10, 16, 19]. Moreover, stochastic meth-
ods have sometimes been used for solving the 3D tomographic
problem [20].

The general robustness of tomographic methods, when
applied in combustion diagnostics, has been investigated
through comparisons of flame topology measurements made
by 2D planar laser-induced fluorescence and 3D CTC
tomography [12, 21]. Moreover, in-depth studies on tomo-
graphic reconstructions of a turbulent swirl burner and the
effect of projection view number, voxel resolution and in plane
camera placement was performed by Mohri et al [4]. These
studies showcase good reliability and future promise for tech-
nique application in studies of 3D flame properties. How-
ever, each application is unique and may present different
challenges and trade-offs, thus warranting fully customizable
tomographic methods to maintain control.

However, most 3D tomographic flame field studies have
been performed in well controlled laboratory environments
without much restriction in terms of optical access. Similar
to other optical techniques that have been applied in practical
environments [22–24], the act of transferring the measure-
ment setup from a laboratory environment to practical devices
and performing in-situ diagnostics, can be challenging. One
example of such a practical application where in-situ 3D tomo-
graphic flame field studies could be performed, requiring flex-
ible camera placements, is the marine engine cylinder head
with 24 optical access ports shown in figure 1.

Factors such as restricted optical access, hindering the
placements of cameras at certain positions, reduction in field
of view of individual cameras, diminishing sensitivity due
to window fouling or image overexposure due to insufficient
dynamic range of sensors all contribute to the difficulty.
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Work has previously been done looking into tomographic
reconstructions with a restricted field of view [25] and over-
exposure compensation [26]. In cases where optical access
has to be achieved in practical apparatus, the geometry would
rarely allow for the in-plane-half-circle camera arrangements
that has been used in most previous experimental measure-
ments or mirror arrangements using dual or quad scopes
[10, 27]. Instead, arbitrarily placed cameras would most likely
be required to accommodate any available optical access. But
position of acquired projections will affect the measurement
quality as highlighted by Grauer et al [28] when investig-
ating optimal optical path arrangement in absorption tomo-
graphy. This poses a challenge on equipment size, calibration
procedures and reconstruction methods. Studies using endo-
scopic arrangement, applying fiber bundles, have previously
been performed [29, 30]. Such setups could perhaps, with
modifications, be suited for arbitrary placement. The effect of
variable camera placements on 3D tomographic reconstruc-
tions have previously been explored by Cai et al [31] using
a single movable camera. Further, Wang et al [32] performed
numerical investigations looking at optimizing camera place-
ment in case of constrained optical access. However, the effect
on tomographic flame field reconstruction with multiple arbit-
rarily placed cameras combining simulative and experimental
measurements have, to the best of the authors knowledge, not
been investigated.

This work aims to enhance applicability of the tomographic
technique for in-situ, non-intrusive, volumetric flame meas-
urement based on CTC by facilitating and evaluating the
effects of arbitrarily placed cameras. The work also presents
options for enhancing reconstruction quality and allow scen-
ario specific customization to the overall tomographic proced-
ure with regard to incorporating prior knowledge, something
not always feasible when employing commercial solutions.
This comes in terms of hull constraints, based on space
carving, and smoothness priors through Laplacian matrices
in the reconstruction process. Experimental reconstructions
made using small commercially available complementary
metal-oxide-semiconductor (CMOS) cameras as well as sim-
ulative comparisons between different camera arrangements
were conducted. The experimental measurements show pre-
mixed CH4/air Bunsen burner flames as well as small eth-
anol (C2H5OH) pool flames, allowing for both well defined,
steady, and unsteady flames to be studied yielding a broader
result spectrum, when investigating the effect of arbitrarily
placed cameras. This work applies a highly customizable, in-
house developed tomographic method, using a preconditioned
conjugate gradient (PCG) solver. The goal is to present a
reconstruction process that can be fully or partially adopted
to various flame field reconstructions and to discuss important
aspects regarding reconstructions such as benefits and trade-
offs in terms of prior knowledge and camera placements.

2. Method

The general method behind 3D tomographic reconstructions
of CTC revolves around the simultaneous acquisition of

Figure 2. Illustration of 2D view projection and probed domain Ω,
discretized into Nv voxels.

multiple 2D projection measurements of the probed domain
Ω. Each individual view projection q is acquired at a differ-
ent viewing angle and position surrounding the investigated
domain and is made up of multiple (m× n) pixel projections
p, illustrated in figure 2. In this work the continuous domain
Ω is spatially discretized into Nv voxels for computational
purposes.

2.1. Principle of reconstruction model

The studied intensity within the domain Ω at locations
−→s = (x,y,z) can be described as a continuous field f

(−→s ).
Flame intensity distribution can be mapped to the projection
measurements qp, acquired by the optical setup, through a
Fredholm integral equation of the first kind given by the radi-
ative transfer equation (RTE) [33],

bqp =
ˆ

qp

f(⃗s)dA (1)

where f
(−→s ) is the continuous flame field and bqp is a pro-

jection measurement from view q and pixel p. Furthermore, a
smoothness requirement, corresponding to a smoothing spline
[34, 35], was applied in this work to the flame field by intro-
ducing a penalty term as

ˆ ˆ
(∆f (⃗s))

2

d (⃗s) =
ˆ ˆ [(

∂2

∂2x
+

∂2

∂2y
+

∂2

∂2z

)]2
f (⃗s) .

(2)

Minimizing the second derivative throughout the flame field,
resulting in more continuous solutions, which is physically
expected in the studied flames while also alleviating any neg-
ative effects due to an ill-posed problem. This allows the final
reconstruction problem to be stated as

arg min
f(⃗s)

∑
qp

bqp− ˆ
qp

f (⃗s)dA

+λ

ˆ ˆ
(∆f (⃗s))2 d (⃗s) (3)

where, λ is the weight of the penalty term and the minimiza-
tion finds the reconstruction that best balances observational
measurements against the applied smoothness requirement.
The parameter λ can either be found empirically by trial and
error or estimated [36].
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Discretization of the studied flame field into a voxel scalar
field allows the RTE integral, seen in equation (1), to be
approximated as a finite sum over the flame field, yielding
a projection approximation of each intensity measurement
bqp as

bqp =
Nv∑
v=1

wqpvxv (4)

where xv is a voxel, wqpv that voxel’s contribution to the pro-
jection qp and bqpv defining a line-of-sight projection of said
voxel v. Equally, the smoothness prior in equation (2) can be
represented by a sparse discrete Laplacian matrix:

Q=
(
dzz⊗ Iny

)
⊗ Inx + (Inz ⊗ dyy)⊗ Inx

+
(
Inz ⊗ Iny

)
⊗ dxx (5)

where dzz, dyy and dxx are one-dimensional (1D) discrete
Laplacian. Inz , Iny and Inx are identity matrices of applicable
size. Here each 1D discrete Laplacian applies a homogenous
Dirichlet boundary condition which results in a final 3D dis-
crete Laplacian with homogenous Dirichlet boundary condi-
tion for all boundaries specified by

f(x,y,z) = 0 , (x,y,z) ∈ ϑΩ (6)

with ϑΩ being the boundary of the domain. The continuous
problem can then be reformulated in a discretized form [37]
as follows

arg min
x

||b−Ax|| 2
2
+λxTQx. (7)

Here A is a projection matrix containing all linear voxel pro-
jections and x is the unknown field vector i.e. the discretiz-
ation of f

(−→s ). The discretized reconstruction of the probed
domain Ω is given by the solution to the minimization prob-
lem in equation (7), this is a quadratic problem with known
closed form solution [35]:

xmin =
(
λQ+ATA

)−1
ATb (8)

which is best solved using iterative methods [38] to avoid
costly matrix operations.

An alternative interpretation of the latter part of the discret-
ized system in equation (7) is as a prior latent Gaussian field
[39] with precision matrix given by Q for the domain Ω and
observations given by the discretized integral in equation (4).
The resulting model is

b= Ax+ ε, ε ∈ N
(
0, Iσ2

ε

)
, x ∈ N

(
0,(τQ)−1

)
(9)

where ε are independent observational and discretization
errors with variance σε for each pixel and τ is a smoothness
weight. The posterior for the discretized domain x, conditional
on observations and parameters is then given by

[
x|b,σ2

ε, τ
]
= N

( (
τQ+ATAσ−2

ε

)−1
ATb σ−2

ε ,(
τQ+ ATAσ−2

ε

)−1

)
(10)

with the conditional expectation being

E
(
x|b,σ2

ε, τ
)
=
(
σ2
ετQ+ATA

)−1
ATb. (11)

Taking σ2
ετ = λ this becomes identical to the optimal recon-

struction in equation (8). Note that individual values of τ and
σ2
ε are not needed for the reconstruction. An advantage of for-

mulating the model in a statistical framework is the ability to
quantify the uncertainty in the reconstruction as

V
(
x|b,σ2

ε, τ
)
=
(
τQ+ATAσ−2

ε

)−1
. (12)

This variance requires individual values for τ and σ2
ε and

computation of the matrix inverse is likely to require iterative
and/or approximate methods [40]. Investigation of the uncer-
tainties is outside the scope of this paper, but the theoretical
results and possible numerical methods are provided here for
completeness.

2.2. Principle of imaging model

The mapping of 2D camera projection measurements to each
respective voxel was built around the pinhole camera model
introduced by Tsai [41], that is a highly used model in the
field of computer vision. This produced a versatile way of tra-
cing camera rays as well as reducing barrel or pincushion dis-
tortions on the camera images [42, 43]. This model computes
twomatrices, seen in equation (13), based on calibrationmeas-
urements. One intrinsic matrix K with information regarding
principal point cx cy, camera focal length fx fy, and camera axis
skew α. The second is the extrinsic matrix RT, a rigid trans-
formation matrix with the camera rotation r and translation
vector t:

K=

fx α cx
0 fy cy
0 0 1

 , RT=

r1,1 r1,2 r1,3 t1r2,1 r2,2 r2,3 t2
r3,1 r3,2 r3,3 t3

 . (13)

These two matrices facilitate the relationship between
a point (XYZ1) in 3D space expressed in homogeneous
coordinates located in the probed domain Ω and a projection
point (xy1) in the detection cameras pixel domain:

s(x y1)T = P(X Y Z1)T, P= K(RT) , (14)

where s is a scaling factor. This method allows for high flexib-
ility when it comes to camera placements which is beneficial
for arbitrary placed cameras to accommodate limited optical
access. Each individual voxel v in the discretized domain
is sampled multiple times by projection of randomly placed
points from within the voxel onto the camera sensors, similar
to methods used by Liu et al [25] and Yu et al [25, 44]. This
yields intensity contribution weights wqpv from each voxel v
to each sensor measurement bqp. Voxels tend to be larger than
camera pixels, although this depends on voxel size, camera
distance and resolution of the cameras used; as a result, each
voxel can project to more than one pixel. Intensity contribution
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weights wqpv are given by the number of sample points projec-
ted onto a specified pixel in relation to the total number of
sample points used. These contributions can then be reshaped
into a sparse projection matrix A.

This work took advantage of paraxial approximation previ-
ously used in [4, 45], namely assuming that the angle between
the optical axis of each projection ray is small, granting close
to orthographic projections of each voxel due to parallel rays.
This approximation greatly speeds up computation time and is
deemed valid if the distance between the lens and the probed
domain is not too small. Aliasing effects due to domain discret-
ization can be a problem, resulting in unwanted frequency pat-
terns in the projection mapping. In this work aliasing and the
resulting reconstruction artifacts were reduced by randomly
moving each voxels sampling coordinates slightly before pro-
jection, thus reducing effects caused by the discretization
structure.

The projection model described in equation (1) is a sim-
plification of the RTE in terms of scattering, self-absorption,
and background intensity. The experimentally studied flames
were first premixed CH4/air flames, such flames can be con-
sidered optically thin, since they have very low soot produc-
tion. Small ethanol pool flames were later studied and sim-
ilarly showed a low soot production albeit more than the
premixed ones. Having a small flame size in all cases and the
cameras placed not far from the flame yields low scattering
conditions that have negligible effects allowing scattering to
be excluded from the model. Self-absorption was neglected
due to the main source of emission being visible CTC from
CH∗, mainly from the transition A2∆− X2Pi and this par-
ticular transition is judged to suffer negligible self-absorption
effects [46, 47]. This same assumption is reasonable for other
flame CTC sources in the visible region, in comparison to OH
which is known to have large self-absorption [14, 46]. How-
ever, it is important to evaluate every experimental situation
individually.

Many inverse problems, such as tomographic flame field
reconstruction, are notorious for being ill-posed. Depending
on the ratio between the number of optical projection meas-
urements and domain voxels the resulting linear system can be
either underdetermined or overdetermined. Flame tomography
problems also tend to be ill-conditioned due to domain discret-
ization and effects from such errors will be amplified in the
measurements b [8, 33]. Therefore, adding a priori inform-
ation and boundary conditions to the reconstruction process
limits the possible solutions to those that produce more cor-
rect estimates of the flame field. The application of smoothing
in flame reconstructions, based on the assumption of a con-
tinuous field, helps in this regard. For more complex fields
such as turbulent flames that require very high temporal and
spatial resolution the same would be true however recon-
structions could perhaps suffer a trade of between resolving
finer spatial features or having a more overall correct flame
field estimate. Solutions to this could involve adding more
projections or applying more flexible smoothing models that
allow for varying dependence strength between voxels [48],
but this might add complexity to the reconstruction due to
the need for additional parameter estimation that control the

non-stationary smoothing. In this work, to further enhance
quality and computational speed, a hull-constraint, based on
space-carving, was applied to the probed domain prior to
reconstruction [49–51]. The space-carving worked by project-
ing each voxel onto all cameras and if any voxel projects to
a total pixel area with zero intensity in any individual cam-
era that voxel is removed from the domain. This removes
voxels that are known to have zero intensity prior to the recon-
struction which reduces the system size while retaining the
overall flame shape. Zero intensity voxels close to the flame
are kept, giving flexibility in the systems solution process. In
terms of memory requirements, the sparse smoothing matrix
Q is a large Nv-by-Nv matrix but the number of non-zero ele-
ments is small. With the smoothing operator only including
the six direct voxel-neighbors every row of the Q matrix will
only contain seven non-zero elements (the voxel itself and the
six neighbors). Storing such a sparse matrix requires around
250 Mb of memory, depending on Nv. The final sparse pro-
jection matrix A will be b-by-Nv mapping the Nv voxels to
the pixels in all image planes. Since each measurement rep-
resents a camera ray going through the domain volume each
row of A has roughly 3

√
Nv non-zero elements. In practice,

for a case with ten cameras, A has initially about 108 non-
zero elements and requires around 1 Gb of storage which
then is reduced by space carving. The reduction depends on
flame size, but for cases studied here 10%–25% is commonly
achievable.

This work applied the preconditioned conjugate gradient
(PCG) method to solve the resulting inverse problem mainly
due to high computational performance and implementation
ease. Non-negativity restriction was achieved by iteration of
the PCG algorithm with voxels containing negative intensity
in previous results being iteratively removed, although con-
vergence is not guaranteed using this method, simulations
and visual inspection of experimental reconstructions showed
good results and consistency. The stopping criteria for determ-
ining convergence was a tolerance on the relative residuals
∥b−Ax∥/∥ b ∥< 10−6. Here the relative tolerance was set to
10−6 and a maximum number of allowed iterations to 103. For
all cases, the algorithm terminated based on tolerance after
around 55–120 iterations, for larger systems additional iter-
ations may be needed. The method was implemented using
MATLAB version 2020b and the computational cost for field
reconstruction using this method is divided between two steps.
First, the computation of projection matrix Awhich only needs
to be performed once for each camera setup. In the case of ten
cameras, the computational time was around 10–30 s but may
increase as it is dependent on the number of voxels Nv and
camera measurements b. Secondly, reconstruction involving
solving equation (8) using a PCG solver. Here the key step
is the computation of forward matrix vector products of the
form

(
λQ+ATA

)
x with x being the current best guess solu-

tion. Important is to never form the complete matrix, since
ATA will be almost completely dense. Instead, only the relev-
ant matrix vector products

(
λQ+ATA

)
x= λ(Qx)+AT (Ax)

are computed, lowering both computational time and memory
requirements. The computational time for the PCGwas around
20–30 s in this work.
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3. Experimental setup

Flame measurements were performed experimentally using
ten CMOS cameras mounted on holders attached to freely
movable aluminum poles around the flame target. The holders
allowed for a 360◦ yaw and 160◦ pitch rotation, enabling both
in-plane-half-circle setups and arbitrary camera arrangements
with various viewing directions. The camera orientations and
positions used in the experimental arbitrary setup can be seen
in table 1 and an illustration of one example setup can be seen
in figure 3.

The used experimental setup was selected due to being
deemed representative of a typical arbitrary setup and also
bearing resemblance to the optical access available in the cyl-
inder head for large bore marine engines from MAN Energy
Solutions shown in figure 1.

Camera models were Basler acA1920-40gm with mono-
chrome Sony IMX249LLJ-C sensors. Sensor sizes were 1936
by 1216 pixels with individual pixel size of 5.86 × 5.86 µm.
Each camera applied Nikon lenses with a focal length of
28 mm using F- to C-mount adapters.

Two flame types were studied, premixed CH4/air Bunsen
flames and ethanol as small diffusion pool flames. Example
images of each flame at different exposure times are shown in
figure 4. The Bunsen burner had an inner diameter of 10 mm.
No co-flow or protective shielding was used allowing for
somewhat unsteady flames because of ambient motion requir-
ing a shorter exposure to maintain temporal resolution. The
ethanol pool flames were burned on 26 mm diameter plates
creating wider flames with a little more soot production that
were more stable, allowing for longer exposure times.

Due to low recorded signal intensity, especially at shorter
exposure times in the premixedCH4/air Bunsen flame case, the
lenses aperture size was fully opened at a f -number of f/2.8
to improve the signal-to-noise ratio (SNR) while maintaining
sufficient temporal resolution. Varying distance between the
flame and cameras due to the arbitrary arrangements made
for different depth of fields, however assuming a circle of
confusion of 0.03 mm, one of the closer cameras estimates
to 22 mm depth of field, enough to cover the volume of
interest of both flame cases. Varying camera distances to the
probe domain will affect collection efficiency. In this work
the effect was judged to be minimal, however in some applic-
ations integrating intensity equalization calibration may be
needed [10]. Measurements were performed in a dark envir-
onment and, where possible, a matt black background was put
behind the target flame to enhance image quality while also
reducing possible reflections. However, this was not always
possible for some camera arrangements. Background images
were acquired for each camera with no flame active and sub-
tracted before reconstruction. White field calibration was also
performed for each camera.

3.1. Calibration and camera registration

Each camera’s orientation and location are required in the
imaging model to map voxel projections. This mapping was
achieved by computing extrinsic and intrinsic camera matrixes

Table 1. List of each cameras yaw rotation, pitch rotation and
position used in the arbitrary experimental setup. Acquired by
camera calibration.

Camera # Yaw (◦) Pitch (◦) Position (X, Y, Z) (mm)

1 91.9 68.4 23.7, −257.9, −99.9
2 150.4 45.9 217.3, −101.5, −227.1
3 115.7 47.7 113.3, −196.4, −211.9
4 −159.9 51.7 215.3, 87.83, −159.1
5 −123.2 46.7 144.8, 204.1, −222.8
6 −85.4 64.7 −3.9, 263.5, −114.4
7 −65.0 49.2 −83.9, 231.5, −219.0
8 −37.7 55.2 −153.1, 144.2, −154.8
9 49.8 48.5 −129.8, −162.7, −200.1
10 13.2 47.3 −194.9, −34.4, −203.4

Figure 3. (a) Illustration of an arbitrarily placed camera setup
around a burner. (b) Top-down view of experimental setup with
similar arbitrary camera placement as illustration.

Figure 4. (a) Example image of unsteady premixed CH4/air flame
acquired during 200 µs exposure time. (b) Example image of small
ethanol diffusion pool flame acquired during 2 ms exposure time.

(equation (13)) for each camera through imaging of a calib-
ration target. This work used a checkerboard surface as cal-
ibration target, with a square size of 4.05 mm. A minimum
of 20 calibration images with unique location and orienta-
tion, in relation to each camera, were acquired. The calib-
ration procedure was conducted using the Computer Vision
System Toolbox in MATLAB 2020b. During this procedure,
image distortions such as barrel and pincushion effects were
removed. It should be noted that due to the use of high-quality
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Figure 5. Calibrated camera locations and orientations from
experimental arbitrary camera arrangement (a) and in-plane-half-
circle arrangement. (b) Probed domain highlighted by the blue
box.

optics any initial image distortions were observed to be min-
imal. Finally, multiple images of the calibration target, visible
to more than one camera simultaneously, were used to map all
cameras to the same coordinate system. Two sets of computed
camera locations and orientations acquired from calibration
are visualized in figure 5 both for arbitrary camera arrange-
ment (a) and in-plane-half-circle arrangement (b).

To confirm appropriate camera calibration, the reprojection
error for each camera was investigated. This is the Euclidian
image distance between measured calibration points and the
projection of their corresponding estimated points in 3D space
from calibration. Themean error was estimated to one pixel for
the arbitrary position arrangement in the experimental setup.
The effective pixel resolution within the probed domain cen-
ter was estimated to be ∼0.01 mm. To increase SNR of the
acquired images, image size was reduced by a factor of two
resulting in a resolution of 960 by 600 pixels and a reduced
effective pixel resolution of ∼0.02 mm.

4. Simulative study

Simulations were performed to evaluate reconstruction pro-
cess capabilities with arbitrary camera arrangements as well
as the influence of added smoothing prior and hull constraint.
The domain of the simulated flame phantom, depicting a hol-
lowGaussian cone seen in figure 6(a), was discretized into dif-
ferent voxel resolutions with the highest reaching 1293 voxels.
The phantom possesses a well-defined structure while still
sharing important similarities with an ideal Bunsen flame, such
as the hollow interior, allowing straightforward evaluation of
reconstruction quality.

Figure 6. (a) Gaussian cone phantom visualized using final
projection method. (b) Gaussian cone phantom visualized using
projection method without randomized voxel sampling, aliasing
effects are visible.

Aliasing artifacts due to systematic domain discretization
was initially observed in the camera projection model as fre-
quency lines, shown in figure 6(b), resulting in pronounced
streak artifacts in the reconstruction domain. Streak artifacts
are a common phenomenon in tomography and they were
made worse by the aliasing frequency patterns. The imple-
mented routine of randomly moving each voxel’s sampling
coordinates slightly before projection greatly reduced these
aliasing effects as shown in figure 6(a) and in turn streak arti-
facts in the reconstruction domain diminished.

Slightly shifting voxels in this manner will have minor
effects on spatial projection resolution and can be seen as a
slight tradeoff between reconstruction resolution and estima-
tion accuracy.

Evaluation for arbitrarily placed cameras was performed
by simulating multiple different sets of 20 randomly placed
cameras then comparing their individual reconstructions with
the original phantom. The allowed camera placements were
limited to a half sphere above the flame domain with vary-
ing distance to the probed domain center, resulting in sim-
ilar arrangements as shown in the visualization in figure 3(a)
and experimental photo in figure 3(b). Estimation of phantom
reconstruction quality was done by looking at two different
criteria. The first was root-mean-square-error (RMSE)

RMSE=

√∑Nv
i=1

(
xTruei − xReci

)2
Nv

(15)

where Nv is the total number of voxels in the reconstruction,
xTrue the simulated phantom and xRec the resulting reconstruc-
tion. The second was structural similarity index (SSIM), a fre-
quently used index in the field of image analysis that look at
dependencies between spatially close voxels [52]

SSIM =
(2µTrue ×µRec +C1)(2σTrue.Rec +C2)

(µ2
True ×µ2

Rec+C1)(σ2
True.σ

2
Rec+C2)

(16)

where µTrue is the simulation phantom mean value, µRec the
reconstruction mean value, σ2

True and σ2
Rec the respective vari-

ances of simulation phantom and reconstruction, σTrue·Rec the
covariance between simulation phantom and reconstruction,

7



Meas. Sci. Technol. 33 (2022) 125206 D Sanned et al

Figure 7. (a) RMSE of phantom reconstructed using simulated randomized camera positions compared to an in-plane-half-circle camera
arrangement. (b) SSIM of phantom reconstructed using simulated randomized camera positions compared to an in-plane-half-circle camera
arrangement. Error bars represents standard deviation.

Figure 8. (a) RMSE of simulation phantoms reconstructed with arbitrary camera arrangement. (b) SSIM of simulation phantoms
reconstructed with arbitrary camera arrangement.

C1 and C2 are stabilization parameters based on the dynamic
range of voxel values.

To investigate the effect of camera view numbers on
field reconstruction quality for arbitrary camera arrangements,
phantom field reconstructions were made from 50 different
camera sets with randomized camera positions. Each camera
position in every set where randomized between an azimuth
angle of 0◦–360◦ and elevation angle of −45◦–45◦. Resolu-
tion was set to 1293 voxels, similar to resolutions later used
in the experimental measurements. Results in terms of RMSE
and SSIM are calculated between the full phantom and recon-
structed fields are presented in figure 7 with standard devi-
ation based on all 50 different camera sets. In addition, recon-
struction results from one in-plane-half-circle arrangement are
shown for comparison. Only results produced with between
four and 20 cameras are presented as four projections still tend
to be able to yield useful field estimates, without too many line
artifacts, while a lower number usually results in undesirable
quality levels [4].

Better performance of the in-plane-half-circle arrangement
can generally be observed. Most likely due to lower spatial
variation between projections, in line with previous studies
looking at in-plane camera placement [4]. This confirms that in

a well-defined laboratory settings such an arrangement would
be preferable. Yet, the difference is not very large, around
∼1%, and at lower number of camera views, 4–6, arbitrary
positions seem to perform as well or marginally better, up to
around ∼2%, where benefits from having input data origin-
ating from varied views outweigh the negative effects from
increased spatial variation.

Reconstruction results at different voxel resolutions and
changing number of camera views from one selected simu-
lated arbitrary camera arrangement are displayed in figure 8.
The maximum reconstructed resolution was set to 1293 voxels
same as the original phantom resolution. Reconstructed results
at lower resolutions were interpolated to match the original
phantom resolution to enable comparison. Voxel resolution is
shown normalized to the highest resolution and as previously
results using between four and 20 cameras are presented.

The expected behavior of better reconstruction estimates
with increasing number of camera views at all resolution cases
can be observed in figure 8. However, at lower resolution
the quality gain from increasing number of camera views is
reduced at higher camera numbers, most likely due to the over-
determined problem, with equations heavily outnumbering
unknowns and at a point resulting in diminishing quality.
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Figure 9. (a) RMSE of phantom reconstruction with different number of cameras for both arbitrary and in-plane-half-circle camera
arrangement acquired by real experimental calibration. (b) SSIM of simulation phantom reconstructions with different number of cameras
for both arbitrary and in-plane-half-circle camera arrangement acquired by real experimental calibration. Error bars represents standard
deviation.

Increasing resolution is observed to improve reconstruction
quality, due to the higher voxel count, enabling a more
accurate field description. However, this improvement will
have an upper limit, restricted by the combined information
given by the number of projection views, camera resolution,
and a priori information.

Figure 9 presents similar reconstruction results of the
phantom at a 1293 voxel resolution but now using real experi-
mental camera calibration data from three different arbitrarily
as well as in-plane-half-circle arrangements. Figure 9(a) show
similar RMSE results as figure 7(a) with the tendency for bet-
ter reconstructions when applying arbitrary camera arrange-
ments at lower camera numbers. However, this same trend
is not seen in the SSIM results in figure 9(b). Further, bet-
ter estimates yielded with in-plane-half-circle arrangement is
supported by the SSIM evaluation but not RMSE evaluation,
highlighting the fact that future studies regarding camera map-
ping and experimental calibration effects would be of interest.

5. Results and discussion

Laboratory 3D CTC field reconstructions of premixed CH4/air
Bunsen burner flames was performed using ten camera views
placed at arbitrary positions around the burner, using the geo-
metry shown in figure 5(b). The camera exposure time was
set to 200 µs, well below the temporal resolution required
to sufficiently freeze the unstable Bunsen flame. Comparis-
ons between original camera images and reconstruction pro-
jections at the same view position of a single CH4/air flame
measurement are displayed in figure 10. Projection (b) is taken
at the same view position as the original camera image (a) that
was used in the reconstruction. Similarly, projection (c) cor-
responds to the original camera image (d), also used in the
reconstruction. The hull constraint applied during the recon-
struction is visible in projection (b) where intensity originating
from above the hull can be observed to accumulate at the top
of the reconstructed volume. This is expected and is estimated
to have minimal impact to the rest of the reconstruction due to
the very low intensities outside the hull. It is well established

that projections of a reconstruction acquired at the same view
position as a measured camera image used in the reconstruc-
tion process will overestimate the quality and resolution of the
result. Therefore, this result is intended to showcase the projec-
tion method and later results always use projections of recon-
structions that do not share a view position with an original
camera measurement.

The reconstructed domain was discretized in the x y z
dimensions into 100 by 121 by 81 voxels. Flame field recon-
structions of the CTC from two different unsteady CH4/air
flames are shown in figure 11, depicting each flame’s reac-
tion zone at normalized intensity. The part of the flame field
facing the reader has been cut away to visualize the ability to
capture the expected hollow interior of the Bunsen flames in
the reconstructions.

Some minor line artifacts are present in the reconstruction,
especially at higher intensity regions such as the top of the
flames, highlighted by the arrow, but do not have major impact
on the overall flame topology estimation. These results fur-
ther show that arbitrary camera arrangements, which are more
suited for in-situ measurements, can capture individual flame
topology of the unsteady Bunsen flame to a satisfactory level
in a practical environment.

5.1. Reconstruction convergence

To further test versatility and reconstruction convergence,
stable ethanol pool flames were reconstructed using subsets
of the ten arbitrarily placed cameras, but with an exposure
time of 2 ms increasing the SNR, possible due to the stable
nature of the pool flames. Here, a probed domain of 60 by
60 by 200 voxels was applied. Convergence evaluation is
important to make sure reconstructions using arbitrary cam-
era arrangements still yield true flame fields estimates. In the
following examples, the compared projection viewpoints were
not corresponding to any dataset used in the reconstruction
process.

Comparison between intensity distributions in two projec-
tions made from separate field reconstructions of the same
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Figure 10. (a) and (c) Original camera measurements of a CH4/air flame used in reconstruction. (b) and (d) Projections of the reconstructed
flame made at the same view position as the displayed camera measurements. Effects of applied hull constraint is outlined in (b).

Figure 11. Reconstructed CTC fields depicting the reaction zone of two different experimental premixed CH4/air Bunsen flames. Parts of
the field have been removed to show the hollow interior of the Bunsen flames. The luminosity is normalized between 0 and 1.

ethanol flame is presented in figure 12. The two field recon-
structions are made with different subsets of six cameras each,
where two views are shared between the sets. This is akin to
the approach used by Meyer et al [16]. The cameras used for
reconstruction (1) were 1, 3, 6, 7, 9, 10 and 2, 4, 5, 6, 7, 10
for reconstruction (2). A reference intensity line from field
reconstruction using all ten available cameras is shown for
comparison.

The projections (a, 1) and (a, 2) show similar flame intens-
ity structure and feature size across both lines. However, while
the relative intensity is comparable for both projections, the
overall absolute intensity can be observed to be consistently
lower in reconstruction (1), seen in both (b) and (c). The same
intensity difference is observed in comparison between ver-
tical center slices of the same two reconstructions, displayed
in figures 13(a, 1) and (a, 2), acquired from the same viewpoint
at previous projections in figure 12. Here one can further spot
small structural differences such as the minor intensity spike
at ∼51 voxels in figure 13(c) visible in reconstruction (1) but
not visible in (2). The flame intensity structure follows the ref-
erence reconstruction for both (1) and (2) but differences in
intensity exist for both.

It is important to understand the limitations coming with
arbitrary camera positions, therefore the same flame field as
in figure 12 was again reconstructed, but now using subsets of
four cameras each where no camera was shared between the
sets. Here cameras 1, 2, 3, 4 was used for reconstruction (1)
and 7, 8, 9, 10 for reconstruction (2). This is a low number of
projection views and noticeable effects on results are expec-
ted. Results show that major structures remain comparable
between the reconstructions, but differences are more com-
mon and pronounced. Such a difference is notably seen in the
lower dashed lines presented in figure 14(c). Here the central
intensity decrease, at around ∼30 voxels, behaves differently
between the two reconstructions. Furthermore, the first recon-
struction (1) no longer has consistently higher intensity than
the second reconstruction (2), observed in both in figures 12(b)
and (c), indicating error in the relative intensity. Also, the
intensity differences between the reference reconstruction and
both reconstructions (1) and (2) are now larger further suggest-
ing higher error as expected.

Further reconstruction disparity is more apparent between
the vertical slices presented in figure 15. Here even larger
flame structures are shown to be affected, seen both in the
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Figure 12. Projections made from two separate field reconstructions (a, 1) and (a, 2) of the same ethanol flame. Intensity is compared
between the two projections along one upper and one lower line (light green). (b) Intensity along the upper line for both slices. (c) Intensity
along the lower line for both slices. Subsets of six cameras were used, two cameras are shared in-between sets. The projection viewpoint
was not part of the reconstruction. The intensity line marked as reference in (b) and (c) corresponds to field reconstruction using all ten
available cameras for comparison.

Figure 13. Vertical center cross section slices from two separate field reconstructions (a, 1) and (a, 2) of the same ethanol flame. Intensity is
compared between the two slices along one upper and one lower line (light green). (b) Intensity along the upper line for both slices.
(c) Intensity along the lower line for both slices. Six cameras were used, two cameras are shared in-between sets. The slice viewpoint was
not part of the reconstruction. The intensity line marked as reference in (b) and (c) corresponds to field reconstruction using all ten available
cameras for comparison.

Figure 14. Projections made from two separate field reconstructions (a, 1) and (a, 2) of the same ethanol flame. Intensity is compared
between the two projections along one upper and one lower line (light green). (b) Intensity along the upper line for both slices. (c) Intensity
along the lower line for both slices. Four cameras were used, no cameras are shared in-between sets. The projection viewpoint was not part
of the reconstruction. The intensity line marked as reference in (b) and (c) corresponds to field reconstruction using all ten available cameras
for comparison.

varying flame position between the slices (a) and in the intens-
ity distributions of the upper dashed lines (b). Similar flame
structure still remains between the lower dashed lines (c),
but intensity variations can still be observed in the right peak
together with artificial broadening.

The observed relative intensity difference visible in
figure 12 is believed to be the result of using only six cameras,
still relatively few camera views and the difference is expec-
ted to disappear with increased number of cameras. However,
reconstruction of the field structure was similar, promising
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Figure 15. Vertical center cross section from two separate field reconstructions (a, 1) and (a, 2) of the same ethanol flame. Intensity is
compared between the two slices along one upper and one lower line (light green). (b) Intensity along the upper line for both slices.
(c) Intensity along the lower line for both slices. Four cameras were used, no cameras are shared in-between sets. The slice viewpoint was
not part of the reconstruction. The intensity line marked as reference in (b) and (c) corresponds to field reconstruction using all ten available
cameras for comparison.

acceptable qualitative 3D measurements with relatively low
numbers of arbitrarily placed cameras.

6. Conclusion

This work presents both simulations and experimental studies
on tomographic field reconstructions using arbitrarily placed
camera views in combustion diagnostics. Arbitrary camera
placements allow for flexible experimental setups beneficial
for in-situ measurements and applications suffering from lim-
ited optical access, such as the marine engine cylinder head
shown in figure 1. An in-house developed, highly custom-
izable method was applied to solve the tomographic inverse
problem allowing full control over regularization weights,
constraints, and priors to accommodate specific needs in vari-
ous applications. This work applied prior knowledge in the
reconstruction process in terms of smoothness priors through
3D Laplacian matrices and hull constraints based on 3D space
carving.

Simulations was performed using a 3D Gaussian cone
phantom. Resulting reconstruction results showed that arbit-
rarily placed cameras will provide slightly less accurate
field estimations than the more common in-plane-half-circle
arrangements with the same number of cameras used. How-
ever, these differences, around ∼1%, are minor and quality is
still deemed sufficient for accurate combustion studies. Res-
ults also indicate that arbitrary camera placement is beneficial
when using lower number of camera views (Nq ⩽ 6) where
improvements up to ∼2% can be observed.

Furthermore, 3D CTC fields of unsteady premixed CH4/air
Bunsen flames were experimentally reconstructed using ten
arbitrary placed CMOS cameras. The 3D reconstructed flame
fields showed good agreement with the expected field topo-
logy of such flames, accurately capturing the expected hollow
cone shape.

Reconstructions of more stable ethanol pool flames, by dif-
ferent camera subsets, were compared to look at technique

versatility and ability of convergence to true flame field
estimates when applying arbitrary camera positions. The
obtained results depict accurate flame features and good agree-
ment of field intensity between reconstructions when using six
cameras in each subset, with two cameras shared in-between
sets. However, reducing camera numbers to four in each sub-
set, with no cameras shared between sets, showed the expec-
ted deterioration of reconstruction quality in the form of larger
differences between the two compared fields both in terms of
intensity and flame structures.

This work aims atmaking 3D tomographic techniquesmore
accessible to in-situ measurements in practical apparatuses
which often are optically access limited. Optimal reconstruc-
tion and experimental parameters will vary between applica-
tions and needs to be individually evaluated. Therefore, the
introduced methodology for 3D tomographic studies using
arbitrarily placed cameras is useful for in-situ measurements
and practical setups in terms of handling a priori inform-
ation, camera placement and 3D flame field reconstruction
evaluation.
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