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Abstract
In order to address the self-collision problem associated with the operation of modern industrial
robots, this paper proposes a multi-degree-of-freedom collision detection algorithm that can
detect self-collision in single arm and double arm robots as well as collision with the load.
Firstly, the zero pose of the Denaviti−Hartenberg model is built based on the manipulator
configuration, and the coordinate information of each key point is obtained through a rotation
and translation operation of the matrix. Then, the positional relation and distance between the
detected objects are determined by the spatial geometry theory, and finally, collision is detected
using a collision matrix. By simulating two groups of single arms and two groups of double
arms, and from the laboratory testing of SR10C in the SIASUN robot factory, it has been
verified that the proposed algorithm has good collision detection capability. Without the use of
sensors, cameras, and other external devices, the collision between the arm and the load, and the
collision between the cooperative robot and the load may be effectively detected and mitigated.

Keywords: multi-DOF, self-collision, distance detection, manipulator, load

(Some figures may appear in colour only in the online journal)

1. Introduction

As a result of the rapid development of robotic technolo-
gies, the demand for more intelligent algorithms is increasing.
Accordingly, the self-collision problem of multi-degree-of-
freedom (multi-DOF) manipulators for intelligent path plan-
ning has been at the forefront of robotics research.

∗
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of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

Himmelsbach et al [1] used a single pixel time-of-flight
sensor to detect obstacles to the robot arm and thereby pre-
vent collision. The inertial measurement unit sensor was used
to measure the joint angle of the manipulator and monitor
collision [2, 3]. In Liang et al [4, 5] the detection information
is fed back through the collision surface of the tactile sensor.
At present, the effect of sensor application is better, but it will
increase the load on the manipulator and the cost.

The KUKA robot arm used a deformeter to measure the
external torque in each joint for collision detection. Zhang
et al [6] designed a pair of envelope lines that can detect
the collision of industrial robots. Using the joint structure,
Alberto et al [7] proposed an ontology-aware collision detec-
tion algorithm based on Gaussian regression. Most of the
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motor measurement or deformeter based methods are asso-
ciated with post-collision detection, and the detection accur-
acy of the torque difference will decrease with the variation in
time. Moreover, the wiring of the skin perception is complex
and the anti-interference performance is poor.

Several researchers opted to discretize the operation space
into small discrete volumes, and used the master-slave and
occupied-free models, along with other methods to work
[8, 9]. Zhou et al [10] proposed a collision-free compliance
control strategy based on the physical constraints. Sangiovanni
et al [11] used deep reinforcement learning to develop a hybrid
control method to avoid robot body collision. Park et al [12]
designed a detection method based on a learning support vec-
tor machine and convolutional neural networks. In order to
avoid the collision between the ball shoulder and wrist joint
of the robot and the body, Oh et al [13] used the arm angle
to mitigate the redundancy of the manipulator. Further, ROS
was used to construct a CollisionRequest object and a Col-
lisionResult object to detect collision [14, 15]. Kramar et al
[16] proposed a method for the external obstacle detection by
a dual-arm robot. Division of space methods usually involves
extensive computation, and the method of joint angle limita-
tion reduces the working range of the manipulator and reverse
solution rate. Other intelligent algorithms have long detection
time and poor stability, which are not advisable for application
in the case of industrial manipulators.

This paper puts forward a simple and effective fast colli-
sion detection algorithm based on mathematical model ana-
lysis for actual engineering needs. When the state of collision
is reached, it will sound an alarm and halt the operation of the
manipulator. The essential requirements of the algorithm come
from the project requirement of the SIASUN Robot company.
The 6-DOF SR10C manipulator is used to carry liquid crystal
display and other loads, and the 4-DOF manipulator is used
to cooperate. The conventional method is to use the teaching
mode, but when the size of the load or the position and pos-
ture of the manipulator are changed, collision and subsequent
damage to the object or the manipulator itself may occur. The
objective of the algorithm examined in this paper is to solve the
self-collision problem, and the simulation and self-collision
test of different types of manipulators are carried out on this
basis. This is expected to provide more in-depth knowledge of
the usability of the algorithm.

This paper is structured in the following manner. In
section 2, the coordinate information of the key points are
obtained. In section 3, we describe the basic principle and
provide the flowchart of the algorithm, while in section 4
the experiment and analysis of the collision detection process
are carried out using different types of manipulators. Finally,
section 5 provides a brief conclusion.

2. Get the coordinate information of key points

It is necessary to determine the key points of the detected
object and know the spatial position information before the
algorithm can be applied, and most of these key points are
joint points or their offsets. For the joint limit constraints

and collision-free constraints for hyper-redundant manipulat-
ors, Zhao et al [17] provide an algorithm based on the rela-
tion between the forward and backward inverse kinematics. A
manipulator is a complex chain structure composed of a series
of links. Denavit and Hartenberg proposed a matrix parameter
analysis method (DH parameter), which established a 4 × 4
homogeneous transformationmatrix for the links of each joint,
and expressed the relationship between each link using θi, di,
ai and αi.According to matrix transformation, the coordinates
of each joint were unified in the base coordinate system, which
made preparations the for collision detection.

In order to realize the coordinate transformation, a space
coordinate system x, y, and z are set for each joint. Among
these, θi is the angle of the common perpendicular line
between two links from xi−1 to the xi axis around the zii−1

axis; ai is the distance between the common normals of the
two links from the zii−1 to zi axis along the xi axis; αi is the
angle from zii−1 to zi axis around xi axis in the plane vertical to
ai; di is relative distance between the two links from the xii−1

to xi axis along the zi axis.
The homogeneous transformation of the relative translation

and rotation between the link coordinate systems is described
by the Ai matrix, which can be written as:

Ai = Rot(z,θi)Trans(0,0,di)Trans(ai,0,0)Rot(x,αi). (1)

The Ai matrix can be computed efficiently according to:

Rot(z,θi) =


cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1

 , (2)

Trans(0,0,di) =


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

 , (3)

Trans(ai,0,0) =


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

 , (4)

Rot(x,αi) =


0 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1

 . (5)

Through matrix (2)–(5), we get:

Ai =


cθi −sθi cαi sθi sαi ai cθi
sθi cθi cαi −cθi sαi ai sθi
0 sαi cαi di
0 0 0 1

 . (6)

The s and c in the matrix represent the sine and cosine oper-
ations respectively. Based on the values of θi, di, ai, and αi for
each joint in the DH parameter table, A1, A2, A3, A4, A5 and A6

2



Meas. Sci. Technol. 34 (2023) 015901 Z Liu et al

can be obtained one by one, and the coordinate information of
the end-effort for 6-DOF is:

T6= A1A2A3A4A5A6 =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 . (7)

In the same way, T5 = A1A2A3A4A5, T4 = A1A2A3A4,
T3 = A1A2A3, T2 = A1A2, T1 = A1, the values of the spa-
tial key points of other joints are obtained, and these coordin-
ate values are relative to the same coordinate system (base
coordinate system). The additional key points can be used
in the DH zero pose parameter modeling, or through the
joint value matrix rotation, translation, and other operations
to obtain the corresponding coordinate information.

On the other hand, if there is a tool at the end of the manipu-
lator to carry out the load operation, an outer cuboid or sphere
is established with the center of mass of the load as the center,
and the key points of each edge and the center of the sphere are
determined, which can be obtained by the offset of the pose of
the end-effort.

3. Get the coordinate information of key points

While designing algorithms for collision detection and
obstacle avoidance, many experts simplify the target into a
topological structure. Some studies made an effective bound-
ing box modeling of obstacles, and the collision detection
was realized by using the vector relationship between them
[18, 19]. In this work, the idea of simplification is used for
reference, and each link of the multi-DOF manipulator is sur-
rounded by a cylinder. On the basis of obtaining the coordinate
information of each joint, it is simplified into the comparison
and determination of the topological line of the cylinder axis,
and the corresponding collision detection is completed. The
basic principle and process of algorithm application mainly
include determining the coordinates of the key points, cyl-
inder link positions, and collision distance detection during
traversal.

Initializing the pose and updating the coordinate values of
the key points is the first task to be completed. The coordinate
values of each joint point are obtained through the parameter
modeling of the manipulator. Due to the configuration charac-
teristics of the manipulator, the coordinate value of the joint
point should be converted into the coordinate value of the link
and expressed as the coordinate value of the key point as far
as possible, so as to reduce the need for computation. When
the manipulator is in use, the coordinates of the key points are
updated from the kinematic relations.

Next, it is necessary to determine the presentation form of
the link and form a collision detection matrix. Each link is
simplified into the form of a cylinder, and the coordinates at
both ends of the central axis of the cylinder are the coordin-
ates of the key points. The problem of self-collision can be
simplified as the determination of the position relationship of
the central axis of any two links. With the working beat of

Figure 1. Flowchart of collision detection for two links.

the manipulator, set the detection time of the interval to judge
whether link of the manipulator has self-collision.

3.1. Flowchart

Taking two link cylinders as an example, the position rela-
tionship of the central axis of the link is determined, and the
self-collision detection and alarm generation are completed as
shown in the flowchart in figure 1.

Consider the endpoint coordinates of the two line seg-
ments to be A(Xa,Ya,Za), B(Xb,Yb,Zb), C(Xc,Yc,Zc), and
D(Xd,Yd,Zd), and the cylinder radius of the links are r1 and r2.
According to the flowchart, the two line segments at the cen-
ter, AB and CD, are examined successively to check whether
the spatial position relations such as coplanarity, verticality,
parallelism, and collinearity, and the corresponding distance
detection and alarm function were carried out.

3.2. Judgment of spatial position relationship

3.2.1. Coplanar relation. According to the coordinates of A,
B and C, we can get the equation:

a= Ya ∗ (Zb−Zc)+ Yb ∗ (Zc−Za)+ Yc ∗ (Za−Zb)

b= Za ∗ (Xb−Xc)+ Zb ∗ (Xc−Xa)+ Zc ∗ (Xa−Xb)

c= Xa ∗ (Yb−Yc)+Xb ∗ (Yc−Ya)+Xc ∗ (Ya−Yb)

d=−Xa ∗ (Yb ∗Zc−Yc ∗Zb)+Xb ∗ (Yc ∗Za
−Ya ∗Zc)+Xc ∗ (Ya ∗Zb−Yb ∗Za). (8)

And, the standard form of the coplanar equation of the three
points is:

ax+ by+ cz+ d= 0. (9)
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Figure 2. Noncoplanar line distance detection.

Then, judge whether point D satisfies equation (9), if the
condition is true, then points A, B, C, and D are coplanar.

3.2.2. Verticality relation. When the vectors satisfy
−→
AB*

−→
CD= 0, then the line segments AB and CD are vertical.

3.2.3. Parallel relation. The vectors
−→
AB and

−→
CD can be

obtained based on the coordinates of A, B, C, and D. If it exists
as

−→
AB= λ

−→
CD, the line segments AB and CD are parallel; oth-

erwise they intersect in the same plane.

3.2.4. Collinear relation. Euclidean geometry is used to
estimate the distance of each point, and the areas SABC and
SABD are obtained. If the areas reduce to zero simultaneously,
then the four points are collinear.

3.3. Collision distance detection

3.3.1. Noncoplanar distance detection. Determination of
the noncoplanar situation is the most complex part of imple-
menting the algorithm. This includes considering not only the
distance between each other, but also obtaining the coordin-
ates of the common perpendicular foot of the two central axes.
We can obtain the spatial coordinates of the four points based
on the method mentioned before, and the segments AB and
CD are noncoplanar. If AB and CD have a common perpen-
dicular line, the points M(Xm,Ym,Zm) and N(Xn,Yn,Zn) may
be set as the feet of the perpendiculars of AB and CD. When
the coordinates of the two common perpendicular foot points
are obtained, the distance between the two planes can be cal-
culated and the alarm given as shown in figure 2.

According to the relation of vectors
−→
AM= t1 ∗−→AB, we

obtain the spatial coordinates as follows:

M

 t1(Xb−Xa)+Xa,
t1(Yb−Ya)+ Ya,
t1(Zb−Za)+ Za

 ,N

 t2(Xd−Xc)+Xc,
t2(Yd−Yc)+ Yc,
t2(Zd−Zc)+ Zc

 .

(10)
Then, the coordinates M and N can be obtained from the

values of t1 and t2. The vector is:

−−→
MN = (t2(Xd−Xc)+Xc− t1(Xb−Xa)−Xa,

t2(Yd−Yc)+ Yc− t1(Yb−Ya)−Ya,

t2(Zd−Zc)+ Zc− t1(Zb−Za)−Za). (11)

The segmentMN is perpendicular to both AB and CD, and
can be expressed as:

t2

[
(Xb−Xa) ∗ (Xd−Xc)+ (Yb−Ya)

∗(Yd−Yc)+ (Zb−Za) ∗ (Zd−Zc)

]

− t1

[
(Xb−Xa) ∗ (Xb−Xa)+ (Yb−Ya)

∗(Yb−Ya)+ (Zb−Za) ∗ (Zb−Za)

]

+

[
(Xb−Xa) ∗ (Xc−Xa)+ (Yb−Ya)

∗(Yc−Ya)+ (Zb−Za) ∗ (Zc−Za)

]
= 0, (12)

t2

[
(Xd−Xc) ∗ (Xd−Xc)+ (Yd−Yc)

∗(Yd−Yc)+ (Zd−Zc) ∗ (Zd−Zc)

]

− t1

[
(Xb−Xa) ∗ (Xd−Xc)+ (Yb−Ya)

∗(Yd−Yc)+ (Zb−Za) ∗ (Zd−Zc)

]

+

[
(Xd−Xc) ∗ (Xc−Xa)+ (Yd−Yd)

∗(Yc−Ya)+ (Zd−Zc) ∗ (Zc−Za)

]
= 0. (13)

From the hypothesis,

F1(a,b) =

[
(Xb−Xa) ∗ (Xb−Xa)+ (Yb−Ya)

∗(Yb−Ya)+ (Zb−Za) ∗ (Zb−Za)

]

F1(c,d) =

[
(Xd−Xc) ∗ (Xd−Xc)+ (Yd−Yc)

∗(Yd−Yc)+ (Zd−Zc) ∗ (Zd−Zc)

]

F2=

[
(Xb−Xa) ∗ (Xd−Xc)+ (Yb−Ya)

∗(Yd−Yc)+ (Zb−Za) ∗ (Zd−Zc)

]

F3(a,b) =

[
(Xb−Xa) ∗ (Xc−Xa)+ (Yb−Ya)

∗(Yc−Ya)+ (Zb−Za) ∗ (Zc−Za)

]

F3(c,d) =

[
(Xd−Xc) ∗ (Xc−Xa)+ (Yd−Yc)

∗(Yc−Ya)+ (Zd−Zc) ∗ (Zc−Za)

]
, (14)

Substituting in (12) and (13) and rearranging, we obtain the
expressions t1 and t2. Then, the coordinates of the two perpen-
dicular points are:

Xm= t1 ∗ (Xb−Xa)+Xa

= (Xb−Xa) ∗ [F3(a,b) ∗F1(c,d)−F3(c,d)

∗F2 ]/[F1(a,b) ∗F1(c,d)−F2 ∗F2] +Xa

Ym= t1 ∗ (Yb−Ya)+ Ya

= (Yb−Ya) ∗ [F3(a,b) ∗F1(c,d)−F3(c,d)

∗F2 ]/[F1(a,b) ∗F1(c,d)−F2 ∗F2] + Ya

Zm= t1 ∗ (Zb−Za)+ Za

= (Zb−Za) ∗ [F3(a,b) ∗F1(c,d)−F3(c,d)

∗F2 ]/[F1(a,b) ∗F1(c,d)−F2 ∗F2] + Za, (15)
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Figure 3. Intersection distance detection.

Xn= t2 ∗ (Xd−Xc)+Xc

= (Xd−Xc) ∗ [F3(c,d) ∗F1(a,b)−F3(a,b)

∗F2 ]/[F2 ∗F2−F1(a,b) ∗F1(c,d)]+Xc

Yn= t2 ∗ (Yd−Yc)+ Yc

= (Yd−Yc) ∗ [F3(c,d) ∗F1(a,b)−F3(a,b)

∗F2 ]/[F2 ∗F2−F1(a,b) ∗F1(c,d)]+ Yc

Zn= t2 ∗ (Zd−Zc)+ Zc

= (Zd−Zc) ∗ [F3(c,d) ∗F1(a,b)−F3(a,b)

∗F2 ]/[F2 ∗F2−F1(a,b) ∗F1(c,d)]+ Zc. (16)

The distance between MN is based on equations (15)
and (16). It will give a noncoplanar alarm if the length of MN
is less than the sum of r1 and r2, pointM is on the line of AB,
and N is on the line of CD.

3.3.2. Vertical distance detection. It is relatively simple to
judge the vertical condition, only considering the coordinate
position of the perpendicular point and the radius of the two
cylindrical outer bodies.

3.3.3. Intersection distance detection. For the coplanar
intersection of segments AB and CD, three cases may be con-
sidered: the intersection point on AB and CD and the exten-
sion segment of AB and CD that can be used to determine the
distance as shown in figure 3. The A′B′ and C′D′ are the line
segments along the outer line of the cylinder where the line
segments AB and CD are located respectively.

As long as the intersection occurs along the outer line, it
is considered that two links collided. Make a vertical line AB
through pointD, and the foot point isO1, the extension ofDD′

intersects AB at point O2 and intersects A′B′ at point O, and
make a vertical line AB through point O, and the foot point is
O3. The α is the angle between the extension lines AB andCD.
The distance of DM and the value of angle α can be obtained
from the known coordinate information, and then solving to
the distance of DO2, the value of angle of β and the distance
of OO2 based on the trigonometric function operation.

The corresponding value is calculated, and if the distance
DO2 is less than the sum of OO2 and r2, coplanar intersection
alarm will occur.

3.3.4. Parallel distance detection. If the line segments AB
and CD are parallel, and P and Q are the coordinates of the

midpoint of the segments AB and CD, respectively. Then, the
length of PQ can be calculated, and point M is the perpen-
dicular foot from the midpoint P of the segment AB to CD.
Suppose that the linear equations of AB and CD are:

(x− x1)/m= (y− y1)/n= (z− z1)/p, (17)

(x− x2)/m= (y− y2)/n= (z− z2)/p. (18)

The points M1 (x1, y1, z1) and M2 (x2, y2, z2) are on two
different line segments, and the direction vector

−→
S = (m,n,p).

Then,

−−−→
M1M2= (x2− x1,y2− y1,z2− z1) = (a,b,c). (19)

The distance PM between parallel lines is obtained:

PM=

√
(bp− cn)2 +(cm− ap)2 +(an− bm)2

(m2 + n2 + p2)
. (20)

When the length of segment MQ is half the sum of AB
and CD, then the length of PQ is the square root of the sum
of squares of PM and MQ. If the length of PM is less than
the sum of r1 and r2, and the length of PQ is less than the
square root of the sum of squares of PM andMQ, the two seg-
ments have overlapping areas. This will give an alarm indicat-
ing parallelism.

When the length of segment MQ is half the sum of AB
and CD, then the length of PQ is the square root of the sum
of squares of PM and MQ. If the length of PM is less than
the sum of r1 and r2, and the length of PQ is less than the
square root of the sum of squares of PM andMQ, the two seg-
ments have overlapping areas. This will give an alarm indicat-
ing parallelism.

3.3.5. Collinear distance detection. When the four points A,
B, C, and D are collinear, assuming that P and Q are midpoint
coordinates of the AB and CD, respectively, the coordinates of
P and Q can be obtained, and the length of line segment PQ
can be also obtained. If the length of PQ is less than half of
the sum of AB and CD, an alarm will be generated to indicate
collinearity.

The detection of collision possibility, in the above cases,
are not limited to the judgment of distance, but also on detect-
ing whether there are overlapping areas in the collision target.
The entire process of collision detection is the self-collision
matrix formed by each link, and all non-adjacent links must
be so-evaluated. In addition, a global variableWARN is set for
the application of the algorithm. If any two links collide, the
WARN is set to 1, a logical value is returned, the operation of
the manipulator is stopped immediately, and the correspond-
ing collision information is outputted.

4. Experiment and analysis

In order to verify the effectiveness of the algorithm, the exper-
iment comprises two cases of collision tested for four groups.
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Table 1. Zero pose of manipulators.

Group no. Model Joint no. θ (◦) D (m) a (m) a (◦) Range (◦) Radius (m)

1 SR5A 1 −90 0.2365 0.0000 0 ±175 0.064
2 −90 0.1500 0.0000 −90 ±155 0.064
3 −90 −0.1500 0.4400 0 ±155 0.064
4 0 0.4100 0.0000 −90 ±180 0.061
5 0 0.1500 0.0000 90 ±170 0.061
6 0 0.1500 0.0000 −90 ±180 0.055

2 SR10C 1 0 0.1600 0.0000 −90 ±170 0.200
2 0 0.0000 0.5750 0 −150 ∼ 90 0.100
3 0 0.1300 0.0000 −90 −82 ∼ 95 0.080
4 0 0.6450 0.0000 90 ±175 0.060
5 90 0.0000 0.1300 90 ±135 0.045
6 0 −0.1095 0.0000 −90 ±360 0.040

3 Double-UR5 1 0 ±0.0891 ± 0.2 0.0000 0 ±360 0.060
2 0 0.0000 −0.4250 −90 ±360 0.060
3 0 0.0000 0.3920 0 ±360 0.060
4 0 0.1091 0.0000 0 ±360 0.060
5 0 0.0946 0.0000 90 ±360 0.060
6 0 0.0823 0.0000 90 ±360 0.060

4 Zu3 1 −90 0.1506 −0.4000 0 ±270 0.055
2 −90 −0.1150 0.0000 −90 −85 to 265 0.055
3 0 0.1095 0.2460 0 ±175 0.055
4 90 −0.1175 0.2280 −90 −85 to 265 0.055
5 0 −0.1175 0.0000 90 ±270 0.055
6 0 −0.1050 0.0000 −90 ±270 0.055

G10 1 0 −0.5000 0.5000 0 ±152 0.090
2 0 0.0000 −0.4000 0 ±152 0.4 × 0.04 × 0.02
3 0 0.0000 0.0000 0 0 to 0.018 0.015
4 0 0.0000 −0.2500 0 ±360◦ 0.25 × 0.04 × 0.13

Among them, the SR5A and SR10C of SIASUN are used
for single arm self-collision detection and load self-collision
detection, respectively. The Universal-Robot is used in double
arm self-collision detection and load collision detection in the
same manner as UR5. The JAKA Zu3 and Epson SCARA
G10 are used in double arm self-collision detection and load
collision detection of different types. The computer configur-
ation is Intel (R) core (TM) i7-9750 h CPU, @ 2.60 GHz,
16GB RAM with a Windows 10 OS. MATLAB r2018a and
Visual C++ 6.0 are used to model, simulate, and test the
robots.

Firstly, the DH parameter table of zero pose is established
based on the parameters such as link length, radius and joint
angle range of the actual manipulator model. At the same time,
for collision detection with load, the corresponding shape and
size are simulated based on common engineering require-
ments. Then, the joint values of the manipulator are randomly
selected. When the distance between the two detected targets
was less than 1 cm, collision alarm occurs. The state with
200 collisions are selected to test the self-collision algorithm,
while one group is selected for the experimental analysis and
effect explanation. In addition, compared with existing col-
lision detection methods, the proposed algorithm defines the
improvement and advantages of this research, and explains the
reliability and effectiveness of the work from the perspective
of science and technology.

4.1. Establishing DH parameter table of manipulator zero
position

The DH parameter established by the conventional method
represents the joint coordinate system in the form of simplified
data that cannot directly and effectively represent the actual
state of the manipulator, especially the multiple right angle
joints. In order to verify the intuitiveness and effectiveness of
the algorithm, the initial DH parameters are consistent with the
zero position state of the manipulator to facilitate obtaining the
coordinate information of the key points and the operation, as
shown in table 1. At the same time, the coordinate information
of the other related offset points can also be obtained quickly,
which could save time and calculation cost.

The four groups of manipulators all have six DOFs except
G10, and each link is treated as a cylinder. The G10 is a
manipulator with four DOFs, the third is a telescopic joint,
and the others are rotating joints. Combined with its configur-
ation characteristics, the two links at the second and third parts
are constructed by the bounding box of cuboid. The configur-
ation of the SR10C manipulator is relatively complex and the
radius scale of each link is quite different, which can minimize
the collision error. For other types of manipulators, each link
is a cylinder, which is also the constraint that guarantees the
high-quality implementation of this algorithm. The simpler the
configuration, the smaller the error.

6
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Table 2. Self-collision detection.

Group No. Model Joint angle (◦) Link Key points x y z d (mm) Time (ms)

1 SR5A −90, −124, 64, 0,
104, 0.

L3 P2 0.1300 0.0000 0.2365 5.8 11.82
P3 0.1300 0.0000 0.6013

L7 P6 0.1300 −0.1090 0.3963
P7 0.1300 −0.1090 0.3002

2 SA10C 20.4, −154, 77,
−31.5, 135, 0.

L1 P0 0 0 0 8.6 11.94
P1 0 0 0.1600

L6 P5 0.1435 0.1408 0.1699
P6 0.0730 0.0714 0.1230

3 Double-UR5 54,−28.2, 90, 5, 0,
26.2.

R-L6 P5 0.5472 −0.0575 −0.2627 7.1 64.22
P6 0.5955 −0.0575 −0.1961

54, 25.2, −79.2,
–46.8, 0.2, 3.7

L-L6 P5 0.5473 0.0600 −0.2628
P6 0.5957 0.0600 −0.1962

4 Zu3-G10 12, −11.1, −59.9,
62, 53, 0.

L6 P6 −0.0658 −0.0542 0.4135 6.3 73.05
P7 −0.0838 −0.0580 0.5295

9.04, −68, 0.008,
1.8

CD C −0.0582 −0.1307 0.4900
D 0.0707 0.0835 0.4900

For the Groups 3 and 4, the offset values of some posi-
tions are added. The value of double-UR5 is 0.0891 + 0.2
and −0.0891 − 0.2 respectively, the value of JAKA Zu3 is
−0.4, and SCARA G10 is −0.5 and 0.5. Through this set-
ting, the actual working environment of themanipulator ismet,
and the verification of the algorithm is more in line with scene
application.

4.2. Self-collision detection

For the common engineering assembly operation, the manipu-
lator mostly adopts the traditional teaching mode. The traject-
ory of each link and joint is specified in advance, and there is
no self-collision for the manipulator bodies. However, with the
needs of different industries, this simple teaching mode will
restrict the efficiency of engineering operation. If intelligent
and flexible path planning algorithm is adopted, each traject-
ory planning is unpredictable, and self-collisionwill inevitably
occur.

The experiment of self-collision detection is based on the
engineering application of the manipulator, randomly select-
ing the joint position and posture, and combining the working
beat of the manipulator. When the joint angles of the manip-
ulator are adjusted as shown in table 2, self-collision of the
manipulator occurs.

The points P0 to P7 represent the endpoints coordinates
of the central axis of the manipulator link, and points A to
H represent the vertex coordinates of the bounding box of
the G10 manipulator or load, which are the key points men-
tioned in section 3. Among them, Double-UR5 is divided into
left arm (L-L) and right arm (R-L). Considering the aver-
age values, the time consumption for two single arms SR5A
and SA10C is less than 12 ms, the self-test time of a 6-DOF
manipulator is between 10 and 15 ms, and the test times for
the two arms are 64.22 and 73.05 ms respectively. Thus, the
double-UR5 test is equivalent to two 6-DOF self-collision tests
and a cross test; and group 4 is equivalent to a one 6-DOF

Figure 4. Self-collision detection pose: (a) SR5A, (b) SR10C,
(c) Double-UR5, and (d) Zu3 & G10.

self-collision test and a cross detection. Due to the limitation
of configuration design, the 4-DOF G10 will not undergo self-
collision, but there is the possibility of collision between the
link and load or the Zu3 manipulator. Therefore, this work
establishes the corresponding rectangular bounding box for
the G10 and contains some detection of edges. By compar-
ing the results of collision experiments and practical engin-
eering experience, the self-collision of a single arm occurs
between the end-effort and the initial link, which accounts
for a large proportion of incidents, as shown in the figures 4
and 5. It is mainly affected by the configuration design of the
manipulator, and the algorithm adjusts the collision matrix to

7
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Figure 5. Self-collision detection structure: (a) SR5A, (b) SR10C, (c) Double-UR5, and (d) Zu3 & G10.

Table 3. Self-collision detection with load.

Group No. Model Joint angle (◦) Link Key points x y z d (mm) Time (ms)

1 SR5A −35, −87, −147,
123, −116, 92

L5 P4 0.0189 −0.0132 0.6759 5.12 58.35
P5 −0.2528 0.1770 0.9169

CD C −0.4713 −0.1495 0.4262
D 0.1097 −0.0112 1.0169

2 SA10C 10.2, −134, 30,
10.2, 96, −21.8

L1 P1 0 0 0.1600 3.6 47.28
P2 −0.3931 −0.0707 0.5736

GH G −0.1392 −0.2678 0.3681
H 0.0516 0.8882 0.6272

3 Double-UR5 −57.4, 151, 28, 0,
−64.8, 25.

R-L3 R-P2 0.3132 −0.0831 0.2003 5.78 65.23
R-P3 0.6434 −0.0871 0.4115

90, 25.2, 97.2,
87.5, 0, 14.4

Ball L-P6′ 0.5968 0.1225 0.1091
0.0215 0.0370 0.3787

4 Zu3-G10 −18, −18.5, 21,
66, 10.8, 70.

FG F 0.0333 0.0112 0.2213 0.12 88.93
G −0.0085 0.074 0.3200

36.7,−78, 0.018, 0 Ball P5′ 0.0189 −0.0132 0.6759
−0.2528 0.1770 0.9169

reduce unnecessary computational steps. The probability of
self-collision will be higher in the case of double arm coopera-
tion, but the collision between each other is not limited to this.

4.3. Self-collision detection with load

Similar to the self-collision detection mentioned above, the
self-collision detection with load is an important research
aspect, and it is also a prominent problem to be solved in engin-
eering application, especially for the operation of double-arms
or cooperative manipulators.

The load may be a special end-effort tool that has a certain
shape, or a target to be operated. As shown in table 3, when
four groups of joint angles are so adjusted, a corresponding
collision occurs.

The suction cup is a common end tool in the handling oper-
ation of engineering projects, and there is a certain distance
between the load to be operated and the end coordinate sys-
tem. In this study, the end offset of 0.02 is set for SR5A, the
left arm of Double-UR5 and the load of Zu3, and the value can
be adjusted with the model of the tool. In the four groups of
load collision detection process, the time consumption is quite
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Figure 6. Self-collision detection pose with load: (a) SR5A,
(b) SR10C, (c) double-UR5, and (d) Zu3 & G10.

different. The time consumption here includes not only the col-
lision detection time with the load, but also the collision detec-
tion consumption of the manipulator’s own joint link. Among
them, SR10C is the first link L1 that collides with the load, and
compared with L5 of SR5A, the collision occurs earlier. The
average time consumption of the algorithm is about 12.6 ms.
In fact, we should consider whether the z-axis coordinates of
each key point of the manipulator and load are less than 0, that
is, whether there is a collision between the manipulator and
the working platform or the arm of the mobile manipulator
collides with the vehicle body.

As shown in figures 6 and 7, the L-P6′ and P5′ in the third
and fourth groups represent the offset coordinates of the end
coordinates. The L3 of the right arm of Double-UR5 collides
with the spherical load on the left arm, and the computation
time in the table is 65.23 ms, mainly because the detection
of spherical obstacles is easier than that of cuboids, and the
algorithm is simple. The collision of the fourth group occurs
between the loads at the end of the two cooperative manipu-
lators, and the load shape is different.

Only the first group of SR5A of self-collision detection
gives rise to coplanarity alarms. Generally speaking, manip-
ulators with 90 degree joint bending such as SR5A, UR5
and Zu3 are more likely to be vertical, parallel, collinear,
and coplanar in the application, as shown in figure 8(a). As
shown in figure 8(b), from the collision test of the SR10C load
in actual operation, each joint also participates in the work,
the coordinate values will change, and noncoplanar positions
account for more than 90% of the duration.

Therefore, in the detection process of the algorithm, these
collision test is carried out first, which can also effectively
reduce computation requirements.

Figure 7. Self-collision detection structure with load: (a) SR5A,
(b) SR10C, (c) double-UR5, and (d) Zu3 & G10.

Figure 8. Experimental testing: (a) algorithm test and (b) SR10C
load carton test.

4.4. Comparison and analysis of algorithm

Collision detection has always been the focus of research in
the field. Compared with the available literature, the algorithm
proposed in this paper has improved characteristics as shown
in table 4. The conventional configuration design can effect-
ively avoid the collision between link and joint, but this will
greatly reduce the reverse solution rate of the end of manipu-
lator and limit the working range. The torque transformation
and current detection methods are only effective post collision
and do not give an early warning. Sensor methods will increase
the cost affect operation accuracy. Self-CCD (continuous col-
lision detection) is a fast collision detection library for deform-
ing objects, but it is not suitable for the common indus-
trial manipulator. DCD (discrete collision detection) realizes
the detection requirements by updating the detection object
and enabling both broad and narrow phase detection. For the
average time consumption of 6-DOF self-collision detection,
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Table 4. Comparison of the collision detection methods.

Detection method Method list Advantages Disadvantages Detection sequence

Configuration
constraints

Rod design constraints,
transformation threshold

Higher safety,
self-collisions are almost
non-existent

Lower solution rate,
restricted working space

Before collision

Voltage or current
variation

Perception skin, torque
measurement, envelope
lines

Responsive, more
interactive applications

Complex wiring, poor
anti-interference

After collision

Sensor Lidar, visual, force,
deformeter

Real-time planning,
strong interaction

Increase cost, more
calculations

Before/after collision

Widely used library OMPL, FCL, self-CCD,
DCD

Relatively complete
functions, higher
effectiveness and
robustness

Algorithm complexity,
implementation
difficulties

Before/after collision

Proposed algorithm Spatial geometric position
judgment

Simple and effective,
more self-detection
objects

Lower accuracy with
complex manipulator
configuration

Before collision

the time of DCD is about 15.2 ms, which increased by
about 20% compared with the proposed algorithm (12.6 ms).
Moreover, it needs to store the details of the individual pairs
that may collide in the intermediate process. Some combined
algorithms based on the geometric bounding method, such
as Hierarchical Bounding Box + Space Subdivision or OBB
(Oriented Bounding Box) + Triangular Mesh, the accuracy
is improved, but the time consumption is 30.1 and 48.2 ms
respectively. The proposed method is simple and effective,
the order of collision detection is obtained from experimental
study and engineering experience, and the process takes relat-
ively less time. Both OMPL (Open Motion Planning Library)
and PLC (Flexible Collision Library) are widely used motion
planning and collision detection libraries, and they include
many mature and classic geometric and control-based planner
algorithms, and realize the visual operation process through
MoveIt and Rviz. However, these are generally complex and
require various sensors, and the detection targets are mostly
the mobile robot or manipulator and environmental obstacles.
There is little research on the manipulator itself and load.

The proposed algorithm could be applied not only for self-
collision detection in the manipulator itself, but could also
include the manipulator and its load or cooperative manipu-
lator. And it used for different types and DOF of manipulators
effectively.

5. Conclusion

In this paper, the collision detection problem for a multi-DOF
manipulator is examined in-depth in actual working condi-
tions. The proposed algorithm is simple and can effectively
solve the self-collision problem of single arm and double arm
cooperatives. At the same time, it can also undertake colli-
sion detection with the operating load to avoid the damage
to the manipulator and load. In addition, the application of
this algorithm can overcome the constraints of joint angle in
the hardware configuration design of the manipulator and thus
increase the working range of the joint. It can also improve
the reverse solution rate, break through the shackles of the

traditional teachingmode, and canwidely use offline program-
ming and path planning algorithm, so as to further improve the
applicability and intelligence of the multi-DOF manipulator.

In subsequent studies focus is likely to be on combining it
with the path obstacle avoidance algorithm in offline program-
ming to ensure the safety of detection, and further improve and
enhance the intelligence and efficiency of path planning and
obstacle avoidance processing of the manipulator.
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