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Deep learning-based local climate zone classification using Sentinel-1 SAR and 
Sentinel-2 multispectral imagery
Lin Zhou a, Zhenfeng Shao b, Shugen Wanga and Xiao Huang c

aSchool of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China; bState Key Laboratory of Information 
Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China; cDepartment of Geosciences, University of 
Arkansas, Fayetteville, NC, USA

ABSTRACT
As a newly developed classification system, the LCZ scheme provides a research framework for 
Urban Heat Island (UHI) studies and standardizes the worldwide urban temperature observa
tions. With the growing popularity of deep learning, deep learning-based approaches have 
shown great potential in LCZ mapping. Three major cities in China are selected as the study 
areas. In this study, we design a deep convolutional neural network architecture, named 
Residual combined Squeeze-and-Excitation and Non-local Network (RSNNet), that consists of 
the Squeeze-and-Excitation (SE) block and non-local block to classify LCZ using freely available 
Sentinel-1 SAR and Sentinel-2 multispectral imagery. Overall Accuracy (OA) of 0.9202, 0.9524 
and 0.9004 for three selected cities are obtained by applying RSNNet and training data of 
individual city, and OA of 0.9328 is obtained by training RSNNet with data from all three cities. 
RSNNet outperforms other popular Convolutional Neural Networks (CNNs) in terms of LCZ 
mapping accuracy. We further design a series of experiments to investigate the effect of 
different characteristics of Sentinel-1 SAR data on the performance of RSNNet in LCZ mapping. 
The results suggest that the combination of SAR and multispectral data can improve the 
accuracy of LCZ classification. The proposed RSNNet achieves an OA of 0.9425 when integrat
ing the three decomposed components with Sentinel-2 multispectral images, 2.44% higher 
than using Sentinel-2 images alone.
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1. Introduction

The city plays an important role in the developing 
process of human society. Urbanization is one of the 
most principal phenomena in the world today (Li et al. 
2019; Shen et al. 2020; Wu, Gui, and Yang 2020; Zhou, 
Zhai, and Yu 2020). In the process of urbanization, the 
size of city expands at the expense of occupying agri
cultural land and green open space (Hadeel, Jabbar, and 
Chen 2009; Huang and Wang 2020; Shao et al. 2020), 
and the mass population assembles to the city (Li, Zhao, 
and Li 2016; Trinder and Liu 2020; Shao et al. 2021). 
The cities are under pressure from increasing popula
tion and ecological threats as a result of rapid urbaniza
tion (Alsaaideh et al. 2017). UHI effect is one of the 
most significant environmental issues caused by urba
nization (Yang et al. 2020). UHI refers to the phenom
ena that urban areas are warmer than the surrounding 
suburban areas. Most researchers assessed the UHI 
intensity through a classical urban-rural temperature 
difference (Jiang, Chen, and Jing 2006; Zeng et al. 
2010; Oke and Stewart 2012; Yang et al. 2020; Zhou 
et al. 2020a; Huang, Liu, and Li 2021). However, due to 
the absence of universal definitions for urban or rural, 
it’s not easy to qualify a site as urban or rural. UHI 
research has long been limited by the urban- 

rural classification. LCZ classification scheme is intro
duced to address this problem (Oke and Stewart 2012). 
The LCZ is a classification scheme that provides 
a standardization framework to present the character
istics of urban forms and functions (Oke and Stewart 
2012; Bechtel et al. 2015; Qiu et al. 2020). LCZs are 
defined as regions of uniform surface cover, structure, 
material, and human that span hundreds of meters to 
several kilometers on a horizontal scale (Oke and 
Stewart 2012). The LCZ scheme consists of ten built 
types and seven land cover types. Each LCZ type repre
sents a culturally neutral description of a specific urban 
landscape based on its effect on the local air tempera
ture (Mills et al. 2015). Illustrations of the LCZ classes 
are displayed in Figure 1. The LCZ scheme is originally 
designed for UHI research (Oke and Stewart 2012), but 
has shown an increasing impact on various climatolo
gical studies that include estimating nocturnal cooling 
effect (Leconte, Bouyer, and Claverie 2020), climate- 
sensitive street design (Maharoof, Emmanuel, and 
Thomson 2020), and analyzing urban ventilation 
(Yang et al. 2019; Zhao et al. 2020).

Recent efforts have been focusing on the develop
ment of LCZ mapping techniques. The World Urban 
Database and Portal Tool (WUDAPT) proposed 
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a method that employs Landsat data and open source 
software for worldwide LCZ mapping (Oke and 
Stewart 2012; Bechtel et al. 2015; Mills et al. 2015; 
Cai et al. 2016; Danylo et al. 2016; Ching et al. 2018; 
Bechtel et al. 2019). The WUDAPT method, which has 
been applied in many studies (Cai et al. 2016; Danylo 
et al. 2016; Cai et al. 2018; Shi et al. 2019; Zhou et al. 
2020b; Shi et al. 2021), needs experts with local knowl
edge of individual city to build reference polygons 
using Google Earth. These polygons are applied to 
train and test LCZ classification models with Landsat 
images (resampled into 100 m resolution). Random 
Forest (RF), a rule-based machine learning approach, 
is further used for classification in WUDAPT. Despite 
its popularity, WUDAPT is a pixel-based classification 
method that largely ignores spatial information, thus 
leading to relatively low accuracy (Qiu et al. 2020).

To achieve high accuracy, other LCZ mapping 
methods have been investigated, one notable effort of 
which is the Geographic Information System (GIS) 
stream. GIS-based methods use GIS datasets, such as 
building footprints and high-resolution digital surface 
models, to obtain parameters that are applied to define 
LCZ types (Zheng et al. 2018; Oliveira, Lopes, and 
Niza 2020). GIS-based methods are able to improve 
the LCZ classification accuracy but require massive 
input datasets that are not always available to the 
public (Quan and Bansal 2021).

In recent years, deep learning approaches have been 
widely adopted in remote sensing image scene classi
fication and achieved state-of-the-art classification 
accuracy (Cheng et al. 2020). Liu and Shi (2020) 
pointed out that LCZ mapping can be regarded as 
a scene classification task to fully exploit the contex
tual information from remote sensing images. With 
the growing popularity of deep learning, many scho
lars have investigated the potential of deep learning 
algorithms in LCZ mapping. Deep learning methods, 
especially in the form of CNNs, are expected to further 
boost LCZ classification accuracy. Huang, Liu, and Li 
(2021) proposed a novel CNN model to generate LCZ 

classification results using Landsat imagery for China’s 
32 major cities, and satisfactory classification accura
cies in 32 cities were achieved by the proposed model. 
Zhu et al. (2020) developed a big benchmark dataset, 
So2Sat LCZ42, that contains Sentinel-1 and Sentinel-2 
image patch pairs and LCZ labels from 42 cities in 
different countries. This dataset is openly available and 
is regarded as a standard dataset for deep learning- 
based LCZ mapping. Qiu et al. (2020) proposed 
a CNN framework, termed as Sen2LCZ-Net, to clas
sify LCZs using Sentinel-2 images from the So2Sat 
LCZ42 dataset. Liu and Shi (2020) selected 15 cities 
in three economic regions of China and used Sentinel- 
2 data to classify LCZs by employing the proposed 
LCZNet composed of residual learning and SE block. 
The effect of image size was investigated, and the 
results showed that an image size of 48 × 48 (corre
sponding to 480 × 480 m2) obtained the highest accu
racy (Liu and Shi 2020). The aforementioned studies 
used multispectral images only. SAR, another typical 
remote sensing sensor, is sensitive to moisture and 
geometric characteristics and can provide useful infor
mation different from multispectral images (Li and 
Zhang 2014; Shao, Wu, and Guo 2020). The potential 
of SAR data for LCZ mapping has been studied in 
recent work. Bechtel et al. (2016) found that individual 
SAR amplitude and range helped improve LCZ classi
fication accuracy slightly. Demuzere, Bechtel, and 
Mills (2019) compared Sentinel-1 backscatter, 
entropy, and Geary C using random forest and 
found that Sentinel-1 backscatter was most informa
tive (via feature importance ranking). Hu, Ghamisi, 
and Zhu (2018) compared numerous Sentinel-1 SAR 
components using canonical component analysis and 
found features related to VH polarized data contrib
uted the most to LCZ classification. Feng et al. (2019) 
employed both SAR and multispectral data of the 
So2Sat LCZ42 dataset for CNN-based LCZ mapping 
and achieved improved accuracy. Jing et al. (2019) 
revealed the contributions of the SAR data and the 
multispectral data of the So2Sat LCZ42 dataset to the 

Figure 1. Illustrations of LCZ classes.
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LCZ classification performance. Their study suggested 
that the combination of SAR and multispectral data 
contributes to improved LCZ classification accuracy, 
however, in an unnoticeable manner.

Sentinel-1 data of the So2Sat LCZ42 dataset contain 
eight channels, including four elements of VH and VV 
intensity images and four elements of the Refined LEE 
filtered result (Zhu et al. 2020). La, Bagan, and 
Yamagata (2020) pointed out that decomposed com
ponents of SAR data can also enhance the LCZ map
ping performance using supervised pixel-based 
methods. To our best knowledge, few efforts have 
been made that focus on the effect of backscattering 
characteristics of SAR data on the performance of 
deep learning-based LCZ mapping.

In this study, we employ openly available Sentinel-1 
SAR data and Sentinel-2 multispectral imagery to 
classify LCZs. We propose a deep CNN architecture, 
termed as RSNNet, for LCZ mapping in three large 
cities (Beijing, Tianjin, and Wuhan) in China and 
further investigate the LCZ classification results. 
Finally, we analyze the effect of different backscatter
ing characteristics of SAR data on the accuracy of LCZ 
mapping. The rest of this article is organized as fol
lows. Section 2 introduces the study area and Sentinel 
data. Section 3 elaborates on the proposed network, 
RSNNet, and the details of network training. Section 4 
presents the classification results. Section 5 discusses 
the effect of input bands on classification accuracy and 
compares the proposed network with other networks. 
Finally, Section 6 concludes this article.

2. Study areas and datasets

2.1. Study areas

Three large cities in China, Beijing, Tianjin and 
Wuhan, were selected for our study. Their geographi
cal locations are shown in Figure 2. Population, area 
and Gross Domestic Product (GDP) in 2019 of the 
selected three cities are displayed in Table 1.

The city of Beijing, covering 16,410 km2, is the 
capital of China. It is located at the northern end of 
the North China Plain. Beijing has a typical monsoon- 
driven semi-humid to humid continental climate, 
characterized by hot and humid summer and cold 
and dry winter. It has been a highly urbanized city 
with preserved historic buildings, such as Siheyuan, 
which can be categorized into compact low-rise 
(LCZ 3). As heavy industrial factories (LCZ 10) were 
relocated from Beijing to its neighboring cities, Beijing 
now has only a few LCZ 10.

The city of Tianjin, one of the megacities in China, 
is located in the northeast of North China Plain and 
borders the Bohai Sea in the east. It covers an area of 
11,966 km2 (plains account for 93%). Tianjin is a city 
that has a large number of factories with strong indus
trial activities (LCZ 8 and LCZ 10).

Wuhan is the capital city of the Hubei Province, 
China, situated in central China. The Yangtze, the 
world’s third longest river, and its largest tributary 
Hanshui meet in Wuhan and cut the city into three 
parts: Hankou, Hanyang and Wuchang. Wuhan has 
a humid subtropical climate with four distinct seasons. 

Figure 2. Locations of Beijing, Tianjin and Wuhan in China (a); Sentinel-2 image of Beijing (b), Tianjin (c), and Wuhan (d) .
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Wuhan consists of many rivers and lakes (LCZ G) 
with water bodies covering 2217 km2 (accounting for 
26.1% of the total area of Wuhan).

2.2 Datasets and pre-processing

2.2.1 Sentinel-1 data
Sentinel-1 is a C-band synthetic aperture radar satellite 
and comprises a constellation of two polar-orbiting satel
lites (Sentinel-1A and Sentinel-1B) (Abdel-Hamid, 
Dubovyk, and Greve 2021). The Sentinel-1 mission pro
vides a public global SAR dataset. We acquired Sentinel- 
1VV-VH dual-Pol Single-Look Complex (SLC) level 1 
data that covers the three selected cities from the 
Copernicus Open Access Hub. Sentinel-1 images were 
acquired on 14 August 2019 (Beijing), 21 August 2019 
(Tianjin) and 12 August 2019 (Wuhan). The European 
Space Agency’s Sentinel Application Platform was used 
for the preprocessing of Sentinel-1 data. Figure 3 displays 
the flowchart of Sentinel-1 data preprocessing. The spe
cific steps are listed as follows.

(1) The implementation of orbit file: This is the first 
step of any SAR preprocessing. A precise orbit file is 
used to improve the geocoding of the product.

(2) Radiometric calibration: The operator com
putes the backscatter intensity using sensor calibration 
parameters in the metadata.

(3) TOPSAR deburst: The Sentinel-1 IW products 
contain three sub-swaths for each polarization chan
nel. Each sub-swath image has a series of bursts. The 
TOPSAR deburst operator can remove the seamlines 
between the single bursts and merge these bursts and 
sub-swaths into a SLC image.

(4a) Polarimetric speckle reduction: Speckle filters 
aims to reduce the number of speckles. The Refined 
Lee speckle filter was selected to conduct the speckle 
reduction.

(4b) Polarimetric decomposition: Sentinel-1 has 
only two polarizations: HH and VH. H-Alpha Dual 
Pol decomposition was applied to obtain Alpha, 
Anisotropy, and Entropy.

(5) Terrain correction: Terrain correction geocodes 
the image by correcting SAR geometric distortions 
using a Digital Elevation Model (DEM) and producing 
a projected product. The SRTM DEM was selected as 
input DEM to accomplish the correction. The 
WGS84/UTM coordinate system was applied to geo
code the product, and the images were upsampled to 
10 m Ground-Sampling Distance (GSD).

After preprocessing, the outputs include two inten
sity images (Intensity_VH and Intensity_VV), three 
polarimetric decomposition components (Alpha, 
Anisotropy, and Entropy) and four polarimetric 
speckle reduction components (C11, C22, C12_img, 

Table 1. Population, area, and GDP of the three selected cities.
City Population (103) Area (km2) GDP (106 RMB)

Beijing 21,536 16,410.54 3,537,130
Tianjin 15,618.3 11,966.45 1,410,428
Wuhan 11,212 8569.15 1,622,321

Figure 3. Flowchart of Sentinel-1 SAR data preprocessing.
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and C12_real). The Sentinel-1 data in the dataset we 
build in this paper contain nine bands, which is dis
played in Table 2.

2.2.2 Sentinel-2 data
Google Earth Engine (GEE) was employed to obtain 
cloud-free Sentinel-2 images (Schmitt et al. 2019). The 
overall workflow, implemented via the GEE Python 
Application Programming Interface (API), included 
three main modules.

(1) Query Module: loading images from the catalog.
(2) Quality Score Module: calculating a quality 

score for each image.
(3) Image Merging Module: mosaicking selected 

images based on the meta-information generated in 
the preceding modules.

Consistent with Sentinel-1 data, the acquisition time 
of Sentinel-2 data was set as Summer (1st June till 31st 
August). This workflow of GEE-based procedure for 
cloud-free Sentinel-2 image generation uses multi- 
temporal information of comparably short time peri
ods to obtain cloud-free Sentinel-2 data, which means 
that the dates of Sentinel-1 imaging and the dates of 
Sentinel-2 imaging are not an exact match. Although 
the acquisition dates of Sentinel-1 and Sentinel-2 sets 
are different, they are very close. Generally, the form 
and structure of urban buildings do not change greatly 
within a few months, and the state of vegetation may 
change. In this study, we consider the difference 
between the dates of Sentinel-1 imaging and the dates 
of Sentinel-2 imaging as acceptable.

Sentinel-2 images consist of thirteen spectral bands, 
including four bands (B2, B3, B4, B8) with 10 m GSD, 
six bands (B5, B6, B7, B8a, B11, B12) with 20 m GSD, 
and three bands (B1, B9, B10) with 60 m GSD. In the 
study, bands with 60 m GSD were discarded. Bands 
with 20 m GSD were resampled to 10 m GSD via the 
nearest neighbor algorithm. The Sentinel-2 data in the 
Sen12LCZ dataset consist of 10 bands with 10 m GSD.

2.2.3 Preparing label data
Label data were collected on Google Earth following 
the standard procedure defined in the WUDAPT pro
ject (Ching et al. 2018). First, a region of interest 

within each selected city was defined by drawing 
a rectangle of about 50 × 50 km2 around the city center 
in Google Earth. We further delineated polygons that 
enclosed different LCZ types. We ensure that each 
LCZ type has more than five polygons and there are 
enough samples for each category. Each polygon must 
be wider than 200 m to avoid interference of small 
landscape, such as an individual building.

2.3 Sen12LCZ dataset

The dimension of the image patch has a great impact 
on classification accuracy. It has been proved that 
a large scene is beneficial for LCZ mapping, as 
a large input size can provide additional urban envir
onmental features (Liu and Shi 2020). Sentinel-1 and 
Sentinel-2 images were used to create a dataset named 
“Sen12LCZ”, and the dimension of the Sentinel-1 and 
Sentinel-2 image patches was defined as 48 × 48, cor
responding to an area of 480 × 480 m2.

The labeled polygons were sampled using a 480 m 
by 480 m fishnet, and the center of each grid in the 
fishnet corresponds to the center of each image patch. 
When the center of a grid fell within a polygon, we 
labeled the corresponding grid as the category to 
which the polygon belongs. We extracted Sentinel-1 
and Sentinel-2 image patch pairs with the correspond
ing LCZ labels by projecting the sampled label data to 
the registered Sentinel-1 and Sentinel-2 images. 
Finally, a total of 4083 pairs of image patches were 
obtained. Table 3 displays the specific number of 
image pairs for each selected city corresponding to 
different LCZ types. The number of all image pairs 
in the dataset is 4083. The dataset was further split into 
a training set (60%), a testing set (20%), and 
a validation set by adopting stratified sampling strat
egy. These three sets consist of 2611, 818 and 654 pairs 
of image patches, respectively.

Table 2. Band names of Sentinel-1 and Sentinel-2 data in 
Sen12LCZ dataset.

No. Sentinel-1 Sentinel-2

1 Alpha B2
2 Anisotropy B3
3 Entropy B4
4 C11 B5
5 C12_img B6
6 C12_real B7
7 C22 B8
8 Intensity_VH B8a
9 Intensity_VV B11
10 \ B12

Table 3. The number of image pairs corresponding to different 
LCZ types in Beijing, Wuhan, Tianjin and sums of three cities.

LCZ Type Beijing Wuhan Tianjin Sum

1 28 19 9 56
2 57 56 21 134
3 112 40 121 273
4 96 80 60 236
5 120 83 93 296
6 75 41 16 132
7 29 6 3 38
8 113 153 89 355
9 40 12 7 59
10 42 90 75 207
A 140 91 3 234
B 78 38 38 154
C 40 68 62 170
D 150 153 248 551
E 54 18 15 87
F 57 84 163 304
G 82 270 445 797
Total 1313 1302 1468 4083
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3. Methods

3.1 The proposed network

In this study, we proposed a network named RSNNet 
for LCZ mapping. Figure 4 illustrates the architecture 
of the proposed RSNNet that includes several Res_SE 
blocks and non-local blocks. Res_SE block consists of 
a building block of ResNeXt and a SE block. SE block 
can integrate channel-wise features by squeezing less 
important features and excite the useful feature maps 
(Hu et al. 2020). Every three consecutive Res_SE 
blocks form a stage. Features extracted from the first 
and the second stage go through a non-local block. At 
the end of the last block, a global average pooling layer 
is applied, followed by a fully connected layer with 
a softmax classifier for the final prediction. Note that 
samples in each LCZ type are imbalanced (Table 3). 
Studies have proved that sample imbalance tends to 
have negative impacts on classification performance 
(Chakraborty et al. 2020; Wu et al. 2020; Zhang et al. 
2021). To address this issue, we applied focal loss to 
the proposed CNN (details in Section 3.4).

3.2 Res_SE block

Res_SE block in the proposed network includes 
a building block of ResNeXt and a SE block. Figure 5 
depicts the structure of the Res_SE block. ResNeXt 
adopts the repeating-layer strategy from VGG and 
ResNets and exploits the split-transform-merge strat
egy. The concept of cardinality (the size of the set of 
transformations) is also introduced in ResNeXt. The 
basic module of ResNeXt consists of the following 
operations.

(1) Splitting: The first 1 × 1 layer of each branch 
produces the low-dimensional embedding.

(2) Transforming: The low-dimensional represen
tation is transformed via 3 × 3 layers.

(3) Aggregating: The transformations of all 
branches are first concatenated together and 
then serve as input to the 1 × 1 layer with 
Batch Normalization (BN) and Rectified 
Linear Unit (ReLU) function. The shortcut 
connection is also employed.

Figure 4. The architecture of the proposed RSNNet.

Figure 5. Structure of the Res_SE block.
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As a key unit in SENet, SE block that achieves 
dynamic channel-wise feature enhancement by selec
tively emphasizing informative features and suppress 
less useful ones (Hu et al. 2020) is stacked in the 
building block of ResNeXt. During the squeezing pro
cess, global average pooling is applied for a feature 
map U 2 R H�W�C to generate channel-wise statis
tics z 2 R C: 

zC ¼ FsqðUCÞ ¼
1

H �W

XH

i¼1

XW

j¼1
uCði; jÞ (1) 

where UC refers to a 2D feature map of channel C with 
a spatial dimension H �W, Fsq is the squeeze process, 
uc is the value of ðx; yÞ and zc is the channel-wise 
statistics of the C � th feature map.

The excitation process aims to fully capture chan
nel-wise dependencies. A simple gating mechanism 
with a sigmoid activation is employed to fulfill this 
objective: 

s ¼ Fexðz;LÞ ¼ σðL2δðL1zÞÞ (2) 

where Fex is the excitation process, σ refers to the 
sigmoid function, δ is the ReLU function, L1 and L2 
refer to fully connected layers.

The final output of the SE block is obtained by 
multiplying a scalar s and the original feature map U: 

yC ¼ FscaleðuC; sCÞ ¼ sCuC (3) 

where Fscale is channel-wise multiplication between the 
scalar sC and the feature map uC 2 R H�W .

3.3 Non-local block

A non-local block is capable of capturing long-range 
dependencies (Wang et al. 2018). The structure of the 
non-local block is displayed in Figure 6. Non-local 
operations maintain the variable input sizes and can 
be easily applied to other networks. In this study, we 

employ non-local blocks to capture long-range con
textual information, aiming to further improve classi
fication accuracy.

3.4 Focal loss

Proposed by Lin et al. (2017), the focal loss function 
considers the extreme imbalance between easy and 
hard samples as well as between positive and negative 
samples. A modulating factor is added to the Cross- 
Entropy (CE) loss to focus training on hard negatives 
in the focal loss.

The original focal loss is designed for binary classi
fication. Further, it has been adopted to handle multi- 
class tasks. The CE loss for multi-class cases is defined 
as (Liu, Chen, and Chen 2018): 

CE ¼ �
XM

i¼1
ti log yið Þ (4) 

where M refers to the number of categories, ti is a real 
probability distribution, yi denotes the probability dis
tribution of prediction. ti is defined as: 

ti¼
1
0

�
iistruelabel

iisnottruelabel (5) 

To address the issue of class imbalance, focal loss adds 
a modulating factor 1 � yið Þ

γ and a weighting factor 
αi 2 0; 1½ � to the CE loss, with a tunable focusing 
parameter γ � 0. The multi-class focal loss is 
defined as: 

FL ¼ �
XM

i¼1
αi 1 � yið Þ

γti log yið Þ (6) 

In this study, α is set by inverse class frequency. The 
focus parameter γ is employed to control the rate at 
which easy-classified examples are down-weighted. 
When γ ¼ 0, FL is equivalent to CE. The effect of the 
modulating factor also increases along with the 

Figure 6. The structure of the non-local block.
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increase of γ. Here, we set γ ¼ 2 for RSNNet after 
a trial-and-error process, and we display the experi
mental results in Section 5.3.

3.5 Metrics for accuracy assessment

We adopted OA, Average Accuracy (AA), Kappa coef
ficient, Producer’s Accuracy (PA) and User’s Accuracy 
(UA) for performance evaluation in this study. These 
metrics are calculated as: 

OA ¼
1
N

XM

i¼1
xii (7) 

AA ¼

PM

i¼1

xii
xiþ

M
(8) 

Kappa ¼
N
PM

i¼1
xii �

PM

i¼1
ðxiþ � xþiÞ

N2 �
PM

i¼1
ðxiþ � xþiÞ

(9) 

PAi ¼
xii

xiþ
(10) 

UAi ¼
xii

xþi
(11) 

where N refers to the amount of samples applied for 
accuracy measurement, M is the number of categories, 
xii refers to the number of units that come from class i 
and predicted as class i, xiþ denotes the number of 
samples in class i, xþi is the number of samples pre
dicted as class i.

3.6 Network training strategy

The experiments were conducted on Python 3.5 
using Keras with TensorFlow backend. The 
Nesterov Adam optimizer was applied to train the 
network. We set the batch size to 16 and the initial 
learning rate to 0.002 (decreased by half after every 

five epochs). To avoid overfitting and to control the 
training time, we employed early stopping. 
Validation with patience of 50 epochs loss was cho
sen as the monitored metric.

4. Results

4.1 LCZ classification results in three selected 
cities

RSNNet was trained and tested using the label data 
obtained from the same city to classify three cities 
respectively. We set the parameters to the same, 
only the input training data and testing data were 
different.

The confusion matrix in Beijing is displayed in 
Figure 7(a). The classification model we proposed, 
RSNNet, achieves an OA of 0.9202 and a Kappa coef
ficient of 0.9138. Urban classes are generally well clas
sified. However, the confusion still exists. LCZ 
A (dense trees) and LCZ G (water) are easily identi
fied. LCZ B (scattered trees) is confused with LCZ 
C (bush, scrub). The confusion matrix in Tianjin is 
presented in Figure 7(b). Our proposed RSNNet 
achieves an OA of 0.9524 and a Kappa coefficient of 
0.9436. Similar to the classification results in Beijing, 
most LCZ classes are well classified in Tianjin, whereas 
confusion still exists among certain classes. 
Classification of Wuhan by our proposed RSNNet 
achieves an OA of 0.9004 and a Kappa coefficient of 
0.8891. The confusion matrix of Wuhan is presented 
in Figure 7(c). we notice that LCZ 2 are confused with 
LCZ 3 and LCZ 1. LCZ G is the easiest LCZ type to 
classify. We also trained the proposed network using 
data from all three cities. The confusion matrix of this 
experiment is presented in Figure 8. Our proposed 
RSNNet achieves an OA of 0.9328 and a Kappa coeffi
cient of 0.9257. The main misclassifications are 
between LCZ 1 and LCZ 4, LCZ 2 and LCZ 3, LCZ 4 
and LCZ 5, LCZ C and LCZ D, and LCZ B and LCZ 
D. We observe that LCZ G is the most distinct LCZ 
type, as our RSNNet achieves 100% accuracy in classi
fying this LCZ type.

(a) Beijing (b) Tianjin (c) Wuhan

Figure 7. Confusion matrix of Beijing, Tianjin and Wuhan.
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4.2 LCZ maps

LCZ classification maps of Beijing, Tianjin, and 
Wuhan and the corresponding Sentinel-2 images 
are shown in Figure 9. In general, these classification 
maps present unique urban fabrics in these cities. 
For Beijing, LCZ 3 (compact low-rise), LCZ 2 (com
pact mid-rise), and LCZ 4 (open high-rise) are the 
dominant types in the urban regions. A large area of 
LCZ A (dense trees) is identified in Figure 9(a) due 
to the existence of mountains in the northeastern 
Beijing.

As for Tianjin, LCZ 1 (compact high-rise) and 
LCZ 3 (compact low-rise) are observed in the cen
tral urban area. The entire urban region is mostly 
covered by LCZ 4 (open high-rise) and LCZ 5 (open 
mid-rise). There are many LCZ 8 (large low-rise) in 
the suburban areas. The existence of idle farmland 
in Tianjin leads to the identification of LCZ F (bare 
soil or sand) on the west side of Tianjin. A large 
area of LCZ D (low plants) is also notable in eastern 
Tianjin.

For Wuhan, the Yangtze River and many lakes can 
be easily identified in the classified LCZ map. The 
major LCZ types in urban regions of Wuhan are LCZ 
4 and LCZ 5. The heavy industrial area in the northern 
suburban region is clearly presented. Hills covered by 
forests in the urban region are classified as LCZ A.

In summary, we observe that the urban structure of 
these three study areas is well identified and clearly 
presented using the Sen12LCZ dataset via the pro
posed network.

UHI magnitude is defined as an “urban-rural” dif
ference in most previous studies: 

UHIu� r¼Turban� Trural (12) 

where UHIu� r refers to the magnitude of UHI, Turban 
and Trural refer to the temperature of urban and rural 
areas respectively.

Local climate zone is proposed to redefine UHI 
magnitude in an LCZ temperature difference (Oke 
and Stewart 2012): 

UHILCZx¼TLCZx� TLCZD (13) 

where UHILCZx denotes the magnitude of UHI for 
LCZ x, TLCZx refers to the temperature of LCZ x, 
and TLCZD refers to the temperature of LCZ D (low 
plants).

Due to the complex land surface components, it is 
difficult to accurately discriminate urban and rural 
areas. LCZ temperature differences are more condu
cive to analysis, because the standardized description 
of surface structure and cover is highlighted in this 
climate-based classification scheme.

For deriving the intensity of UHI in an LCZ 
temperature difference, the thermometric network 
design is important. There should be thermometers 
in each LCZ type, and the number of sensors of 
each type should be proportional to the area of 
each type. To avoid the effect of changes in airflow 
and stability conditions on air temperature, the 
thermometers are forbidden to locate on or near 
the border of two zones. Thermometric networks in 

Figure 8. Confusion matrix of all data of three cities.
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different cities should be designed with reference to 
their LCZ maps. For instance, there are many LCZ 
8 and LCZ 10 in Tianjin, and many thermometers 
should be uniformly placed on these areas. 
However, LCZ 8 and LCZ 10 are few in Beijing, 
and only a few sensors are needed for LCZ 8 and 
LCZ 10.

5. Discussion

5.1 Effect of input bands

Sen12LCZ dataset consists of a total of 19 channels, 
including nine features obtained from Sentinel-1 
SAR data and ten bands of Sentinel-2 multispectral 
imagery. In this study, seven datasets, designated as 

Figure 9. LCZ maps and the corresponding Sentinel-2 images of Beijing (a), Tianjin (b) and Wuhan (c).
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D1-D7, were set up to explore the effect of different 
combinations of multi-source data on LCZ classifi
cation (Table 4). D1 includes nine features 
extracted from Sentinel-1 data. D2 consists of 10 
bands of Sentinel-2 images alone. D3 adds three 
decomposed components (Alpha, Anisotropy, and 
Entropy) to D2. D4 integrates additional four ele
ments obtained from the Refined LEE filter opera
tion (C11, C12_img, C12_real, and C22) to D2. D5 
adds intensity channels of VH and VV to D2. D6 
includes all 19 channels from Sentinel-1 and 
Sentinel-2 data. D7 consists of three Sentinel-1 
components in D3, two Sentinel-1 components in 
D5 and 10 bands of D2.

The proposed RSNNet was separately trained on 
these datasets, and the classification accuracy metrics 
are presented in Table 4. The results suggest that SAR 
data do not contain enough information for LCZ 
classification, evidenced by the low accuracy of D1 
(Sentinel-1 only). D2 achieves an OA of 0.9181, 
a Kappa coefficient of 0.9095 and an AA of 0.9055. 
As expected, the addition of SAR data to multispectral 
bands enhances the LCZ classification performance. 
As shown in Table 4, D3 achieved the highest accu
racy, with OA, Kappa coefficient, and AA of 0.9425, 
0.9366 and 0.9060, respectively. The above results 
show that the decomposition method is an efficient 
tool to extract structure and scattering information 
which can be combined with multispectral data to 
improve classification performance (Lee and Pottier 
2009).

The classification result of D4 is quite close to 
D2, suggesting that the information contained in 
Refined Lee filter components benefits LCZ map
ping in a trivial manner. The OA, Kappa, and AA 
of D5 are 0.9340, 0.9270, and 0.9155, respectively, 
which are higher than D2, suggesting that the 
intensity of VV and VH greatly contribute to 
LCZ mapping. D6 achieves an OA of 0.9328, 
which is lower than D3 and D5 but higher than 

D2. As D6 contains information from all 19 chan
nels, its data redundancy leads to reduced accu
racy in the LCZ classification compared to D3 or 
D5. We combined the Sentinel-1 components in 
D3 and D5 with ten bands of D2 as a new dataset 
which was designated as D7. RSNNet was trained 
and tested on D7. D7 achieves an OA of 0.9315, 
which is lower than D3 and D5, suggesting that 
the combination of superior datasets leads to 
lower accuracy. Considering the great perfor
mance of D3, we can conclude that the decom
posed components contribute more than filtered 
components and intensity channels.

To analyze the influence of SAR characteristics 
on individual class, we present PA and UA 
obtained with different datasets in Figure 10. The 
results indicate that LCZ A and LCZ G can be 
easily identified, evidenced by their high PAs and 
UAs. Compared with natural land cover types, the 
classification of built-up types benefits more from 
SAR characteristics. For LCZ 2, the PAs obtained 
from D3, D4, D5, and D6 are higher than D2. 
Similarly, for LCZ 3, the PAs and UAs obtained 
from D3, D5, and D6 are higher than D2.

The Sentinel-1 SAR data used in this study are in 
double (VV-VH) polarization. Thus only H-Alpha 
Dual Pol decomposition can be used to extract 
decomposed components. The fully polarimetric 
SAR data can provide more backscattering informa
tion than Sentinel-1 data, and many different target 
decomposition methods have been developed to 
transform backscattering information into basic 
backscattering mechanisms (Touzi, Boerner, and 
Lueneburg 2004; Yamaguchi, Yajima, and Yamada 
2006). As fully polarimetric SAR data offers more 
capacity in terrain classification (Kajimoto and 
Susaki 2013; Angelliaume et al. 2018), future efforts 
can be made to integrate fully polarimetric SAR data 
with multispectral data in deep learning-based LCZ 
mapping.

Table 4. Classification accuracy with different input combinations.
Dataset Bands Data source Components OA Kappa AA

D1 9 Sentinel-1 Alpha Anisotropy Entropy 
C11 C12_img C12_real C22 
Intensity_VH Intensity_VV

0.3790 0.3040 0.1739

D2 10 Sentinel-2 Band2-8, 8a, 11, 12 0.9181 0.9095 0.9055
D3 13 Sentinel-1 Alpha Anisotropy Entropy 0.9425 0.9366 0.9060

Sentinel-2 Band2-8, 8a, 11, 12
D4 14 Sentinel-1 C11 C12_img C12_real C22 0.9132 0.9039 0.8990

Sentinel-2 Band2-8, 8a, 11, 12
D5 12 Sentinel-1 Intensity_VH Intensity_VV 0.9340 0.9270 0.9155

Sentinel-2 Band2-8, 8a, 11, 12
D6 19 Sentinel-1 Alpha Anisotropy Entropy 

C11 C12_img C12_real C22 
Intensity_VH Intensity_VV

0.9328 0.9257 0.9184

Sentinel-2 Band2-8, 8a, 11, 12
D7 15 Sentinel-1 Alpha Anisotropy Entropy 

Intensity_VH Intensity_VV
0.9315 0.9244 0.8928

Sentinel-2 Band2-8, 8a, 11, 12
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5.2 Comparison with other CNNs

Table 5 presents the classification results of our pro
posed RSNNet and other popular CNNs, such as 
ResNet, DenseNet, Sen2LCZ-Net proposed by Qiu 
et al. (2020), MSCNN built by Kim et al. (2020) and 
CNN constructed by Yoo et al. (2019). ResNet, which 
won 1st place on the ILSVRC 2015 classification task, 

introduce the design of shortcut connections to alle
viate vanishing gradients (He et al. 2016). DenseNet 
connects each layer to every other layer in a feed- 
forward fashion and obtains significant improvements 
in various image segmentation and classification tasks 
(Huang et al. 2017). Sen2LCZ-Net is a simple CNN 
that considers multilevel feature fusion for LCZ map
ping and achieves great performance in LCZ classifi
cation using the So2Sat LCZ42 dataset (Qiu et al. 
2020). MSCNN was used to evaluate LCZ classifica
tion accuracy with the custom LCZ training data (Kim 
et al. 2020). Yoo et al. (2019) constructed CNN to 
compare CNN with random forest classifier for LCZ 
classification.

D6 including all 19 channels from Sentinel-1 and 
Sentinel-2 data was used to train the proposed 
RSNNet and other CNNs. Although D6 contains 
more information than other datasets, it is not the 
best-performing dataset in Section 5.1 due to its data 
redundancy. By applying the non-optimal dataset to 

Figure 10. PA and UA of classified LCZ with different datasets.

Table 5. Performance comparison among ResNet-50, 
DenseNet-121, Sen2LZC-Net(f16D17), LCZNet, MSCNN, CNN 
(Yoo et al. 2019), and the proposed RSNNet.

CNNs

Metrics

OA Kappa AA

ResNet-50 0.9144 0.9055 0.8954
DenseNet-121 0.8826 0.8703 0.8091
Sen2LCZ-Net(f16D17) 0.8142 0.7936 0.7513
LCZNet 0.9022 0.8920 0.8665
MSCNN 0.8056 0.7848 0.6741
CNN (Yoo et al. 2019) 0.7885 0.7649 0.6363
RSNNet 0.9328 0.9257 0.9184

In this table, the bold indicates the best result.
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train the models, the ability of different CNNs to 
extract representative features from all 19 bands of 
Sentinel-1 and Sentinel-2 data can be better compared.

The results suggest that the proposed RSNNet which 
integrates spatial attention module and channel atten
tion module achieves the best performance in all three 
metrics, with OA, Kappa and AA being 0.9328, 0.9257 
and 0.9184, respectively. In comparison, the classifica
tion result by CNN is the worst (OA: 0.7885; Kappa: 
0.7649; AA: 0.6363). The above results prove the super
iority of RSNNet over selected widely-adopted CNNs.

5.3 Effect of focal loss

As mentioned in Section 2.3, samples of each category 
in the Sen12LCZ dataset are imbalanced (see Table 3). 
To eliminate the impact of the imbalanced dataset on 
classification accuracy, we implement focal loss in this 
study. The focus parameter γ has an effect on the 
performance of focal loss. Table 6 displays the effect 
of different γ values on LCZ classification accuracy 
when focal loss is implemented in ResNet, DenseNet, 
Sen2LCZ-Net and RSNNet. D6 was used to train the 
models. The experimental results suggest that different 
networks have different optimal γ values. The best 
result for RSNNet is obtained when γ is set as 2. For 
ResNet-50, the optimal γ value is 3.

When γ=0, focal loss is equivalent to the CE loss. 
We can observe that the implementation of focal loss 
with optimal γ value improves the classification 

performance. For example, RSNNet with focal loss 
achieves the highest accuracy, with an OA of 0.9328, 
whereas the OA of RSNNet with Cross-Entropy loss is 
0.8900.

6. Conclusions

In this study, we propose a novel CNN architecture, 
RSNNet, that considers channel attention and posi
tion attention for LCZ mapping. We test the pro
posed RSNNet on three large cities in China: 
Beijing, Tianjin, and Wuhan. The results suggest 
that RSNNet outperforms other state-of-art net
works. We also find that the combination of SAR 
and multispectral imagery can improve the accuracy 
of LCZ classification. In designed experiments, the 
Sen12LCZ dataset containing LCZ labels is estab
lished by employing Sentinel-1 SAR data and 
Sentinel-2 multispectral data. We further analyze 
the influence of different SAR features on classifica
tion results. The results reveal that decomposed 
components contribute more to classification accu
racy than intensity images (VV and VH). In addi
tion, the involvement of Refined Lee speckle filter 
components with multispectral imagery leads to 
reduced classification accuracy compared to the sce
nario using multispectral imagery alone. We also 
notice that the imbalance issue of LCZ labels in 
the Sen12LCZ dataset can be addressed by the 
implementation of focal loss.

Table 6. Performance comparison in ResNet, DenseNet, Sen2LZC-Net, and RSNNet with different γ values.

CNNs γ

Metrics

OA Kappa AA

ResNet-50 0 0.9193 0.9107 0.8973
1 0.9181 0.9095 0.8869
2 0.9144 0.9055 0.8954
3 0.9267 0.9188 0.9137
4 0.9083 0.8985 0.8798
5 0.9144 0.9053 0.9050
6 0.9218 0.9135 0.9171

DenseNet-121 0 0.8619 0.8473 0.7924
1 0.8912 0.8799 0.8505
2 0.8826 0.8703 0.8091
3 0.8826 0.8704 0.8346
4 0.8704 0.8569 0.8019
5 0.8851 0.8729 0.8338
6 0.8826 0.8702 0.8104

Sen2LCZ-Net(f16D17) 0 0.8215 0.8011 0.7298
1 0.8203 0.8007 0.7230
2 0.8142 0.7936 0.7513
3 0.8044 0.7833 0.6913
4 0.8227 0.8029 0.7015
5 0.8337 0.8153 0.7819
6 0.8166 0.7962 0.7262

RSNNet 0 0.8900 0.8783 0.8380
1 0.8863 0.8744 0.8296
2 0.9328 0.9257 0.9184
3 0.9083 0.8987 0.8786
4 0.8912 0.8798 0.8382
5 0.9046 0.8946 0.8632
6 0.8704 0.8567 0.8213

In this table, the bold indicates the best result of these CNNs.
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As this study focused on the city-scale LCZ mapping, 
future efforts of LCZ classification can be made large- 
scale LCZ mapping. Only three big cities are studied in 
this paper, however there are more developing cities in 
the world. The characteristics of urban form and surface 
are different in developed and developing cities. To 
achieve the goal of global LCZ mapping, more attention 
should be paid to developing cities in the future 
research. Furthermore, studies have proved that fully 
polarimetric SAR data contain more backscattering 
information than Sentinel-1 data. Thus, the potential 
of fully polarimetric SAR data in CNN-based LCZ 
mapping deserves further investigation.
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