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ABSTRACT
Population spatialization is widely used for spatially downscaling census population data 
to finer-scale. The core idea of modern population spatialization is to establish the 
association between ancillary data and population at the administrative-unit-level (AU- 
level) and transfer it to generate the gridded population. However, the statistical char
acteristic of attributes at the pixel-level differs from that at the AU-level, thus leading to 
prediction bias via the cross-scale modeling (i.e. scale mismatch problem). In addition, 
integrating multi-source data simply as covariates may underutilize spatial semantics, and 
lead to incorrect population disaggregation; while neglecting the spatial autocorrelation 
of population generates excessively heterogeneous population distribution that contra
dicts to real-world situation. To address the scale mismatch in downscaling, this paper 
proposes a Cross-Scale Feature Construction (CSFC) method. More specifically, by grading 
pixel-level attributes, we construct the feature vector of pixel grade proportions to narrow 
the scale differences in feature representation between AU-level and pixel-level. 
Meanwhile, fine-grained building patch and mobile positioning data are utilized to adjust 
the population weighting layer generated from POI-density-based regression modeling. 
Spatial filtering is furtherly adopted to model the spatial autocorrelation effect of popula
tion and reduce the heterogeneity in population caused by pixel-level attribute discretiza
tion. Through the comparison with traditional feature construction method and the 
ablation experiments, the results demonstrate significant accuracy improvements in popu
lation spatialization and verify the effectiveness of weight correction steps. Furthermore, 
accuracy comparisons with WorldPop and GPW datasets quantitatively illustrate the 
advantages of the proposed method in fine-scale population spatialization.
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1. Introduction

The population distribution data with fine spatial reso
lution is critical for urban planning (Bakillah et al. 2014; 
Dong et al. 2017), disaster prevention (Ahola et al. 2007; 
Aubrecht et al. 2016), public health (Fecht et al. 2020), 
and socioeconomic activities analyses (Li et al. 2018a). 
Census data typically reported at AU-level is authorita
tive, normative but in coarse resolution; thus, it is hard 
to reveal the spatial heterogeneity of population distri
bution within statistical district and in turn benefit 
various applications. Generally, detailed population dis
tribution can be acquired by redistributing coarse 
administrative unit level population data to a finer 
scale (e.g. pixel-level) through downscaling approach 
(Sinha et al. 2019; Ye et al. 2019). During the past 
decades, some methods have been proposed to produce 
fine-scale population gridded data sets at global and 
region level for supporting various applications (Leyk 
et al. 2019). For example, area weighting (Lwin 2010; 
Goodchild and Lam 1980) was used to produce Gridded 
Population of the World (GPWv4, 1 km resolution), 

while dasymetric mapping (Zhao et al. 2019; Ye et al. 
2019; Stevens et al. 2015) was applied to generate 
LandScan (1 km resolution) and WorldPop (100 m 
resolution). Among these methods, dasymetric map
ping has been demonstrated to be more effective in 
generating more accurate population estimates than 
other approaches (Mennis and Hultgren 2006; Stevens 
et al. 2015; Zhao et al. 2019).

Although dasymetric mapping methods are widely 
used techniques (Nagle et al. 2014), the issues asso
ciated with cross-scale modeling is often overlooked 
(Sinha et al. 2019). Meanwhile, the underutilization 
of semantic information and the neglect of autocor
relation of population also limit the accuracy of 
population spatialization. The main idea of dasy
metric mapping is to generate a gridded prediction 
of population density, which is then used as the 
weighting layer to perform dasymetric redistribution 
of the census counts (Zhao et al. 2019). Due to the 
lack of actual population at fine-scale, the association 
between the modeling factors and population is 

CONTACT Zhipeng Gui zhipeng.gui@whu.edu.cn

GEO-SPATIAL INFORMATION SCIENCE                
2022, VOL. 25, NO. 3, 365–382 
https://doi.org/10.1080/10095020.2021.2021785

© 2022 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0001-9467-9680
http://orcid.org/0000-0001-5167-2956
http://orcid.org/0000-0003-3971-0512
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2021.2021785&domain=pdf&date_stamp=2022-09-15


constructed at AU-level, then transferred to predict 
the gridded population. However, there is 
a mismatch that exists between training and pre
diction data under a change of scale, resulting in 
low accuracy of population estimation (Bai, Wang, 
and Yang 2013; Sinha et al. 2019; Dong, Yang, and 
Cai 2016b). Additionally, the accuracy of popula
tion spatialization significantly depends on the fea
tures used. Semantic information embodied in 
multi-source data can be used jointly to support 
more accurate population spatialization. For 
instance, the spatial distribution of resident popu
lation is constrained by building in physical world; 
hence, building data can be used to alleviate the 
overestimation of population from POI-density- 
based modeling in suburban areas (Wang, Fan, 
and Wang 2020). Mobile positioning data record 
human activities in a particular time and locations, 
which can be utilized to balance the population 
estimation deviation (Yang et al. 2019). Whereas 
in the context of dasymetric mapping, semantic 
information is likely underutilized in existing stu
dies, where multi-source data are mostly integrated 
as covariates for model training (Ye et al. 2019; 
Stevens et al. 2015). What’s more, the neglect of 
the characteristic of spatial autocorrelation in geo
graphy phenomena lead to the overdiscretization of 
the generated population data that may contradict 
to the real population distribution, especially when 
fine-grained and discrete data are used in modeling 
(Du, Zhang, and Zhang 2007).

To tackle the abovementioned issues, this paper 
proposed a cross-scale population spatialization 
method, and explored its effectiveness in different 
districts and streets with different population densi
ties. The main contributions are listed as follows:

● Rather than simply counting attribute statistics at 
each pixel, CSFC grades pixels according to pixel- 
level attributes (e.g. counts of POIs) and then 
calculates the proportion of pixel grades at AU- 
level, which can reduce the scale differences in 
feature representation between training and pre
diction, hence ameliorate the scale mismatch pro
blem of statistical unit in cross-scale modeling.

● To adjust population weights for better disaggre
gation, we fuse building patch and mobile posi
tioning data that refine the spatial coverage of 
population and balance the estimation bias gen
erated from urban facility POI-based modeling.

● Gaussian spatial filtering is incorporated to 
model the autocorrelation of population and 
avoid overdiscretization problem of population 
distribution. Besides, we analyzed its validity by 
exploring the influence of pixel resolution, size of 
filtering template on the accuracy of population 
spatialization at different districts.

The remainder of the paper is organized as follows. 
Related work is provided in the next section. The 
approach is demonstrated in Section 3. Section 4 pre
sents the experiments and the discussion of results. 
Section 5 concludes the paper and outlines future work.

2. Related work

2.1. Modeling methods of population 
spatialization

Representative methods for population spatialization 
can be categorized into spatial interpolation, statistical 
modeling and deep learning methods.

Spatial interpolation is implemented based on 
Tobler’s First Law of Geography, which believes near 
things are more related than distant things (Tobler 
1970), but it is usually hard to achieve fine-scale popu
lation spatialization (Bai, Wang, and Yang 2013; Wu, 
Qiu, and Wang 2005). Area weighting assumes the 
population to be uniformly distributed and transforms 
it according to the overlapping area (Lwin 2010; 
Goodchild and Lam 1980). The distance-decay models 
interpolate according to the decreasing trend of urban 
population density from the center to the outside, such 
as negative index model (Clark 1951), Gaussian model 
(Smeed 1963), and gravity-based model (Wang and 
Guldmann 1996). Inconsistent with the classical urban 
geography theories, the urban polycentricity of mod
ern cities and the irregular urban area lead to uncer
tainties and errors in estimation (Bai, Wang, and Yang 
2013). The results obtained by simple interpolation are 
of coarse resolution and low precision (Fan et al. 
2004), while sophisticated interpolation models need 
to combine varieties of auxiliary data and is also diffi
cult to transfer from region to region due to that 
different regions may follow different laws.

Statistical modeling methods aim to establish the 
regression model between multi-source data and popu
lation (Nagle et al. 2014; Wu, Qiu, and Wang 2005) 
and are widely adopted in recent studies. Multivariate 
Linear Regression model is usually applied to large- 
scale population estimation but of insufficient fineness 
(Zeng et al. 2011; Zhuo et al. 2005). Spatial regression 
models make use of the geographic location and spatial 
accumulation characteristics of the study data, but spe
cifying the appropriate spatial weight matrix and band
width remains a challenge (Brunsdon, Fotheringham, 
and Charlton 1998; Lo 2008; De Knegt et al. 2010; 
Chen 2018). By contrast, random forest (RF), 
a machine learning model evolved from decision 
trees, can cope with high-dimensional features and 
improve the spatial precision of population spatializa
tion (Ye et al. 2019; Stevens et al. 2015; Sinha et al. 
2019; Breiman 2001, 1996). As a result, the focus can be 
placed on how to effectively integrate multi-source data 
and construct features in regression, which may affect 
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the accuracy significantly. However, existing studies 
simply model with attributes in each pixel and ignore 
neighboring influence and spatial autocorrelation of 
population. What’s more, aforementioned regression 
methods generally establish association between mod
eling factors and the population at the administrative- 
unit and then transfer it to pixel-level for achieving 
population estimation. However, modeling finer scale 
distribution with coarser scale training data will incur 
the underestimation of extreme values (Sinha et al. 
2019).

In the past few years, deep learning has been 
applied in population spatialization (Tiecke et al. 
2017; Doupe et al. 2016; Robinson, Hohman, and 
Dilkina 2017; Zhao et al. 2020). Satellite image pixels 
can be converted into gridded population estimates by 
training Convolutional Neural Networks (CNNs) 
(Doupe et al. 2016; Robinson, Hohman, and Dilkina 
2017). Unfortunately, the lack of pixel-level training 
data makes such conversion impractical in real-world 
applications. By detecting large-scale building foot
prints from satellite imagery with computer vision 
technology, Facebook Connectivity Lab allocates the 
statistical population to the buildings equally (Tiecke 
et al. 2017). However, how to accurately distribute 
population counts to building structures need to be 
further studied. In country-level population spatializa
tion, CNNs and Deep Neural Networks (DNNs) learn 
representations from multisource data better than 
shallow machine learning (e.g. RF) and achieve 
a higher quality (Zhao et al. 2020). Nevertheless, the 
insufficient training samples make it hard to model 
with deep learning methods at city-level population 
spatialization.

In summary, regression modeling is a practical and 
prevailing solution for generating large-scale and fine- 
grained population dataset, while RF provides 
a promising approach for yielding reliable spatializa
tion results. It can model complex nonlinear associa
tions between predictions and heterogeneous 
predictor variables and achieve high accuracy and 
stability. Besides the modeling methods, spatialization 
accuracy is also affected by the selection of ancillary 
data; hence, more attention should be paid on how to 
effectively integrating multi-source data.

2.2. Integration of multi-source data in 
population spatialization

With the development of remote sensing, volunteer 
geographic information and global positioning tech
nologies, the acquisition of multi-source geospatial 
data has been greatly facilitated. The ancillary data of 
population spatialization is becoming more multi- 
sourced, fine-grained, and dynamic (Dong, Yang, 
and Cai 2016b; Wu, Gui, and Yang 2020).

The spatial distribution of population is affected by 
many factors, such as geographic location, land cover, 
convenience of road networks, water areas, and eco
nomic development (Wu and Gao 2010; Xiao et al. 
2010). As important indicators for reflecting human 
activities, land cover and nighttime light (NTL) ima
gery have been widely adopted for disaggregating cen
sus population (Sutton et al. 2001; Jia and Gaughan 
2016; Zeng et al. 2011). Land use data can describe the 
overall spatial coverage of population but is difficult to 
reveal the heterogeneity of population density under 
the same land type, while the intensity of NTL data 
compensates for this shortcoming but with the pro
blem of excessive high light radiance (Yu et al. 2019; 
Zheng et al. 2020). A recent trend is integrating diverse 
data sources (Stevens et al. 2015; Bai et al. 2015) to 
enrich the representation of population distribution, 
such as water body, networks of roads, DEM, etc. 
More data provide more comprehensive auxiliary 
information and spatial constraints for better popula
tion disaggregation. However, these ancillary data are 
coarse-grained and inadequate to reflect refined spa
tial distribution of population.

Fine-grained modeling data has more detailed loca
tion and spatial semantics, which are capable to sup
port fine-resolution population mapping. As a type of 
social sensing data, different types of facility POIs have 
different levels of attraction to population (Bakillah 
et al. 2014). POIs have been combined with NTL 
imagery data for population spatialization (Yang 
et al. 2019; Ye et al. 2019; Wang, Fan, and Wang 
2020); these approaches mainly build POI-density- 
based indexes for regression modeling. Moreover, 
POIs have been utilized to define urban functional 
districts to assist population disaggregation (Gao, 
Janowicz, and Couclelis 2017; Li, Chen, and Li 2018). 
Although POIs reflect potential social activities sur
rounding or within them, they cannot accurately 
describe the distribution range of resident population. 
Buildings are the essential carriers of people’s daily 
living (Peng et al. 2020). Considering the factors 
such as public area rate and the total number of floors 
of a building, different residential spaces have different 
population densities (Dong, Yang, and Cai 2016a; Li et 
al. 2018b). As complementary data, POIs can be used 
to classify residential building patches (Dong et al. 
2018), while building data can constrain the distribu
tion range of population generated by POIs. These 
fine-grained static data facilitate to improve estima
tion accuracy, but they cannot explicitly indicate the 
population, while human mobility-related dynamic 
data can be utilized to balance prediction bias.

In recent years, advancements in positioning tech
nology and increased accessibility of the mobile 
devices have provided a large amount of dynamic 
location data. Such data have been successfully used 
in fine-scale population mapping (Deville et al. 2014; 
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Patel et al. 2017; Bachir et al. 2017). Deville et al. 
(2014) demonstrate how mobile phone data can cost- 
effectively generate accurate and detailed maps of 
population distribution. Yu et al. (2019) incorporate 
taxi trajectory data to optimize the initial population 
grid generated based on the NTL data. These mobile 
positioning data provide spatiotemporal semantics of 
human activities, hence can approximately indicate 
the distribution of resident population by selecting 
sampled data within appropriate period. However, 
issues of incomplete and biased population coverage 
(Fecht et al. 2020) means that the combination of 
dynamic and fine-grained static data is an intensively 
important direction of generating fine-scale popula
tion grid data.

Overviewing existing studies, this paper proposes 
a population spatialization method based on RF. To 
address scale mismatch problem in downscaling, 
CSFC is proposed to reduce the differences of feature 
representation between training and prediction. 
Considering that spatial influence of adjacent space 
is often neglected in RF regression modeling, we uti
lize spatial filtering to take autocorrelation of popula
tion distribution into account. Additionally, to 
alleviate overestimation and underestimation of popu
lation in rural areas and main urban areas suffered 
from POI-based models, respectively, we incorporate 
building patch and mobile positioning data for weight 
correction.

3. Methodology

The workflow of the proposed method is shown in 
Figure 1. The method consists of three main steps: (1) 
Cross-scale feature construction. (2) Modeling based 
on the RF. (3) Weight correction and population 
disaggregation.

In step (1), feature vectors are constructed by grad
ing pixels according to the number of POIs. In step 
(2), we input the constructed vectors as independent 
variables and population density as dependent vari
able to fit RF model at street-level for predicting 

population weights at pixel-level. In step (3), the 
weighting layer is corrected and recorrected based on 
multi-source data and spatial filtering, respectively; 
then it is used for population disaggregation from 
districts to pixels. Step (1) and (3) are the key steps 
of the proposed method and will be introduced in 
detail as follows.

3.1. Cross-scale feature construction (CSFC)

To address the scale mismatch problem in downscal
ing, the grade proportions of pixel-level attributes are 
constructed as feature vectors. Quantitative relation 
between graded POIs and population can distinguish 
the difference in population densities (Peng et al. 
2020), so we use POIs as the pixel-level attributes for 
representing fine-grained population distribution. The 
illustration of feature construction method is shown in 
Figure 2. First, the study area is divided into pixels, 
and then the number of POIs for each selected POI 
type in a pixel is counted. Second, pixels are graded 
into levels using Natural Breaks according to the 
counted POIs. Finally, feature vectors are constructed 
based on the grading results.

3.1.1. POI-based pixel grading
Pixel grading is carried on according to the counts of 
POIs for all pixels in study area, as shown in Figure 2. 
For each type of POIs, Lþ 1 levels are set. To better 
reflect differences in population density for pixels with 
POIs, we adopt Natural Breaks to split a range of 
numbers into contiguous L levels. Because it can mini
mize the squared deviation within each level by picking 
the level breaks that best group similar values (Chen 
et al. 2013). Meanwhile, a separated level of zero is 
assigned to the pixels without POIs (i.e. empty pixels).

3.1.2. Constructing feature vector of pixel grade 
proportions
Based on the grading results, feature vectors at AU- 
level (i.e. street-level) and pixel-level for training and 
prediction are constructed accordingly.

Count POI at pixel

Pixel grading

1. Feature construction

Model training

Model prediction

2. Weight modeling
3. Weight correction and 

population disaggregation

Re-correction by spatial filtering

Population disaggregation

Ancillary data

Mobile positioning dataBuilding dataPOI

Correction by multisource data

Weighting layerFeature vector Gridded population

Figure 1. Workflow of the proposed population spatialization method.
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At street-level, we calculate the pixel proportions of 
each grading level and construct a m� Lþ 1ð Þ - 
dimensional feature vector for each street as 
Equation (1): 

βi ¼
N1;0

i ; . . . ;N1;L
i ;N2;0

i ; . . . ;N2;L
i ;

. . . ;Nt;l
i ; . . . ;Nm;0

i ; . . . ;Nm;L
i

� �

=Ni 0 � l � Lð Þ

(1) 

where βi is the feature vector for street i, Ni is the 
total number of pixels of street i, Nt;l

i is the number 
of pixels belonging to grading level l for POI type t, 
and m is the number of types of POIs.

At pixel-level, the constructed feature is also m�
Lþ 1ð Þ -dimensional but a binary vector as 

Equation (2): 

αj ¼
B1;0

j ; . . . ;B1;L
j ;B2;0

j ; . . . ;B2;L
j

; . . . ;Bt;l
j ; . . . ;Bm;0

j ; . . . ;Bm;L
j

" #

0 � l � Lð Þ (2) 

where αj is the feature vector for pixel j, Bt;l
j is 1 if 

pixel j belongs to grading level l for POI type t, 
otherwise it is 0. Although the data type of the 
feature vector entries at pixel-level differs from 
that at AU-level, 0 or 1 in each entry represents 
the proportion of pixel grades in each statistical 
unit as well. Compared with traditional feature 
construction method, statistical characteristic in 
CSFC is in the form of pixel proportions, and its 
differences and bimodality distribution (Sinha et al. 
2019) will not be easily averaged out at AU-level. 
Therefore, the quantitative relation that how each 
grade contributes to population density is less 
affected by scale mismatch and can be transferred 
in cross-scale modeling.

3.2. Weight correction and population 
disaggregation

3.2.1. Weight correction based on multi-source 
data
Weight correction by utilizing multi-source data is indis
pensable. Although population is more concentrated 
around POIs, this relation is not linear. POI data have 
fine-grained location and rich semantics of urban facil
ities, but it might lead to bias as the spatial distribution of 
population is affected by multiple factors, such as resi
dential conditions, surrounding environments and so on 
(Dong, Yang, and Cai 2016b; Bai, Wang, and Yang 
2013). Therefore, building patch and mobile positioning 
data are employed to correct the initial weighting layer. 
The flow of weight correction is shown as Figure 3.

(1) Weight Constraint (WC) based on building 
patch data

Building data constrain the spatial coverage of resident 
population and is helpful to describe the details of urban 
population (Dong, Yang, and Cai 2016a). Unlike linear 
regression model, which can set constant term to 0, RF 
assigns a non-zero weight value to all empty pixels. In 
that case, all empty pixels are considered to be inhabited 
and undifferentiated, which leads to prediction bias. In 
fact, empty pixels without buildings can be recognized 
uninhabited, while those with buildings might have 
different population size. As the area of building patch 
can be considered to have a proportional relation with 
population (Dong, Yang, and Cai 2016a), it can be 
utilized to constrain the weights of these pixels.

We set the population weights of the empty pixels 
without building patch data to 0, and differentiate the 
weights of the rest pixels according to the area of build
ing patches. The formula is shown as Equation (3).. 

2 0
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2 0 1
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0 0 1

[0,1) [1,2]
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0
0
1
1
0

0
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0

0

6
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Figure 2. Illustration of cross-scale feature construction using POIs.
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wj ¼ wno poi �
areaj

areamax

� �θ

� γ (3) 

where wno poi is the uniform non-zero weight value 
assigned by RF model for empty pixels, wj is the weight 
after correction, areaj is the building patch area of pixel 
j, areamax is the largest building patch area of all empty 
pixels. θ is the exponential representing proportional 
relationship between population and area of building 
patch data, and γ denotes the coefficient which stretches 
and limits the extent of corrected weights.

(2) Weight Transposition (WT) based on mobile 
positioning data

As mobile positioning data reflect human activities at 
a specific moment, it can be used to balance the pre
diction bias by selecting the sample data within 
a certain time period. For better represent the spatial 
distribution of resident population, we select mobile 
positioning data from midnight period (detailed in 
Section 4.1.2) when most people stay at home.

Population weights represent the relative popula
tion density between pixels rather than the absolute 
population amounts. Due to incomplete and biased 
population coverage, the absolute and relative 
amounts of mobile users between pixels may differ 
from real-world situation; while the relative order of 
amounts is more reliable and stable, which can be 
utilized to adjust the order of population weights (i.e. 
the transposition of the population weights between 
the pixels). Original population weights and the 
amounts of mobile positioning users are sorted, 
respectively, into array W and M in ascending order, 
and the formula of weight transposition is shown in 
Equations (4).. 

indexj ¼ index orij þ index mpdj
� �

� 0:5 

wj ¼Windexj (4) 

where index orij is original index of the weight of pixel 
j in the array W, index mpdj is the index of pixel j in 
array M, indexj is the new index of the weight of pixel j 
in array W and wj is the new population weight of 
pixel j.

3.2.2. Spatial filtering for weight recorrection
The spatial distribution of population is continuous, 
smooth, and with the nature of spatial autocorrelation 
(Du, Zhang, and Zhang 2007; Gao et al. 2019). The 
population in a pixel not only rely on the statistical 
characteristics of the pixel itself but also affected by 
that of its neighboring pixels. However, pixel weights 
obtained from regression and correction using dis
crete POIs, building patch and mobile positioning 
data might lead to patchiness and discretization of 
population, which may contradict to real-world dis
tribution. Learning from image smoothing in digital 
image processing (Banham and Katsaggelos 1997), we 
adopt spatial filtering to model the spatial autocorrela
tion in adjacent space. Gaussian filter template is 
selected considering that spatial influence of popula
tion decrease with distance (Peng et al. 2020) and 
approximately follows the Gaussian normal distribu
tion (Chen 2000).

For each pixel x; yð Þ, we perform a convolution 
operation on a certain neighborhood of the pixel 
x; yð Þ, and assign the recorrected population weight 

to it. Assuming the size of filtering template is odd (i.e. 
A ¼ 2� aþ 1), the recorrected population weight 
g x; yð Þ is calculated as Equation (5).. 
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Figure 3. Flow of weight correction based on multi-source data.
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g x; yð Þ ¼
Xdx¼a

dx¼� a

Xdy¼a

dy¼� a
w aþ 1þ dx; aþ 1þ dyð Þ

� f x þ dx; yþ dyð Þ (5) 

where w aþ 1þ dx; aþ 1þ dyð Þ is the weight of cell 
aþ 1þ dx; aþ 1þ dyð Þ in the filter template, 

f x þ s; yþ tð Þ is the original population weight of 
pixel x þ dx; yþ dyð Þ.

3.2.3. Population disaggregation
After weight recorrection, census population can be 
disaggregated from districts to pixels with the gener
ated weighting layer using Equation (6): 

POPpixel j ¼ POPdistrict k �
wpixel j

wdistrict k
(6) 

where wpixel j is the population weight for pixel j, 
wdistrict k represents the summed population weight 
of all pixels in district k that pixel j belongs to, 
POPdistrict k is the census population of district k, and 
POPpixel j represents the predicted population of 
pixel j.

4. Experiments and analysis

4.1. Experimental Setting

Experiments were designed to validate the effective
ness of the cross-scale feature construction and each 
weight correcting step. In section 4.2, the impact of 
grading level amounts on population estimation accu
racy was discussed, and CSFC was validated by com
paring with traditional feature construction method 
followed by the variable importance analysis on popu
lation weights for different POI types. The effective
ness of weight correction was examined by comparing 
with traditional data fusion method in Section 4.3. To 
evaluate the effects of spatial filtering, we explored the 
influence of pixel resolution, region and template size 
in Section 4.4. Overall accuracy was assessed through 
a comparison with WorldPop and GPW, and errors of 
population spatialization were visualized and analyzed 
in Section 4.5.

4.1.1. Study area
Wuhan, the capital city of Hubei Province, China 
(Figure 4(a), is selected as the study area. It is located 
in the east of Jianghan Plain and the middle reaches of 
Yangtze River. The geographic extent is 29°58′ to 31° 
22′ N and 113°41′ to 115°05′ E. In 2015, the resident 
population was about 10.607 million, accounting for 
18.13% of the total population of Hubei Province. The 
city consists of 13 districts, which are divided into 186 
streets. Among the 13 districts as shown in Figure 4 
(b), there are 7 central districts (account for 61.67% of 
total population) and 6 suburban districts (account for 
38.33% of total population). Wuhan extends over 

areas with high and low population densities, and the 
population distribution patterns are complex, which 
makes Wuhan a suitable experimental area for validat
ing the effectiveness and robustness of the proposed 
population spatialization method.

To better evaluate effects of the proposed method in 
different population density regions, we divide Wuhan 
streets into high, medium and low population density 
levels using Natural Breaks. The result of density grad
ing of 186 streets is shown in Figure 4(c), among 
which there are 57, 69, and 60 streets with high, 
medium, and low population densities, respectively. 
It can be seen that most of the high-density streets are 
located in main urban area, while low-density streets 
are mainly located in suburban area.

4.1.2. Experimental data
POIs, building patch, mobile positioning, census 
population, WorldPop, and GPW data were used in 
this study as experimental data (Table 1). All spatial 
references of these data were unified to WGS-84. The 
acquisition and preprocessing of these data in the 
current study are described below.

The POI data was retrieved from Gaode Map, 
which is one of the most popular commercial map 
services in China. After removal of types with few 
and incomplete records, twelve types of POIs, which 
are highly correlated with population distribution, 
were selected, as shown in Table 2. Building patch 
data was obtained from National Geoinformation 
Survey, in which the patches with area less than 
200 m2 were not included. Two months (April to 
May, Year 2018) of desensitized mobile positioning 
data was collected from Wayz.AI, a location-based 
service company who provides positioning function 
for various Apps. We excluded holidays, weekends, 
and the days with incomplete data and randomly 
selected 4 days data that contains 266,460 mobile 
users, accounting for 2.7% of the total population of 
Wuhan. Then we generated grid-based statistics of the 
amounts of mobile users in the midnight period (from 
11:00 pm to 3:00 am) with 500 m, 200 m, and 100 m 
spatial resolutions, respectively. The district-level and 
street-level census data were obtained from the 
Wuhan Statistical Yearbook in 2015 and the Wuhan 
Community Demographic Census in 2015, respec
tively. The WorldPop and GPW dataset were obtained 
from the WorldPop project and Socioeconomic Data 
and Applications Center, respectively, which are cho
sen as validation data in accuracy assessments.

4.1.3. Model parameters
Random forest model is implemented using python 
Sklearn library. The main parameters of RF model are 
set to the following: (1) n_estimators = 250, (2) max_
features = sqrt and (3) min_samples_leaf = 1. The term 
n_estimators represents the number of decision trees, 

GEO-SPATIAL INFORMATION SCIENCE 371



the larger n_estimators is, the better the RF performs. 
As the number of trees increases, the computing time 
increases accordingly. 250 is the trade-off of training 
time and accuracy. The term max_features is the num
ber of subsets of the randomly selected feature set. The 
fewer the number of subsets, the faster the variance 
decreases, but the deviation increases. The term min_
samples_leaf represents the minimum sample leaf 
node number. The parameter values of sqrt and 1 are 
selected after tuning parameters.

4.1.4. Evaluation metrics
Since there are no real pixel-level population dataset, 
validation is conducted by comparing the aggregated 
predicted population with census counts for each 
street (Sinha et al. 2019). We perform experiments at 
100 m, 200 m, and 500 m spatial resolutions, respec
tively. The street-level accuracy evaluation indexes 
include the Mean Absolute Error (MAE), the Root 
Mean Square Error (RMSE), and coefficient of deter
mination (R2), which are calculated as Equation (7): 

MAE ¼
1
n

Xn

i¼1
Predicti � Realij j

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
Predicti � Realið Þ

2

s

(7) 
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Figure 4. Overview of the study area Wuhan. (a) Location of Wuhan in Hubei Province. (b) Spatial distribution of 13 districts. (c) 
Spatial distribution of 186 streets with high, medium, and low population densities, respectively.

Table 1. Type, year, and source of experimental data.
Dataset Year Source

Ancillary data POIs 2017 Gaode Map Services, China 
(https://www.amap.com/)

Building patch data 2015 National Geoinformation Survey
Mobile positioning data 2018 Wayz.AI

Reference data Census population data 2015 Wuhan Statistical Yearbook, 
Wuhan Community Demographic Census

WorldPop dataset 2015 WorldPop Mainland China dataset for 2015 
(http://www.worldpop.org.uk/)

GPW v4 dataset 2015 Socioeconomic Data and Applications Center 
(http://srtm.csi.cgiar.org)

Table 2. Types and counts of the selected POIs in experiments.
Type Count Type Count

Research and education 6640 Hospital 3864
Medical service 6357 Shopping 42,014
Financial services 4689 Accommodation 3564
Restaurant 13,900 Residential community 11,279
Leisure and entertainment 5273 Government agency 9618
Parking lot 3460 Auto service 5716
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R2 ¼ 1 �
P

i Reali � Predictið Þ
2

P
i Reali � Real
� �2 

where Predicti represents the predicted population of 
street i, Reali represents census counts of street i,Real 
is the average population of all streets and n is the total 
number of streets.

4.2. Validation of cross-scale feature construction 
method

4.2.1. Impact of the number of grading levels
As pixels of different grading levels represent different 
population densities, dividing appropriate levels is 
crucial for feature construction. This experiment 
aims to select an appropriate number of grading levels 
for conducting subsequent experiments and investi
gate how the results change under different grading 
levels. Thus, we vary the numbers of grading levels 
from 2 to 8, i.e. the non-empty pixel grades divided by 
Natural Breaks ranging from 1 to 7. The results are 
presented in Figure 5.

As shown in Figure 5, accuracies display different 
trends under an increasing numbers of grading levels 
at different resolutions, and there is no global optimal 
number of grading levels. The accuracy is lowest when 
the number of grading levels is 2 for all three resolu
tions, possibly because the pixels are only graded 
according to whether containing POIs or not, neglect
ing the quantity information of POIs. At 500 m and 
200 m resolutions, the accuracy is higher when the 
number of grading levels is small in general. While at 
100 m resolution, accuracy increases first until the 
number of grading levels reaches a certain threshold. 
Small pixels with fine resolution (e.g. 100 m) contain 
less types and counts of POIs, where subtle attribute 
differences might indicate a distinctly different attrac
tion degree to population. Thus more levels are 
needed to capture these differences in grades. We 
can also find that the accuracy is relatively high when 

the number of grading levels is 5 at all three resolu
tions. Thereby the number of grading levels is set to 5 
in the following experiments.

4.2.2. Comparison of feature construction method
To validate the effectiveness of CSFC, we compare its 
accuracy with Traditional Feature Construction (TFC) 
method, as shown in Figure 6. TFC builds POI-density 
index and inputs POI density as independent variables 
for model training and prediction. To eliminate the 
influence of weight adjustment on the result, we 
remove the steps of weight correction and recorrec
tion, and the initial weighting layer obtained from RF 
is directly used for population disaggregation.

Figure 6 manifests that CSFC can alleviate the scale 
mismatch problem in downscaling and improve the 
accuracy of population spatialization. As shown in 
Figure 6(a), when the spatial resolution getting higher, 
the accuracy of both methods decreased. Nonetheless, 
the proposed method is less affected when significant 
scale differences exist between training and prediction. 
Figure 6(b,c) shows the fitting results between pre
dicted and census population density in which each 
scatter point corresponds to a street. A match of 100% 
would be visible as a straight diagonal line. CSFC has 
similar distribution pattern of scatter points with TFC, 
but scatter points are more convergent to the diagonal 
line. In many cases, POI-density-based models suffer 
from underestimation of population in main urban 
areas and overestimation in rural areas (Wang, Fan, 
and Wang 2020). It leads to that blue points are mainly 
above the diagonal line, while red and green points are 
mostly distributed below the line. According to the 
comparison of R2 between CSFC and TFC, we can find 
that accuracies in low- and medium-density streets are 
effectively improved, which means that CSFC can 
ameliorate the overestimation and underestimation 
in several extreme population density regions to 
some extent. However, as there are many empty pixels 
without POIs are assigned a non-zero population 
weight by RF model, the severe overestimation of 

Figure 5. Accuracy comparison under an increasing numbers of grading levels at 500 m, 200 m, and 100 m resolutions, 
respectively.
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population still exists in rural areas (blue points). 
Therefore, it is necessary to further correct the predic
tion errors by integrating multi-source data.

4.2.3. Variable importance analysis on population 
weights for different POI types
As different types of POIs have different levels of corre
lation with population density, the analysis of feature 
importance helps to understand how POIs impact on 
population weights, and in turn better explain the influ
encing mechanism of different POI types on population 
distribution. To achieve this goal, we extract estimated 
importance of all input variables from RF model estab
lished upon Sklearn, a Python-based machine learning 
library, using built-in application Programming 
Interface (API) “RandomForestRegressor.feature_im
portances_”. The variables importance for RF regression 
in our population estimation task is shown in Figure 7.

Figure 7 displays variables importance of 5 grading 
levels and its sum, respectively, for each POI type. It can 
be found that hospital (H), shopping (S), and residential 
community (RC) are highly correlated with population 
weights and followed by medical service (MS) and res
taurant (R), while auto service (AS), commercial parking 
lot (PL), government agency (GA), and accommodation 
(A) have less impact on that. These observations are in 
line with our common sense. While the importance of 
financial service (FS), and leisure and entertainment (LE) 
are in between them, because these facilities also link 
with our daily life, but may have less revisiting frequency 
than shopping and restaurant. Research and education 
(RE) is less important than financial service but more 
than auto service etc., probably because this type of POI 
contains high schools and universities that with large 
number of resident students inside, as well as scientific 
research institutions, which don’t contribute to residen
tial population. Meanwhile, we can also find that 

Figure 6. Accuracy comparison between CSFC method and TFC method. (a) The result at 500 m, 200 m and 100 m resolution, 
respectively. (b)-(c) Scatterplots of the predicted and the census population density at the street-level at 100 m resolution. 
A log10-log10 transformation was conducted for the population density. The red, green, and blue points represent high, medium, 
and low population density streets, while red, green, and blue line are fitting lines, respectively. The black dash line is the global 
fitting line.

Figure 7. Variables importance for RF regression. The blue heatmap represents variables importance of 5 grading levels where the 
number of POIs in the pixel is from less to more accordingly for each POI type, while red heatmap represents the sum of variables 
importance of 5 grading levels.
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variables at low-level play more important roles in RF 
regression in general, since high-density level pixels only 
account for small proportions. More specifically, for POI 
types such as hospital, medical service and research edu
cation, the first two levels are significantly more impor
tant than the other levels, because presence or absence of 
such POIs matters, which determines whether popula
tion residence forms nearby. While for POI types like 
shopping and residential community, each level has 
a certain degree of importance, which shows that the 
number of such types of POIs is directly correlated to the 
population, and these POIs are more likely concentrated 
and thus forming more density levels and spatial 
agglomerations.

4.3. Effectiveness of weight correction based on 
multi-source data
Based on initial weighting layer, weight constraint and 
weight transposition are conducted sequentially. In this 
experiment, we compare the accuracy of the proposed 
weight correction method with traditional data fusion 
method, i.e. so-called Input Variable Method (IVM) in 
this paper, which input statistics of the amounts of mobile 
users and area of building patch as covariates for regres
sion directly. The results are presented in Figure 8.

Figure 8 illustrates weight correction method out
performs IVM, although incorporating more data as 
input variables for regression improves accuracy as 
well. As shown in Figure 8(a), weight correction 
method has a better accuracy improvement at fine 
resolution than at coarse resolution. However, 
according to R2 and RMSE, we can find that WT 
reduces the accuracy when the spatial resolution is 
500 m. It might be because large pixels with coarse 
resolution contain more types of POIs with abun
dant semantic information, which will not cause 
severe misestimation of population in commercial 
zones and residential areas; while biased population 
coverage of mobile positioning data increases the 
errors. Comparing with Figure 6(c), the overestima
tion of population in low-density streets is signifi
cantly corrected in Figure 8(b), because population 
weight of the pixels without building patch data is 
set to 0. Besides, since weights are transposed 
between the pixels with POIs, which are mainly 
distributed in main urban areas, accuracies in high- 
density and medium-density streets are further 
improved (Figure 8(c)). In general, WC corrects 
the overestimation problem of low population den
sity regions, while WT refines the population distri
bution in high population density regions.

TW+CW+CFSC)c(CW+CFSC)b(

(a) CSFC  vs  IVM  vs  CSFC+WC  vs  CSFC+WC+WT

Street population density 

low medium high

500m
200m
100m

MAE RMSE R²

Street population density 

low medium high

Figure 8. Accuracy comparison between weight correction method and traditional data fusion method (IVM). CSFC+WC 
represents the building patch data is used for Weight Constraint (WC) to correct the initial population weighting layer obtained 
from modeling based on CSFC, CSFC+WC+WT represents the further utilization of mobile positioning data for Weight 
Transposition (WT). (a) The result at 500 m, 200 m, and 100 m resolution, respectively. (b)-(c) Scatterplots of the predicted and 
the census population density at the street-level at 100 m resolution.
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4.4. Effects of spatial filtering for weight 
recorrection

To find the optimal distance to perform spatial filter
ing, we compare the accuracy at three pixel resolutions 
by varying the size of Gaussian filter templates, as 
shown in Figure 9. In this experiment, filtering is 
performed in central districts, suburban districts and 
entire Wuhan, respectively, to explore the effect of 
region on the results.

The results in Figure 9 indicate that spatial filtering 
can improve the accuracy of population spatialization at 
fine resolution but have an opposite effect at coarse 
resolution. At 500 m resolution, accuracy decreases 
after performing spatial filtering. At 200 m resolution, 
filtering with small template size is effective, but with 
large size increases errors. While at 100 m resolution, 
accuracy increases first and then slows down its upward 
trend. In general, the performance of spatial filtering 
become less effective and even worse as the size of 
filtering template continuously increases. By observing 
the effect of different sizes of filtering template on the 
results for all three resolutions, it can be found that the 
optimal distance to perform spatial filtering is about 
600 m. From the perspective of the spatial distribution, 
it will be more useful to perform spatial filtering in 
central districts rather than suburban districts because 
of the close and strong spatial association between 
population inside urban city. Therefore, spatial filtering 
is recommended for fine-resolution population spatia
lization in central urban areas.

4.5. Accuracy assessment and agreement analysis

WorldPop and GPW are used as benchmarks to eval
uate the accuracy of the proposed method. Meanwhile, 
we made a comparison with a RF based model (Ye 
et al. 2019). Ye’s model uses POI, road networks, 
NDVI, elevation, slope and NTL to form the relation
ship between population distribution and multi- 
source data. Table 3 lists accuracies of GPW, 

WorldPop, Ye’s model and the proposed method at 
different resolutions. On the whole, our method has 
a higher overall accuracy. The best accuracy of our 
method is achieved at 100 resolution as demonstrated 
by MAE, which is about one-sixth, one-third and half 
of GPW, WorldPop and Ye’s model, respectively. 
Although the accuracy decreases with resolution get
ting lower, our method still outperforms other data
sets and methods. We can find that, with the help of 
fine-grained ancillary data and CSFC, the proposed 
method is more likely to be adopted in population 
spatialization scenario with fine-resolution.

Figure 10 exhibits the population spatialization 
results of our method at 100 m resolution and 
WorldPop dataset in whole city of Wuhan and 
selected regions. They share a similar spatial pattern 
of population, but are visually different in details. It is 
found that population is mainly distributed in the 
central area of Wuhan (i.e. Jiang’an District, 
Jianghan District, Qiaokou District and Wuchang 
District) in both results, while our method can identify 
high-density nuclei of population in the periphery, 
such as Qianchuan street and Zhucheng street. From 
Figure 10(a,b), we can also find WorldPop is difficult 
to depict sporadic population distribution, while our 
method can better capture these details as fine-grained 
POIs are incorporated for modeling. Meanwhile, the 
result of the WorldPop follow the similar spatial pat
terns of the contours of land patches, which present 
a wide coverage but homogeneous spatial distribution 

Figure 9. Accuracy comparison under different sizes of filtering template and different regions at 500 m, 200 m, and 100 m 
resolutions, respectively.

Table 3. Accuracies of GPW, WorldPop, Ye’s model and the 
proposed method at 500 m, 200 m, and 100 m resolutions, 
respectively.

Dataset/Method Resolution (m) MAE RMSE R2

GPW 1000 46,919 81,077 0.49
WorldPop 100 23,763 40,500 0.55
Ye’s model 100 16,922 25,259 0.74

200 15,451 23,181 0.78
500 14,581 21,744 0.81

Proposed method 100 7992 12,365 0.939
200 8174 12,502 0.937
500 10,569 16,653 0.887
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of population, and has clear boundaries around water 
body. In contrast, the proposed method depicts 
a higher density mapping of population clustered 
around POIs, which has more obvious graininess 
and prominent texture. It reveals the spatial hetero
geneity of population distribution within statistical 
district, and better present the details of population 
distribution. However, spatial filtering leads to slight 
spillover of population at boundary of water body 
(Figure 10(c,d)), which especially has great impact on 
small river and lakes (e.g. Hanjiang River) as the 
population of pixels dropped into a narrow river 
might be affected by neighbor pixels located outside 
the water body from multiple directions. By incorpor
ating water body data, such errors could be eliminated 
furtherly.

Accuracy assessments and agreement analysis with 
WorldPop and GPW are conducted furtherly by 
evaluating absolute and relative errors at street-level 
(Figure 11). As shown in absolute error maps 
(Figure 11(a–c)), our method has lower errors in 
high-, medium-, and low-density streets compared 
to WorldPop and GPW. From the statistical histo
grams in the right-bottom of Figure 11(a–c), we can 
find that the numbers of overestimated and under
estimated streets are roughly equal in our method 
and WorldPop, while GPW overestimates population 
in most streets. This is because census counts are 
redistributed from AU-level to pixel-level in our 
method and WorldPop, but GPW interpolates popu
lation directly according to overlapping area. In rela
tive error maps (Figure 11(d–f)), the streets with low 
predicted error (from −0.2 to 0.2) of our method 

account for 61% of the total number of streets, 
whereas those of WorldPop and GPW are 29% and 
18%, respectively. Figure 11(g–i) show that scatter 
points for the predicted population in all streets of 
our method are concentrated on both sides of the 
diagonal line, while those of WorldPop and GPW are 
more discrete. R2 of our method is 0.939, around 1.7 
times and 1.9 times those of WorldPop and GPW, 
respectively, which demonstrates our method can 
better fit the real population distribution. As 
WorldPop presents a more homogeneous population 
distribution, it leads to underestimation in high- 
density streets (red points) and overestimation in 
low-density streets (blue points). Scatter points of 
GPW have greater discretization and its errors are 
mainly derived from overestimation in most streets. 
Meanwhile, from the percentage histograms of the 
relative error (detailed in Table A1 in Appendix), it 
can be seen that the errors of our method are nor
mally distributed and more balanced in general, i.e. 
with more streets located in low relative error ranges 
and less streets in high error ranges. However, for 
low-density streets, this observation is not hold. 
A few streets are significantly overestimated and 
make the corresponding scatter points deviate from 
the diagonal line, which indicates that our method 
suffers from accuracy problem in rural areas like 
many other POI-based studies (Wang, Fan, and 
Wang 2020). Nonetheless, R2 of low-density streets 
is 0.865, lower than 0.93 in medium and 0.934 in 
high-density streets, it has achieved significant 
improvement after weight correction and performs 
much better than WorldPop and GPW.

Figure 10. Population spatialization results of our method at 100 m resolution and WorldPop dataset. For each amplified 
subregion, subgraphs (a) and (b) represents our results and WorldPop, respectively, while subgraphs (c) and (d) show the vector 
boundaries of Hangjiang River and Yangtze River in our results.
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5. Conclusion and future work
This paper proposed a cross-scale method of popula
tion spatialization based on RF. Specifically, by con
sidering pixel-level grading of POI counts, CSFC 
partially overcomes the scale mismatch problem in 
downscaling. Comparing with traditional feature con
struction method, CSFC can achieve relatively high 
accuracy especially when significant scale differences 
exist between inputs of training and prediction (i.e. 
AU-level and pixel-level). Additionally, by integrating 
multiple fine-grained ancillary data to correct popula
tion weight and using spatial filtering to model the 

autocorrelation of population distribution, the accu
racy can be further improved. Through comparisons, 
our results showed higher estimation accuracy than 
WorldPop dataset. Therefore, the proposed method 
can be used for fine-resolution population estimation. 
Furthermore, it could provide insights on spatial 
downscaling modeling scenarios for disaggregating 
aggregated counts to a finer scale.

It should be pointed out that there is still much 
space for improvement. Future work would focus on 
the following directions. First, we can further study the 
adaptive cross-scale population spatialization method. 

Figure 11. Accuracy comparison between our method, WorldPop and GPW at street-level. (a) -(c) Absolute error maps and 
accuracy histograms. (d)-(f) Relative error maps and accuracy histograms. (g)-(i) Scatterplots of the predicted and the census 
population density, and percentage histograms of the relative error.
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An adaptive rule should be adopted to determine the 
number of grading levels according to the attribute 
characteristics of different modeling data. Besides, 
adaptive kernel density estimation algorithm (Yuan 
et al. 2019) could be used for reference to choose filter 
template size. Second, multi-source data such as build
ing patch and mobile positioning data are mainly for 
weight correction in this study, which is the rule we set 
manually based on prior knowledge and not integrated 
into the machine learning model in a data-driven way. 
Meanwhile, our method suffers from overestimation in 
rural areas. Better feature modeling methods, as well as 
more data types remain to be explored to address these 
problems. Finally, many geographic features (e.g. water 
body, bridges, viaducts) in a city might influence the 
spatial connectivity and interaction, but spatial filtering 
based on Euclidean distance cannot depict such effects 
appropriately. In the future, we can design a non- 
Euclidean spatial filter or adopt spatial context model
ing using representation learning (Yao et al. 2017; Liu, 
Andris, and Rahimi 2019) to model the connectivity of 
population and spatial relations between ancillary data.
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Appendix

Table A1. The number and proportion of streets under different relative error ranges for three density levels.

Method/dataset Relative Error range

Number and proportion of streets for three density levels

Low-density Medium-density High-density

Our method −1 – −0.7 0 (0%) 0 (0%) 1 (1.7%)
−0.7- −0.2 10 (16.6%) 12 (17.3%) 11 (19.3%)

−0.2 – 0 15 (25%) 26 (37.6%) 12 (21%)
0 – 0.2 16 (26.6%) 29 (42%) 25 (43.8%)
0.2 – 1 15 (25%) 9 (13%) 8 (14%)
1 – 3 3 (5%) 1 (1.4%) 0 (0%)
> 3 1 (1.6%) 1 (1.4%) 0 (0%)

WorldPop −1 – −0.7 0 (0%) 1 (1.4%) 1 (1.7%)
−0.7- −0.2 6 (10.2%) 10 (14.5%) 29 (50.9%)

−0.2 – 0 6 (10.2%) 10 (14.5%) 14 (24.6%)
0 – 0.2 7 (11.9%) 11 (15.9%) 6 (10.5%)
0.2 – 1 25 (42.4%) 20 (29%) 7 (12.3%)
1 – 3 10 (16.9%) 13 (18.8%) 0 (0%)
> 3 5 (8.5%) 4 (5.8%) 0 (0%)

GPW −1 – −0.7 0 (0%) 5 (7.2%) 10 (17.5%)
−0.7- −0.2 4 (6.8%) 10 (14.5%) 10 (17.5%)

−0.2 – 0 6 (10.2%) 4 (5.8%) 4 (7%)
0 – 0.2 8 (13.6%) 5 (7.2%) 6 (10.5%)
0.2 – 1 17 (28.9%) 21 (30.4%) 15 (26.3%)
1 – 3 20 (33.9%) 16 (23.2%) 11 (19.3%)
> 3 5 (8.5%) 8 (11.6%) 1(1.7%)
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