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Abstract

In this paper we consider a problem of investigating the dependence of ||P(Rz)—,BP(rz)||p on ||P(z)||p

for every real or complex number S with |ﬂ| <1, R>r>1, p>0 and present certain compact generali-

zations which, besides yielding some interesting results as corollaries, include some well-known results, in
particular, those of Zygmund, Bernstein, De-Bruijn, Erdos-Lax and Boas and Rahman as special cases.
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1. Introduction

Let P,(z) denote the space of all complex polynomials

P(z)=2?:0ajzj of degree at most n. For PeP,,
define

R R

[P (2)], = max|P(z)|.

|z]=1

and

A famous result known as Bernstein’s inequality(for
reference,see[1] or [2]) states that if P e P, ,then

[P (@), <nlPe. @

whereas concerning the maximum modulus of P(z) on
the circle |z|= R >1, we have

[P(Ra)l, <R"[P(2)],. @

(for reference, see [3]). Inequalities (1) and (2) can be
obtained by letting p — o in the inequalities

||P'(z)||psn”P(z)"p,pzl (3)
and
PR, <@ Pl Ro1p50 @

respectively. Inequality (3) was found by Zygmund [4]
whereas inequality (4) is a simple consequence of a re-
sult of Hardy [5] (see also [6]). Since Inequality (3) was
deduced from M.Riesz's interpolation formula [7] by

Copyright © 2011 SciRes.

means of Minkowski’s inequality,it was not clear, whe-
ther the restriction on p was indeed essential. This
guestion was open for a long time. Finally Arestov [8]
proved that (3) remains true for 0< p<1 as well. Both
the Inequalities (3) and (4) can be sharpened if we res-
trict ourselves to the class of polynomials having no zero
in |z]<1.In fact, if PeP, and P(z)=0 in |z|<1,
then Inequalities (3) and (4) can be respectively replaced
by

. [P
P (z)| <n £,p>0 ®)
)
and
R"z+1
||P(Rz)||pﬁH"P(Z)"p,R>1,p>O.(6)
p

Inequality (5) is due to De-Bruijn [9] for p>1 and
Rahman and Schmeisser [10] extended it for 0< p<1
whereas the Inequality (6) was proved by Boas and
Rahman [11] for p>1 and later it was extended for
0< p<1 by Rahman and Schmeisser[12]. For p =,
the Inequality (5) was conjectured by Erdds and later
verified by Lax [13] whereas Inequality (6) was proved
by Ankeny and Rivlin [14].

Recently the Authors in [12] (see also [15]) investi-
gated the dependence of

|P(Rz)- P(z)||pon ||P(z)||p

for R>1, p>1. As a compact generalization of
Inequalities (3) and (4), they have shown that if PeP,,
then forevery R>1 and p=>1,
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||F>(Rz)—F>(z)||p s(R”—l)"P(z)”p. @)

It is natural to seek the corresponding analog of (7) for
polynomials P eP, having no zero in |z]<1 and
which is a compact generalization of Inequalities (5) and
(6). In the present paper we consider a more general pro-
blem of investigating the dependence of

||P(Rz)—ﬂ’P(rz)||p on ||P(z)||p

for every real or complex number A with |g|<1,
R>r>1, p>0 anddevelop a unified method for arri-
ving at these results. We first present the following inter-
esting result and a compact generalization of Inequalities
(3) and (4), which also extends Inequality (7) for
0<p<1l aswell

Theorem 1. If P e P, , then for every real or complex

number B with |8/<1, R>r>1 and p>0,
||P(Rz)—ﬂP(rz)||p£ R"—gr" P(z)"p. (8)

The result is best possible and equality in (8) holds for
P(z)=az",a=0.

Remark 1. For g =0, Theorem 1 reduces to Inequality
(4) and for =1, r =1, it validates Inequality (7) for
each p>0.

If weset £ =1 inlnequality (8), we immediately get
the following generalization of Inequality (7).

Corollary 1. If PeP , then for R>r>1 and

p>0

[P(R2)-P(rz)] <(R"-r")[P(2)],- (@

The result is best possible and equality in (9) holds for
P(z)=az",a=0.

If we divide the two sides of Inequality (9) by
(R—r) andlet R—r ,we get:

Corollary 2. If PeP,,thenfor r>1 and p>0,

||P'(rz)||p snr’””P(z)"p. (10)

Remark 2. For r=1, Corollary 2 reduces to
Zygmund’s Inequality (3) for each p>0.

The following result which is a compact generalization
of Inequalities of (1) and (2) follows from Theorem 1 by
letting p — oo in Inequality (8).

Corollary 3. If PeP, , then for every real or
complex number g with |/<1 and R>r=>1,

|P(Rz)—ﬁP(rz)|s R" — Ar"|max P(z)| for [z] =1.

|4=1

(11)

The result is best possible and equality in (11) holds
for P(z)=az",a=0.

Remark 3. For =0, Corollary 3 reduces to

Inequality (2) and for g =1, if we divide the two sides
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of (11) by R-r and let R—r, it follows that if
PeP, , thenfor r>1,
|P' (rz)| <nr"t r‘rzl‘gi( P(z)| for [z] =1. (12)

Inequality (12) reduces to Bernstein’s Inequality (1)
for r=1.

For polynomials P eP, having no zero in |7|<1,
we next prove the following interesting improvement of
(8) which among other things include De-Bruijn’s theo-
rem (Inequality (5)) and a result of Boas and Rahman
(Inequality (6)) as special cases.

Theorem 2. If PeP, and P(z) does not vanish in

|z| <1, then for every real or complex number g with
|f<1, R>r=1 and p>0

H(R” —,Br”)z+(1—,6’)”

P(Rz)-pgP(rz)| <
L R )

P,

(13)

The result is best possible and equality in (13) holds
for P(z)=az"+b,ja|=|b|=1.

For B =0, Theorem 2 reduces to Inequality (6). A
variety of interesting results can be easily deduced from
Theorem 2. Here we mention a few of these. The
following corollary immediately follows from Theorem
2 by taking g=1.

Corollary 4. If PeP, and P(z) does not vanish
in |z/<1,thenfor R>r>1 and p>0,

(R-r)
|P(R2)-P(rz)], <*r——=[P(2)],. (14)

[+,

The result is sharp and equality in (14) holds for
P(z)=az"+b,|a| = o] = 1.

Remark 4. For r =1, if we divide the two sides of
(14) by R-1 and let R—1 ,we immediately get
De-Bruijn’s theorem (Inequality (5)) foreach p>0.

Next we mention the following compact generaliza-
tion of a theorem of Erdds and Lax (Inequality (5) for
p =) and a result of Ankeny and Rivlin (Inequality (5)
for p =) which immediately follows from Theorem 2
by letting p — o0 in (13).

Corollary 5. If PeP, and P(z) does not vanish
in |z|<1, then for every real or complex number A
with [g|<1 and R>r>1,

R"—pr"

|P(Rz)-BP(rz) <
for [z =1.
The result is best possible and equality in (15) holds
for P(z)=az"+b,ja|=|b|=1.
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Remark 5. For g =1, if we divide the two sides of
(15) by R—r andlet R —r ,we get

|P' (rz)| sgr”*l

For r =1, Inequality (16) was conjectured by Erdds
and later verified by Lax[10]. If we take =0 in
(15),we immediately get

max|P(z)| for |z| = (16)

|2=1

Z)w||< R" +1

|P(R |P(2)], .R>1. (17)

Inequality (17) is due to Ankeny and Rivlin [1].
A polynomial P eP, is said to be self-inversive if

P(z)=uQ(z) for all zeC where ju/=1and Q(z)=

2"P(Y7). It is known[16, 17] that if PeP, is self-
inversive polynomial, then for every p>1,
I (z)|| ” 2N, (18)

TR,

Finally, we present the following result which include
some well-known results for self-inversive polynomials
as special cases.

Theorem 3. If PeP, is self-inversive polynomial,
then for every real or complex number S with |8 <1,
R>r>1 and p>0,

”( ~pr)z+(1- ,B)H
+7],

||P(Rz)—/i’P(rz)||p <

(19)

The result is best possible and equality in (19) holds
for P(z)=2"+1.

Remark 6. Taking £ =0 in Theorem 3, it follows

that if PeP, is self-inversive polynomial, then for
R>1 and p>0,
|P(Rz)| <M"p(z)” (20)
S S :

The result is sharp.

Many interesting results can be deduced from Theorem
3 in exactly the same way as we have deduced from The-
orem 2.

2. Lemmas

For the proofs of these theorems, we need the following
lemmas.

Lemma 1. If PeP, and P(z) has all its zeros in
|z)<k where k<1, thenforevery R>r>1 and

2=
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(21)
r+k

|P(Rz)|2[R

S

Proof of Lemma 1. Since all the zeros of P(z) lie
in |z| <k , we write

P(z)= Cg(z—rjemj )

where Now for 0<@<2r,

have
i6 i0] 2, .2 y2
|Re -re J|_ R® +1, —2Reros(6—49j
R +17—2rr,Cos(6-6,

rjsk. R>r>1, we

‘ re’ —re’ ‘

Z{R—H“}E{R+k},j_l,2, n
r+r, r+k
Hence
|P<Re'9)|_ n | Re" rjei6j|
‘P(re‘”)‘_ i=1| e —r,e"

for 0<6@ <2z . Thisimplies for |z/=1 and R>r>1,

P(Re)|> (R“‘j P(r2)|,

r+

which completes the proof of Lemma 1.

Lemma 2. If PeP, and P(z) does not vanish in
z| <1, then for every real or complex number g with
pl<1,Rzr>1,and |7|=1,

|P(Rz)- BP(rz) <|Q(Rz)- BP(rz)|

where Q(z)= 2"P(1/7) .The result is sharp and
equality in (22) holds for P(z)=z"+1.

Proof of Lemma 2. For the case R=r, the result

follows by observing that |P(z)/<|Q(z)| for |z]>1.

Henceforth, we assume that R > r . Since the polynomi-
al P(z) has allits zeros in |z| 1, therefore, for every

(22)

real or complex number o with |a|>1, the polynomi-
al f(z)=P(z)-aQ(z), where Q(z)=2z"P(l/7), has
all its zeros in |z|<1. Applying Lemma 1 to the

polynomial f(z) with k=1, we obtain for every
R>r>1 and 0<6<2r,

(e (B2 ).

Since f(Re”)=0 for every R>r>1,0<0<2x
and R+1>r+1, it follows from (23) that

(23)
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i r+1Y i
1 (e > (3] |1 (Re")
forevery R>r>1 and 0<6 <2z . This gives
|f(rz)|<|f(Rz)|,

for |z/=1 and R>r=>1.
Using Rouche’s theorem and noting that all the zeros

z‘f(re“’)

of f(Rz) lie in |z|s%<1, we conclude that the
polynomial
T(z)=f(Rz)-pf(rz)
={P(Rz)-pBP(rz)} - {Q(Rz)- pQ(rz)}
has all its zeros in |z

number B,a with |3
implies

(24)

<1 for every real or complex
<l]e/>1 and R>r=>1. This

|P(Rz)- BP(rz)|<|Q(Rz)- BQ(rz)|
for [z|>1 and R>r>1. If Inequality (25) is not true,
then exist a point z=w with |w|>1 such that

|P(Rw)— 8P (rw)| > |Q(Rw) - AQ(rw)|.

But all the zeros of Q(z) liein |z|<1, therefore, it
follows (as in case of f(z)) that all the zeros of
Q(Rz)-pQ(rz) liein |z|<1.Hence
Q(Rw)-BQ(rw) =0 with |w|>1. We take

(25)

_ P(Rw)-BP(rw)
Q(Rw)-BQ(rw)’
then « is a well defined real or complex number with
la|>1 and with this choice of « , from (24) we obtain
T(w)=0 where |w|>1. This contradicts the fact that
all the zeros of T(z) liein |z]<1. Thus
|P(Rz)-BP(rz) <|Q(Rz)- BQ(rz)|

for |z]>1 and R>r>1. This proves Lemma 2.
Next we describe a result of Arestov.

n

For y=(ro7,) and P(z)=3 " a;z' eP,,
we define

AyP(z):Zn:;/jajzj.
j=0

The operator A, is said to be admissible if it pre-
serves one of the following properties:

1) P(z) hasallits zerosin {zeC:|z|<1},

2) P(z) hasallits zerosin{zeC:|z/>1},

The result of Arestov may now be stated as follows.

Lemma 3. [8] Let #(x)=w (logx) where y is a
convex nondecreasing function on R. Then for all
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ET AL
P eP, and each admissible operator A,
joz¢( AyP(eia)‘)desIjﬂqﬁ(c(;/,n)‘P(e” )‘)de

where C(7,n)=Max(]7].]7.])-

In particular, Lemma 3 applies with ¢:x — x? for
every pe(0,). Therefore, we have
Yp
i de} .

{jj( p)da}w s(c(y,n){jj”
(26)

We use (26) to prove the following interesting result.

Lemma 4. If PeP, and P(z) does not vanish in
z| <1, then for every real or complex number S with
Bl<LR>r=1, p>0 and o real,

J, \(P(Re”)=pP(re"))
+e‘“(R"P(ew/R)—Br”P(ei”/r))‘pd¢9
s‘(R” —ﬂr”)+ei“ (1—/7)‘p j:”

Proof of Lemma 4. Let Q(z)=2z"P(1/Z). Since

P(z) does notvanishin |z| <1, by Lemma 2, for every

real or complex number A with |g|<1,R>r=>1 and
|z] =1 ,we have

|P(Rz)-pP(rz)|
<[Q(Re)- 5Q(r2)| = [R"P (2/R) - Fr"P (/")

Now(as in the proof of Lemma 2), the polynomial

A,P(e”)

P(e")

(27)

P(e‘”)‘p de.

H(z)=Q(Rz)-£Q(rz)=R"z"P(}/RZ)- pr"z"P(1/r7)
has all its zeros in |z|<1 for every real or complex
number A with |/<1 and R>r, it follows that the
polynomial

z”H(]/f):R"P(z/R)—ﬁr”P(z/r)
has all its zeros in |z > 1. Hence the function

f(2)= P(Rz)-BP(rz)
R"P(z/R)-Br"P(z/r)

is analytic in |z/<1 and |f(z)|<1 for |z=1. Since

f(z) is not a constant, it follows by the Maximum
Modulus Principle that

|[f(z) <1 for |z]<1,

or equivalently,

|P(Rz)-BP(rz) <

R"P(2/R)-Br"P(z/r)| for |z <1.
(28)
A direct application of Rouche’s theorem shows that
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A,P(2)=(P(Re)-BP(12))
+e‘”‘(R”P(z/R)—Er”P(z/r))
= ((R” = pri)+e(1- B)a,z"
+oe4 (1= B)+e“ (R —ﬁr”))ao

does not vanish in |z|<1 for every g with |g|<1,
R>r>1 and « real. Therefore, A, is admissibe
operator. Applying (26) of Lemma 3, the desired result
follows immediately for each p > 0. This completes the
proof of Lemma 4.

From lemma 4, we deduce the following more general
lemma which is a result of independent interest with
variety of application.

Lemma 5. If P eP , then for every real or complex
number B with |g<1,R>r>1, p>0 and «

real,
I, |(P(Re")-pP(re"))
+e“’(R”P(e“’/R)—Br”P(em/r))‘pdH (29)
<|(Rr-pr)+e (1 A) [7]P(e”
The result is sharp and equality in (29) holds for
P(z)= 42,420

Proof of Lemma 5. Since P(z) is a polynomial of
degree at most n, we can write

P do.

n

P(z)= Pl(z)Pz(z):lj(z—zj) I (z—zj),kzl

j j=k+L
where all the zeros of P (z) lie in |z/>1 and all the
zeros of P,(z) lie in |z|<1. First we suppose that
R(z) has no zero on |z|=1 so that all the zeros of
R(z) liein |z|>1. Let Q,(z)=2"*P,(1/Z), then all
the zeros of Q,(z) liein |z/>1 and |Q,(z)=|R,(2)
for |z| =1. Now consider the polynomial

9(2)= R (2)Q(2) = [ 1(z-2,) [T (- 22,)

j=1 j=k+1

then all the zeros of g(z)liein |z|>1 andfor |z|=1,

|9(2) =R (2| (2)| =[R.(2)][F.(2)] = [P(2)]- (0)
By the Maximum Modulus Principle, it follows that

IP(2)|<|g(2)| for |z|<1. (31)

We claim that the polynomial h(z)=P(z)+1g(z)

does not vanish in |z|<1 for every A with [4]|>1. If

this is not true, then h(z,)=0 for some z, with
|z4| <1. This gives

Copyright © 2011 SciRes.
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[P(2)]=|Alg ()]
Since g(z,)#0 and ||>1, it follows that
|P(Zo)|>|g(zo)| with [z,|<1,

which clearly contradicts (31). Thus h(z) does not
vanish in |z|<1 for every 2 with |4|>1, so that all
the zeros of h(z) lie in |z/>p for some p>1 and
hence all the zeros of h(pz) lie in |z|>1. Applying
(28) to the polynomial h(pz), we get

|h(sz)—,Bh(rpz)| < R”h(pz/R)—Er”h(pz/r)|
for|z<L,R>r>1

Takingz=¢"“/p,0<0 <27, then |z|=(1/p) <1 as
p>1 and we get

‘h(Re"’)—ﬂh(re”)‘< R”h(e"’/R)—Er”h(e“’/r)‘,
0<@<2z, R>r>1 and |B|<1.Thisimplies

|h(Rz)—ﬂh(rz)|<

An application of Rouche’s theorem shows that the
polynomial

T(z) = (h(Rz)-Bn(rz))+e" (R”h(z/R)—/?r”h(z/r))

does not vanish in z|sl for every real or complex
number A with |/<1, R>r>1 and « real.
Replacing h(z) by P(z)+4h(z), it follows that the
polynomial

T(z)= {P(Rz)—ﬁP(rz)+e“’ (R“P(z/R)—Br“P(z/r))}
+/1{(g(Rz)—,Bg(rz))+e“’ (R”g(z/R)—Er”g(z/r))}
(32)

does not vanish in |z|<1 for every 8,1 with |g<1
and |4|>1. This implies

(P(R2)- P (r2) e (ROP(3/R)- B (1)
<[(9(Re)-pa(r)+e" (R'a(2/R)- 7" (2/7))
(33)
for |z/<1, |f<1, R>r=>1 and « real. If Ine-

quality (33) is not true, then there is a point z =z, with
|7,/ <1 such that

(P(Rzo)—ﬂP(rzo))+ei“(R”P(ZO/R)—Br”P(ZO/r))‘
> ‘(g(Rzo)—ﬂg(rzo))+e‘“(R"g(zo/R)—Br”g(zo/r))‘.

Since all the zeros of polynomials g(z) lie in |z|>1,
it follows (as before) that all the zeros of polynomial

(9(Rz)-Bg(rz))+e” (R”g(z/R)—,Er”g (z/r)) also li-

R"h(z/R)—Br”h(z/r)| for 2] =1.
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ein |z|>1 for every real or complex number S with
|B|<1, R>r=>1 and « real. Hence

9(Rz,)-B9(rz,))+e“ (R“g(zO/R)—Br“g(zo/r)) #0
with |z,| <1.
We take

( (Rz,) = P(rz,)) +€" (R"P(2,/R) - Br'P(2,/r))
(3(Res)~ 8o (129)) e (R'g (20/R)~Br"a (2/1))

so that A is a well-defined real or complex number
with |2|>1 and with this choice of 1, from (32) we
get T(z,)=0 with |z|<1 This clearly is a con-
tradiction to the fact that T(z) does not vanish in
|z|<1. Thus for every B with |g|<1, R>r>1 and
o real,

‘ — P rz))+e'“<R P(z/R)- ,l?r"P(Z/r))‘
g‘( (R ) ﬂg(rz))+e'“(R 9(z/R)- Br”g(z/r))‘

for |z|<1, which in particular gives for each p>0
and 0<6<2r,

J. |(P(Re")- P (re"))

+e (R'P(e 'Q/R) rP(e 'g/r))‘pda
< (o(re")~pare"))

o (R (e/R)- g er) a0

Using lemma 4 and (30), it follows that for every g
with |g|<1, R>r, p>0 and o« real,

I, |(P(Re”)-pP(re?))
+e'“ (R”P(e“g/R)—Er”P(e”/r))‘p do
‘(R” - pr")+e“ (1—,5)") JOZ” g(e”
- ‘(R” - pr" )+ei°' (1—/_3)‘p .[02”

Now if B (z) has a zero on |z|=1, then applying
(34) to the polynomial P"(z)=PR(tz)P,(z) where

(34)
Pdo

IA

P(e‘g‘pde.

t<1, we get for every g with |g|<1, R>r=x1,
p>0 and o real,
J |(P" (Re) =P (re))
+ei“(R“P*(e”’/R)—Er”P*(e”’/r))‘pdH (35)
£‘(R”—ﬂr”)+ei“( B lp (e“‘"pde.
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Letting t—>1 in (35) and using continuity, the
desired result follows immediately and this proves
Lemma 5.

3. Proofs of the Theorems

Proof of Theorem 1. Since P(z) is a polynomial of
degree at most n, we can write

k n

P(2)=PR(2)R(2)=T](z-7) [ (z-7).k>1

j=1 j=k+1
where all the zeros of P,(z) lie in |z|<1 and all the
zeros of P,(z) lie in |z|>1. First we suppose that all
thezerosof P (z) liein |z]<1.Let Q,(z)=2z"*P,(1/Z),
then all the zeros of Q,(z) lie in |z/<1 and

|Q,(2) =|R,(2)| for |7=1. Now consider the poly-
nomial

F(z)=
then all the zeros of F(z) liein |z|<1 and for |z|=

)”QZ(Z

By the Maximum Modulus Principle, it follows that
[P(2)| <|F(z)| for |z] 1.

k

R(2)Q(2)=T1(z-7) 1 (1-22,)

j=1 j=k+1

IF(2) = [P.(2)]|Q. (2) =[R.(2)[|F: (2)| = [P(2)]. (29)

Since F(z)#0 for |z]=1 and [2|>1, a direct
application of Rouche’s theorem shows that the poly-
nomial H(z)=P(z)+AF(z) has all its zeros in
|z <1 forevery A with |2|>1. Applying lemma 1 to
the polynomial H (z), we deduce (as before)

|H(rz)|<|H(Rz)|
for |z/=1 and R>r=>1.

Since all the zeros of H (Rz) lie in |z|<%sl, we

conclude that for every g,4 with |£|<1 and |A1[>1,
all the zeros of polynomial

G(z)=H(Rz)-pH(rz)
=(P(Rz)-BP(rz))+ A(F (Rz)- BF (rz))
liein |z| <1. This implies (as in the case of Lemma 2)
|P(Rz)- P (rz)| <|F (Rz)- BF (rz)| for |z] 21
and R>r>1,

which in particular gives for R>r and p >0,
(Rei‘g)—ﬁP(reig)‘p d6
(Re“g)—ﬁF(re“g)‘p d6

0

(30)
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Again, since all the zeros of F(z) liein |z|<1, as
before, F(Rz)—AF(rz) hasallits zerosin |z|<1 for
every real or complex number B with |p|<1. There-
fore, the operator A, defined by

A, F(z)=F(Rz)-pF(rz)
= (R” —ﬁr”)bnz” +-+(1-B)b,

is admissible. Hence by (26) of Lemma (3), for each
p >0, we have

I |F(Re”)=pF (re”)
<[R"—gr|" [ F(e“’)‘pde.

Combining Inequalities (37) and (38) and noting that

déo

‘F(e‘g)‘:‘P(e”)‘,weobtainfor R>r>1 and p>0
{J'OZ”‘P(Re‘H)—,BP(rem)pde}w

e (32
<[R"—pr" { 02” P(e‘g)‘pdﬁ} :

In case P,(z) has a zero on |z|=1, the Inequality
(39) follows by using similar argument as in the case of
Lemma 5. This completes the proof of Theorem 1.

Proof of Theorem 2. By hypothesis PP, and

P(z) does notvanishin |z| <1, therefore, by Lemma 2
for every real or complex number A with |g|<1,
0<6<27 and R>r>1,

‘P(Re”)—ﬁP(reig)‘

. _ . (33)
<|R" (e'g/R)—ﬂr”P(e'g/r)‘
Also, by Lemma 5,
[7|F(0)+e“c(0)" do
(34)

g‘(R”—ﬁr”)+e‘“(l—3)‘pjozﬂP( o
F(6)=P(Re"”)-pP(re”) and
G(0)=R"P(e”/R)-Br"P(e"/r).

Integrating both sides of (41) with respectto « from
0 to 2z, we get for each p>0, R>r>1 and «

real,
J-erJ-er

s{ (R - ) +e (1—/7)‘ da}{ Nl

Now for every real «

where

0)+e“G(0)|" ddo

e‘”‘pde}

(3%)
t>1 and p >0, we have

Copyright © 2011 SciRes.

If F(0)%0, wetake t=[G(0)|/|

F(6)|, then by (40)
t>1 and we get

[’|F(0)+e“G(0) da
:|F(0)|pfozﬂl+ei“%pda
=|F @) [ ch Z; | da
=|F @) [ E(z) da
>|F(0) [p+e| da.

For F(0)=0, this inequality is trivially true. Using
this in(42), we conclude that for every real or complex
number A with <1, R>r>1 and a real,

{2” g a}{joz”P(Re“’)—ﬁP(reig)p
{j ‘R” pre)+e (1 ﬂ)‘ da}{

o

(e‘g‘p da}.
(43)
Since

s
s
N
{j R"— Br"

:{ 02” (R” ~ prt e +(l—ﬂ)‘p da},

the desired result follows immediately by combining (43)
and (44). This completes the proof of Theorem 2.
Proof of Theorem 3. Since P(z) is a self-inversive

polynomial, we have P(z)=uQ(z) for all zeC

where |u/=1 and Q(z)=2z"P(YZ). Therefore, for
every real or complex number g and R>r>1,

R"—pBr"

(R“—/?r +e'“ 1- /3 }
|

ia |1 ﬂ” a

R"—pBr"

i /3” da} (44)

e +jL- 4]’ da|

|P(Rz)—,6'P(rz)|:|Q(Rz)—ﬂQ(rz)| forall zeC
so that
_| P(Re”)-pP(re”) |
|G(‘9)/F(9)|_ RnP(eiG/R)_BrnP<ei9/r)‘_1
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Using this in (41) with |p|<1 and proceeding simi-
larly as in the proof of Theorem 2, we get the desired
result. This completes the proof of Theorem 3.
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