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ABSTRACT 
 

In this paper, we present the derivation and implementation of a quarter-step method for the 
integration of first-order modeled differential equations. The quarter-step method was developed 
using Laguerre polynomial of degree six as our basis function via interpolation and collocation 
techniques. We went further to apply the quarter-step method developed on some modeled first 
order differential equations. The paper also analyzed the basic properties of the method derived. 
From the results obtained, it is obvious that the method is computationally reliable.  
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1. INTRODUCTION  
 
This paper presents a quarter-step method for 
the integration of modeled first order problems of 
the form, 
 

RRRfayyxfy →×== :,)(),,(' η      (1) 
 

where ( , )f x y  is assumed to satisfy Lipschitz 
condition which guarantees the existence and 
uniqueness of the solutions of (1). 
 

Definition 1.1 [1] 
 

Laguerre polynomial ( )ny x  is defined as, 
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It is important to note that the Laguerre 
polynomial ( )ny x  are orthogonal with respect to 

the weight function xexw −=)(  on ),0[ ∞ . 
 

Many scholars used different basis functions for 
the solution of problems of the form (1). For 
instance, the authors in [2] and [3] used basis 
functions which are the combination of power 
series and exponential functions to develop block 
integrators for the solution of (1). The authors in 
[4] and [5] also used Chebyshev and Legendre 
polynomials as basis functions respectively to 
develop hybrid methods for the solution of (1).  
 

In this paper, we shall employ Laguerre 
polynomial of degree 6 as a basis function in 
developing the quarter-step method for the 
solution of (1). 
 

2. METHODOLOGY: DERIVATION OF 
THE QUARTER-STEP METHOD  

 

We shall derive a quarter-step method of the 
form,  
 

(0) ( ) ( )m n n mA E hd hb= + +Y y f y F Y           (4) 
 

using Laguerre polynomial of degree 6 as our 
basis function. This is given by,
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We interpolate (5) at point , 0n sx s+ =  and collocate its first derivative at points 1 1
, 0

20 4n rx r+
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, 

where s and r are the numbers of interpolation and collocation points respectively, this leads to the 
system of equations of the form, 
 

UXA =                           (6) 
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Solving (6) for ' , 0(1)6ja s j =  and substituting back into the basis function gives a continuous linear 

multistep method of the form,   
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discrete block method of the form  (4), where 
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3. ANALYSIS OF BASIC PROPERTIES OF THE QUARTER-STEP METHOD  
 
To justify the applicability and accuracy of the proposed method, we need to examine its basic 
properties which include order of accuracy, consistency, root condition, convergence, symmetry and 
region of absolute stability. 
 
3.1 Order of Accuracy and Error Constant 
 
The block method (4) is said to be uniform accurate order p, if p is the largest positive integer for 

which 0...210 ===== pcccc but ,01 ≠+pc  [6]. Thus, for our method, 
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Therefore, the quarter-step method is of uniform sixth order. 
 
3.2 Root Condition and Zero Stability  
 
Definition 3.1 [6]: The block method (4) is said to satisfy root condition, if the roots kszs ,...,2,1, =  of 

the first characteristic polynomial )(zρ  defined by )det()( )0( EzAz −=ρ  satisfies 1≤sz  and 

every root satisfying 1=sz  have multiplicity not exceeding the order of the differential equation. The 

method (4) is said to be zero-stable if it satisfies the root condition.  
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)(zρ = 4( 1) 0z z − = 1,0 54321 =====⇒ zzzzz . 
 
Hence, the quarter-step method (4) is said to satisfy root condition.  
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Theorem 3.1  [6]: The necessary and sufficient condition for the method given by (4) to be zero-stable 
is that it satisfies the root condition.  
 
3.3 Consistency 
 
According to [7], consistency controls the magnitude of the local truncation error committed at each 

stage of the computation. The quarter-step method (4) is consistent since it has order 6 1p = >  
 

3.4 Convergence  
 
The quarter-step method (4) is convergent by consequence of Dahlquist theorem below. 
 
Theorem 3.2  [8]: The necessary and sufficient conditions that a continuous LMM be convergent are 
that it be consistent and zero-stable.  
 
3.5 Region of Absolute Stability   
 
In the plotting the stability region, we shall adopt the boundary locus method. The stability polynomial 
of the quarter-step method is given by, 
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The stability region is shown in Fig. 1.  
 

  
Fig. 1. Stability region of the quarter-step method 

 
The RAS obtained in Fig. 1 is A-stable, since it 
contains the whole of the left-half complex plane, 
[6]. 
 
4. RESULTS 
 
4.1 Numerical Experiments  
 
We shall consider the following two linear real-life 
problems by modeling them into equations of the 
form (1). A nonlinear problem shall also be 

considered. We shall use the following notation 
in the tables below.  
 

ERR= |Exact Solution – Computed Solution| 
Eval t =Evaluation time per seconds 
ESYA=Error in [9] 
ESOJA=Error in [3] 

 

Problem 4.1 (Growth Model) 
 

A bacteria culture is known to grow at a rate 
proportional to the amount present. After one 

-100 0 100 200 300 400 500 600
-300

-200

-100

0

100

200

300

Re(z)

Im
(z

)



 
 
 
 

Sunday et al.; AIR, 7(1): 1-8, 2016; Article no.AIR.25688 
 
 

 
6 
 

hour, 1000 strands of the bacteria are observed 
in the culture; and after four hours, 3000 strands. 
Find the number of strands of the bacteria 
present in the culture at time : 0 1t t≤ ≤ . 
 

Let ( )N t  denote the number of bacteria strands 

in the culture at time t , the initial value problem 
modeling this problem is given by, 
 

0.366 , (0) 694
dN

N N
dt

= =          (11) 

 
The exact solution is give by, 
 

0.366( ) 694 tN t e=                                    (12) 
 

Source:  [10] 
 
The authors in [9] solved this problem by 
applying a quarter-step method of order 5. We 
compare the result obtained using our method 
with theirs as shown in Table 4.1. 
 
Problem 4.2 (Electric Circuit Model) 
 
A 12V battery is connected to a series circuit in 

which the inductance is 
1

2
H  and the resistance 

is 10Ω . Determine the current (0) 0i if i =  at 

time : 0 0.1t t< ≤ . 
 
If a circuit has in series an emf E volt, a resistor 
R Ohm and an inductor L Henries, then the 
current i  in amperes at time t  is given by, 
 

di
L Ri E

dt
 + = 
 

                                   (13) 

Thus, the initial value problem modeling the 
problem is given by, 
 

20 24, (0) 0
di

i i
dt

= − + =                      (14) 

 
with the exact solution, 
 

( )206
( ) 1

5
ti t e− = − 

 
          (15) 

 
Source: [1] 
 
The authors in [9] solved this problem by 
applying a quarter-step method of order 5. We 
compare the result obtained using our method 
with theirs as shown in Table 4.2. 
 
Problem 4.3 (Non-Linear Problem) 
 
Consider the nonlinear problem below, 
 

210( 1) , (0) 2
dy

y y
dx

= − − =           (16) 

 
with the exact solution 
 

1
( ) 1

1 10
y x

x
= +

+
              (17) 

 
Source: [3] 
 
The authors in [3] solved this problem by 
applying a numerical method of order 7. We 
compare the result obtained using our method 
with theirs as shown in Table 4.3. 

 

 
 

Fig. 2. Graphical result for problem 4.1 (Growth model) 
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  Fig. 3. Graphical result for problem 4.2 (Electric circuit model) 
 

Table 4.1. Showing the result for problem 4.1 
 

t
 

Exact solution Computed  solution ERR     ESYA Eval t  
0.10 719.8709504841319800 719.8709504841319800 0.000000e+000 0.000000e+000   0.0764   
0.20 746.7063189494632500 746.7063189494632500 0.000000e+000 0.000000e+000 0.0785 
0.30 774.5420569951836600 774.5420569951836600 0.000000e+000 0.000000e+000 0.0807 
0.40 803.4154564251550700 803.4154564251550700 0.000000e+000 0.000000e+000 0.0827 
0.50 833.3651992080965600 833.3651992080965600 0.000000e+000 0.000000e+000 0.0848 
0.60 864.4314093001880800 864.4314093001880800 0.000000e+000 2.273737e-013 0.0870 
0.70 896.6557063995159100 896.6557063995159100 0.000000e+000 2.273737e-013 0.0891 
0.80 930.0812617043808400 930.0812617043808400 0.000000e+000 3.410605e-013 0.0911 
0.90 964.7528557501631200 964.7528557501631200 0.000000e+000 2.273737e-013 0.0931 
1.00 1000.7169384022342000 1000.7169384022342000 0.000000e+000 3.410605e-013 0.0953 

 
Table 4.2. Showing the result for problem 4.2 

 
i    

Exact solution                Computed solution ERR ESYA Eval t  
0.01 0.2175230963064218 0.2175230963064218 0.000000e+000 6.364631e-013 0.0226 
0.02 0.3956159447572328 0.3956159447572328 0.000000e+000 1.042055e-012 0.0246 
0.03 0.5414260366871682 0.5414260366871682 0.000000e+000 1.279643e-012 0.0266 
0.04 0.6608052430593341 0.6608052430593341 0.000000e+000 1.397105e-012 0.0286    
0.05 0.7585446705942693 0.7585446705942693 0.000000e+000 1.429967e-012 0.0306    
0.06 0.8385669457053576 0.8385669457053576 0.000000e+000 1.404876e-012 0.0327 
0.07 0.9040836432700723 0.9040836432700723 0.000000e+000 1.341927e-012   0.0348 
0.08 0.9577241784064137 0.9577241784064137 0.000000e+000 1.255662e-012 0.0368 
0.09 1.0016413341340962 1.0016413341340962 0.000000e+000 1.156408e-012 0.0388 
0.10 1.0375976601160648 1.0375976601160648 0.000000e+000 1.052047e-012 0.0408 

 
Table 4.3. Showing the result for problem 4.3 

 
x  Exact solution           Computed solution            ERR ESOJA Eval t  
0.01 1.9090909090909092     1.9090886423023135     2.266789e-006 1.07e-03 0.0139    
0.02 1.8333333333333335 1.8333312639246935 2.069409e-006 2.38e-03 0.0151    
0.03 1.7692307692307692 1.7692184876881401 1.228154e-005 2.21e-03 0.0162 
0.04 1.7142857142857144 1.7141948078088534 9.090648e-005 5.36e-03 0.0173 
0.05 1.6666666666666665 1.6661926448958333 4.740218e-004 7.53e-03 0.0185    
0.06 1.6250000000000000 1.6245832366132822 4.167634e-004 9.00e-03 0.0191    
0.07 1.5882352941176470 1.5878661146067676 3.691795e-004 9.98e-03 0.0192 
0.08 1.5555555555555556 1.5552259169035829 3.296387e-004 1.06e-02 0.0194 
0.09 1.5263157894736841 1.5260174514784275 2.983380e-004 1.10e-02 0.0195 
0.10 1.5000000000000000 1.4997180776663166 2.819223e-004 1.12e-02 0.0196 
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5. DISCUSSION OF RESULTS  
 
We considered two real-life modeled first-order 
problems of the form (1) and a nonlinear 
problem. From the results obtained in the tables 
above, it is obvious that the quarter-step method 
derived is computationally reliable. The graphical 
results obtained also buttress the fact that the 
computed results converge toward the exact 
solution. We also discovered that the method 
developed in this paper performed better than 
that of the authors in [9]. It is also important to 
note that Laguerre polynomial was used as a 
basis function in the derivation of the Quarter-
step method unlike the conventional power 
series usually used, see [11]. Thus, we may say 
that the higher the number of off-grid points, 
order of the method and the degree of the basis 
polynomial, the better the result. 
 
6. CONCLUSION 
 
Conclusively, a quarter-step method for the 
integration of modeled first-order problems of the 
form (1) using Laguerre polynomial of degree six 
as our basis function was developed. The 
method developed was found to be A-stable and 
that explained why it performed well on the class 
of problems it was applied on. The method was 
also found to be zero-stable, consistent, 
convergent and computationally reliable. We 
therefore recommend this method for the 
integration of first-order modeled problems of the 
form (1). 
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