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ABSTRACT
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1 INTRODUCTION

In 1906, M. Fŕechet [1] introduced the concept of
metric spaces. A metric is a function that takes
values in the set of real numbers with its usual
ordering.

Let (X, d) be a metric space and S : X → X be
a mapping. Then S is called Banach contraction
mapping if there exists α ∈ [0, 1) such that

d(Sx, Sy) ≤ αd(x, y), ∀ x, y ∈ X. (1.1)

Banach [2] proved that if X is complete, then
every Banach contraction mapping has a fixed
point. Thus, Banach contraction principle
ensures the existence of a unique fixed point of a
Banach contraction on a complete metric space.
The contractive definition (1.1) implies that S is
uniformly continuous. It is natural to ask if there
is a contractive definition which do not force S to
be continuous. It was answered in affirmative by
Kannan [3].

Let (X, d) be a metric space and S : X → X be
a mapping. Then S is called Kannan mapping if
there exists α ∈ [0, 1/2) such that

d(Sx, Sy) ≤ α
[
d(x, Sx) + d(y, Sy)

]
, ∀ x, y ∈ X.

(1.2)
Kannan [4] proved that if X is complete, then
every Kannan mapping has a fixed point. He
further showed that the conditions (1.1) and
(1.2) are independent of each other (see,
[3, 4]). Kannan’s fixed point theorem also is very
important. Because Subrahmanyam [5] proved
that Kannan’s theorem characterizes the metric
completeness. That is, X is a complete metric
space if and only if every Kannan mapping on X
has a fixed point.

In 2007, Huang and Zhang [6] introduced the
concept of a cone metric space, they replaced
the set of real numbers by an ordered Banach
space and proved some fixed point theorems
for contractive type conditions in cone metric
spaces. Later on many authors have (for e.g.,
[7, 8, 9, 10]) proved fixed point theorems for
different contractive types conditions in cone
metric spaces.

Azam et al. [11] introduced the notion of
cone rectangular metric space and proved

Banach contraction mapping principle in a cone
rectangular metric space setting.

In 2009, Jleli and Samet [12] extended the
Kannan’s fixed point theorem in a cone
rectangular metric space.

Recently, M. Garg and S. Agarwal [13] introduced
the notion of cone pentagonal metric space and
proved Banach contraction mapping principle in
a cone pentagonal metric space.

Very recently, M. Garg [14] introduced the notion
of cone hexagonal metric space and proved
Banach contraction mapping principle in a cone
hexagonal metric space.

Motivated by the results of [12, 14], it is our
purpose in this paper to continue the study of
fixed point theorem in cone hexagonal metric
space setting. Our results improve and extend
the results of Huang and Zhang [6], Jleli and
Samet [12], Auwalu [15], and many others.

2 PRELIMINARIES

In this section, we shall give the notion of
cone metric spaces and some related properties
introduced in [6, 11, 13, 14], which will be needed
in the sequel.

Definition 2.1. Let E be a real Banach space
and P a subset of E. P is called a cone if and
only if:

1. P is closed, nonempty, and P ̸= {0};
2. a, b ∈ R, a, b ≥ 0 and x, y ∈ P =⇒

ax+ by ∈ P ;

3. x ∈ P and −x ∈ P =⇒ x = 0.

Given a cone P ⊆ E, we defined a partial
ordering ≤ with respect to P by x ≤ y if and only
if y − x ∈ P. We shall write x < y to indicate
that x ≤ y but x ̸= y, while x ≪ y will stand for
y−x ∈ int(P ), where int(P ) denotes the interior
of P.

Definition 2.2. A cone P is called normal if there
is a number k > 0 such that for all x, y ∈ E, the
inequality

0 ≤ x ≤ y =⇒ ∥x∥ ≤ k∥y∥. (2.1)
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The least positive number k satisfying (2.1) is
called the normal constant of P.

In this paper, we always suppose that E is a real
Banach space and P is a cone in E with int(P ) ̸=
∅ and ≤ is a partial ordering with respect to P.

Definition 2.3. Let X be a nonempty set.
Suppose that the mapping ρ : X × X → E
satisfies:

1. 0 < ρ(x, y) for all x, y ∈ X and ρ(x, y) = 0
if and only if x = y;

2. ρ(x, y) = ρ(y, x) for all x, y ∈ X;

3. ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈
X;

Then ρ is called a cone metric on X, and (X, ρ)
is called a cone metric space.

Remark 2.1. Every metric space is a cone metric
space. The converse is not necessarily true (e.g.,
see [6]).

Definition 2.4. Let X be a nonempty set.
Suppose that the mapping ρ : X × X → E
satisfies:

1. 0 < ρ(x, y) for all x, y ∈ X and ρ(x, y) = 0
if and only if x = y;

2. ρ(x, y) = ρ(y, x) for all x, y ∈ X;

3. ρ(x, y) ≤ ρ(x,w) + ρ(w, z) + ρ(z, y) for
all x, y ∈ X and for all distinct points
w, z ∈ X − {x, y} [rectangular property].

Then ρ is called a cone rectangular metric on
X, and (X, ρ) is called a cone rectangular metric
space.

Remark 2.2. Every cone metric space and so
metric space is cone rectangular metric space.
The converse is not necessarily true (e.g., see
[11]).

Definition 2.5. Let X be a nonempty set.
Suppose that the mapping d : X × X → E
satisfies:

1. 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0
if and only if x = y;

2. d(x, y) = d(y, x) for x, y ∈ X;

3. d(x, y) ≤ d(x, z) + d(z, w) + d(w, u) +
d(u, y) for all x, y, z, w, u ∈ X and for
all distinct points z, w, u,∈ X − {x, y}
[pentagonal property].

Then d is called a cone pentagonal metric on
X, and (X, d) is called a cone pentagonal metric
space.

Remark 2.3. Every cone rectangular metric
space and so cone metric space is cone
pentagonal metric space. The converse is not
necessarily true (e.g., see [13]).

Definition 2.6. Let X be a nonempty set.
Suppose that the mapping d : X × X → E
satisfies:

1. 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0
if and only if x = y;

2. d(x, y) = d(y, x) for x, y ∈ X;

3. d(x, y) ≤ d(x, z) + d(z, w) + d(w, u) +
d(u, v) + d(v, y) for all x, y, z, w, u, v ∈ X
and for all distinct points z, w, u, v ∈ X −
{x, y} [hexagonal property].

Then d is called a cone hexagonal metric on
X, and (X, d) is called a cone hexagonal metric
space.

Remark 2.4. Every cone pentagonal metric
space and so cone rectangular metric space is
cone hexagonal metric space. The converse is
not necessarily true (e.g., see [14]).

Definition 2.7. Let (X, d) be a cone hexagonal
metric space. Let {xn} be a sequence in X and
x ∈ X. If for every c ∈ E with 0 ≪ c there exist
n0 ∈ N and that for all n > n0, d(xn, x) ≪ c,
then {xn} is said to be convergent and {xn}
converges to x, and x is the limit of {xn}. It
is denoted by limn→∞ xn = x or xn → x as
n → ∞.

Definition 2.8. Let (X, d) be a cone hexagonal
metric space. Let {xn} be a sequence in X. If for
every c ∈ E, with 0 ≪ c there exist n0 ∈ N such
that for all n,m > n0, d(xn, xm) ≪ c, then {xn}
is called Cauchy sequence in X.

Definition 2.9. Let (X, d) be a cone hexagonal
metric space. If every Cauchy sequence is
convergent in (X, d), then X is called a complete
cone hexagonal metric space.

Lemma 2.1. Let (X, d) be a cone hexagonal
metric space and P be a normal cone with normal
constant k. Let {xn} be a sequence in X, then
{xn} converges to x if and only if ∥d(xn, x)∥ → 0
as n → ∞.
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Lemma 2.2. Let (X, d) be a cone hexagonal
metric space and P be a normal cone with
normal constant k. Let {xn} be a sequence in
X, then {xn} is a Cauchy sequence if and only if
∥d(xn, xn+m)∥ → 0 as n → ∞.

In fact, for a cone hexagonal (or rectangular)
metric space, the uniqueness of the limit of a
sequence does not hold (see [12]). However, the
limit is unique for a convergent Cauchy sequence
as shown below.

Lemma 2.3. Let (X, d) be a complete cone
hexagonal metric space, P be a normal cone
with normal constant k. Let {xn} be a Cauchy
sequence in X and suppose that there is natural
number N such that:

1. xn ̸= xm for all n,m > N ;

2. xn, x are distinct points in X for all n > N ;

3. xn, y are distinct points in X for all n > N ;

4. xn → x and xn → y as n → ∞.

Then x = y.

Proof. The proof is similar to the proof of ([12]-
Lemma 1.10).

3 MAIN RESULTS

In this section, we prove Kannan fixed point
theorem in a cone hexagonal metric space. Our
result generalized the well known Kannan’s fixed
point theorem [4], and results of Jleli and Samet
[12], Auwalu [15], and others.

Theorem 3.1. Let (X, d) be a complete cone
hexagonal metric space, P be a normal cone with
normal constant k. Suppose a mapping S : X →
X satisfy the contractive condition:

d(Sx, Sy) ≤ λ
[
d(Sx, x) + d(Sy, y)

]
, (3.1)

for all x, y ∈ X, where λ ∈ [0, 1/2). Then

1. S has a unique fixed point in X.

2. For any x ∈ X, the iterative sequence
{Snx} converges to the fixed point.

Proof. Let x ∈ X. From (3.1), we have

d(Sx, S2x) ≤ λ
[
d(x, Sx) + d(Sx, S2x)

]
,

i.e,

d(Sx, S2x) ≤ λ

1− λ
d(x, Sx).

Again
d(S2x, S3x) ≤ λ

[
d(Sx, S2x) + d(S2x, S3x)

]
,

i.e,

d(S2x, S3x) ≤ λ

1− λ
d(Sx, S2x) ≤

( λ

1− λ

)2

d(x, Sx).

Thus, in general, if n is a positive integer, then

d(Snx, Sn+1x) ≤
( λ

1− λ

)n

d(x, Sx)

= rnd(x, Sx), (3.2)

where r =
(

λ
1−λ

)
∈ [0, 1).

We divide the proof into two cases.

First case :

Let Smx = Snx for some m,n ∈ N, m ̸= n. Let m > n. Then Sm−n(Snx) = Snx, i.e. Spy = y, where
p = m− n, y = Snx. Now since p > 1, we have

d(y, Sy) = d(Spy, Sp+1y)

≤ rnd(y, Sy).
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Since r ∈ [0, 1), we obtain −d(y, Sy) ∈ P and d(y, Sy) ∈ P, which implies that

∥(y, Sy)∥ = 0.

That is, Sy = y.

Second case :

Assume that Smx ̸= Snx for all m,n ∈ N, m ̸= n. From (3.2), and the fact that 0 ≤ λ < r < 1,
we have

d(Snx, Sn+1x) ≤ rnd(x, Sx)

≤ rnd(x, Sx) + rn+1d(x, Sx) + rn+2d(x, Sx)

≤ rn(1 + r + r2 + · · · )d(x, Sx)

≤ rn

1− r
d(x, Sx),

d(Snx, Sn+2x) ≤ λ
[
d(Sn−1x, Snx) + d(Sn+1x, Sn+2x)

]
≤ λ

[
rn−1d(x, Sx) + rn+1d(x, Sx)

]
≤ rnd(x, Sx) + rn+1d(x, Sx) + rn+2d(x, Sx)

≤ rn(1 + r + r2 + · · · )d(x, Sx)

=
rn

1− r
d(x, Sx),

d(Snx, Sn+3x) ≤ λ
[
d(Sn−1x, Snx) + d(Sn+2x, Sn+3x)

]
≤ λ

[
rn−1d(x, Sx) + rn+2d(x, Sx)

]
≤ rnd(x, Sx) + rn+1d(x, Sx) + rn+2d(x, Sx)

≤ rn(1 + r + r2 + · · · )d(x, Sx)

=
rn

1− r
d(x, Sx).

and

d(Snx, Sn+4x) ≤ λ
[
d(Sn−1x, Snx) + d(Sn+3x, Sn+4x)

]
≤ λ

[
rn−1d(x, Sx) + rn+3d(x, Sx)

]
≤ rnd(x, Sx) + rn+1d(x, Sx) + rn+2d(x, Sx) + rn+3d(x, Sx)

≤ rn(1 + r + r2 + r3 + · · · )d(x, Sx)

=
rn

1− r
d(x, Sx).

Now, if m > 4 and m := 4k + 1, k ≥ 1 and using the fact that Spx ̸= Sqx for p, q ∈ N, p ̸= q, by
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hexagonal property, we obtain

d(Snx, Sn+4k+1x) ≤ d(Sn+4k+1x, Sn+4kx) + d(Sn+4kx, Sn+4k−1x) + d(Sn+4k−1x, Sn+4k−2x)

+ d(Sn+4k−2x, Sn+4k−3x) + d(Sn+4k−3x, Snx)

≤ d(Sn+4kx, Sn+4k+1x) + d(Sn+4k−1x, Sn+4kx) + d(Sn+4k−2x, Sn+4k−1x)

+ d(Sn+4k−2x, Sn+4k−3x) + d(Sn+4k−3x, Sn+4k−4x) + · · ·

+ d(Sn+2x, Sn+1x) + d(Sn+1x, Snx)

= d(Snx, Sn+1x) + d(Sn+1x, Sn+2x) + · · ·+ d(Sn+4k−1x, Sn+4kx)

+ d(Sn+4kx, Sn+4k+1x)

≤ rnd(x, Sx) + rn+1d(x, Sx) + · · ·+ rn+4k−1d(x, Sx) + rn+4kd(x, Sx)

≤ rn(1 + r + r2 + · · · )d(x, Sx)

=
rn

1− r
d(x, Sx).

Similarly, if m > 5 and m := 4k + 2, k ≥ 1 and using the fact that Spx ̸= Sqx for p, q ∈ N, p ̸= q, by
hexagonal property, we obtain

d(Snx, Sn+4k+2x) ≤ rn

1− r
d(x, Sx).

Also, if m > 6 and m := 4k + 3, k ≥ 1 and using the fact that Spx ̸= Sqx for p, q ∈ N, p ̸= q, by
hexagonal property, we obtain

d(Snx, Sn+4k+3x) ≤ rn

1− r
d(x, Sx).

Also, if m > 7 and m := 4k + 4, k ≥ 1 and using the fact that Spx ̸= Sqx for p, q ∈ N, p ̸= q, by
hexagonal property, we obtain

d(Snx, Sn+4k+4x) ≤ rn

1− r
d(x, Sx).

Thus, combining the above cases, we have

d(Snx, Sn+mx) ≤ rn

1− r
d(x, Sx), ∀m,n ∈ N.

Since P is a normal cone with normal constant k, therefore, by (2.1), we have

∥d(Snx, Sn+mx)∥ ≤ krn

1− r
∥d(x, Sx)∥, ∀m,n ∈ N.

Since

lim
n→∞

krn

1− r
∥d(x, Sx)∥ = 0,

we have that
lim

n→∞
∥d(Snx, Sn+mx)∥ = 0, ∀m,n ∈ N. (3.3)

Therefore, by Lemma 2.2, {Snx} is a cauchy sequence in X. By completeness of X, there exists a
point z ∈ X such that

lim
n→∞

Snx = z. (3.4)
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We shall now show that z is a fixed point of S. i.e., Sz = z. Without loss of generality, we can assume
that Srx ̸= z, Sz for any r ∈ N. By hexagonal property, we have

d(z, Sz) ≤ d(z, Snx) + d(Snx, Sn+1x) + d(Sn+1x, Sn+2x) + d(Sn+2x, Sn+3x) + d(Sn+3x, Sz)

≤ d(z, Snx) + d(Snx, Sn+1x) + d(Sn+1x, Sn+2x) + d(Sn+2x, Sn+3x)+

λ
[
d(Sn+2x, Sn+3x) + d(z, Sz)

]
,

which implies that

d(z, Sz) ≤ 1

1− λ

[
d(z, Snx) + d(Snx, Sn+1x) + d(Sn+1x, Sn+2x) + (1 + λ)d(Sn+2x, Sn+3x)

]
.

Hence,

∥d(z, Sz)∥ ≤ k

1− λ

[
∥d(z, Snx)∥+∥d(Snx, Sn+1x)∥+∥d(Sn+1x, Sn+2x)∥+(1+λ)∥d(Sn+2x, Sn+3x)∥

]
.

Letting n → ∞, we have ∥d(z, Sz)∥ = 0. Hence, Sz = z. i.e., z is a fixed point of S.
Now, we show that z is unique. Suppose z′ is another fixed point of S, that is Sz′ = z′. Therefore,

d(z, z′) = d(Sz, Sz′) ≤ λ
[
d(z, Sz) + d(z′, Sz′)

]
= 0,

which implies that
d(z, z′) = 0.

That is, z = z′. This completes the proof of the theorem.

4 CONCLUSIONS

Corollary 4.1. (see [15]) Let (X, d) be a
complete cone pentagonal metric space and
P be a normal cone with normal constant k.
Suppose the mapping S : X → X satisfy the
contractive condition:

d(Sx, Sy) ≤ λ
[
d(x, Sx) + d(y, Sy)

]
, (4.1)

for all x, y ∈ X, where λ ∈ [0, 1/2). Then

1. S has a unique fixed point in X.

2. For any x ∈ X, the iterative sequence
{Snx} converges to the fixed point.

Proof. This follows from the Remark 2.4 and
Theorem 3.1.

Corollary 4.2. (see [12]) Let (X, d) be a
complete cone rectangular metric space and P be
a normal cone with normal constant k. Suppose
the mapping S : X → X satisfy the contractive
condition:

d(Sx, Sy) ≤ λ
[
d(Sx, x) + d(Sy, y)

]
, (4.2)

for all x, y ∈ X, where λ ∈ [0, 1/2). Then

1. S has a unique fixed point in X.

2. For any x ∈ X, the iterative sequence
{Snx} converges to the fixed point.

Proof. This follows from the Remark 2.3 and
Corollary 4.1.

Corollary 4.3. (see [6]) Let (X, d) be a complete
cone metric space and P be a normal cone with
normal constant k. Suppose the mapping S :
X → X satisfy the contractive condition:

d(Sx, Sy) ≤ λ
[
d(Sx, x) + d(Sy, y)

]
, (4.3)

for all x, y ∈ X, where λ ∈ [0, 1/2). Then

1. S has a unique fixed point in X.

2. For any x ∈ X, the iterative sequence
{Snx} converges to the fixed point.

Proof. This follows from the Remark 2.2 and
Corollary 4.2.

To illustrate Theorem 3.1, we give the following
example.
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Example 4.4. Let X = {1, 2, 3, 4, 5, 6}, E = R2 and P = {(x, y) : x, y ≥ 0} is a normal cone in E.
Define d : X ×X → E as follows:

d(x, x) = 0, ∀x ∈ X;

d(1, 2) = d(2, 1) = (5, 10);

d(1, 3) = d(3, 1) = d(1, 4) = d(4, 1) = d(1, 5) = d(5, 1) = d(2, 3) = d(3, 2) = d(2, 4) = d(4, 2)

= d(2, 5) = d(5, 2) = d(3, 4) = d(4, 3) = d(3, 5) = d(5, 3) = d(4, 5) = d(5, 4) = (1, 2);

d(1, 6) = d(6, 1) = d(2, 6) = d(6, 2) = d(3, 6) = d(6, 3) = d(4, 6) = d(6, 4) = d(5, 6) = d(6, 5) = (4, 8).

Then (X, d) is a complete cone hexagonal metric space, but (X, d) is not a complete cone pentagonal
metric space because it lacks the pentagonal property:

(5, 10) = d(1, 2) > d(1, 3) + d(3, 4) + d(4, 5) + d(5, 2)

= (1, 2) + (1, 2) + (1, 2) + (1, 2)

= (4, 8), as (5, 10)− (4, 8) = (1, 2) ∈ P.

Now, we define a mapping S : X → X as follows

S(x) =

{
5, if x ̸= 6;
2, if x = 6.

Observe that

d(S(1), S(2)) = d(S(1), S(3)) = d(S(1), S(4)) = d(S(1), S(5)) = d(S(2), S(3))

= d(S(2), S(4)) = d(S(2), S(5)) = d(S(3), S(4)) = d(S(3), S(5)) = 0.

And in all other cases d(S(x), S(y)) = (1, 2), d(x, y) = (4, 8).
We remark that S is not a contractive mapping with respect to the standard metric in X, because we
have

|S6− S3| = 3 = |6− 3|.
However, S satisfies

d(Sx, Sy) ≤ λ
[
d(x, Sx) + d(y, Sy)

]
, ∀x, y ∈ X,

with λ = 1/4. Applying Theorem 3.1, we obtain that S admits a unique fixed point, that is z = 5.

In the above Example, results of Auwalu [15],
Jleli and Samet [12], or Huang and Zhang [6]
are not applicable to obtained the fixed point of
the mapping S on X. Since (X, d) is not a cone
pentagonal, or cone rectangular, or cone metric
space.

ACKNOWLEDGEMENT

The first author sincerely acknowledges the Sule
Lamido University, Jigawa State for awarding
teacher fellowship to conduct this research work.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

References
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