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Accurately predicting the Remaining Useful Life (RUL) of lithium-ion batteries is

the key to the battery health management system. However, problems of

unstable model output and extensive calculation limit the prediction

accuracy. This article proposes a Particle Swarm Optimization Random

Forest (PSO-RF) prediction method to improve the RUL prediction accuracy.

First, the battery capacity extracted from the lithium-ion battery data set of the

National Aeronautics and Space Administration (NASA) and the University of

Maryland Center for Advanced Life Cycle Engineering (CALCE) is set as the

battery life health factor. Then, a PSO-RF prediction model is established based

on the optimal parameters for the number of trees and the number of random

features to split by the PSO algorithm. Finally, the experiment is verified on the

NASA and CALCE data sets. The experiment results indicate that the method

predicts RUL with Mean Absolute Error (MAE) less than 2%, Root Mean Square

Error (RMSE) less than 3%, and goodness of fit greater than 94%. This method

solves the problem of parameter selection in the RF algorithm.
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1 Introduction

With the rapid growth of technology, lithium-ion batteries have become the most

perspective technology to meet the energy and power requirements of modern electric

vehicles because of their advantages over traditional batteries. However, due to the

complex chemical and physical changes in lithium-ion batteries, their performance will

degrade or even fail, which may cause serious safety problems and significant financial

losses (Pecht et al., 2013). Therefore, the online State of Health (SOH) evaluation and the

Remaining Useful Life (RUL) prediction of lithium-ion batteries as two highly active fields

of research in battery management systems are also hot and challenging issues in

Prognostics and Health Management (PHM) (Li and Xu, 2015; Meng et al., 2019).

Accurate RUL prediction can guide battery health management, battery replacement, and

systemmaintenance to prevent significant losses by reason of battery failure or premature
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replacement to achieve preventative maintenance of the battery

(Duong and Raghavan, 2018).

In recent years, people have conducted extensive research on

the degradation mode of batteries and the RUL prediction (Wang

et al., 2014), resulting in different prediction methods. These

methods can be categorized into model-based methods (Chang

et al., 2019) and data-driven methods (Zhou et al., 2016). The

model-based method mainly includes the electrochemical (Deng

et al., 2018) and equivalent circuit models (Yang et al., 2020a).

The electrochemical model approach establishes a

degradation model by analyzing the influence of the internal

structure of the battery, material properties, and other conditions

to achieve the RUL prediction. The equivalent circuit model-

based method uses the closed-loop format filter algorithm, in

which the error between the predicted and the measured values

will be fed back for correction. Duan (Duan et al., 2020) proposed

a new Extended Kalman Particle Filter (EKPF) for the RUL

prediction. The filter optimizes the PF algorithm with the

Extended Kalman filter as the sampling density function. Li

(Li et al., 2021) combined the least squares support vector

machines (LSSVM) with the unscented particle filtering (UPF)

to achieve the online prediction of RUL.Ma (Ma et al., 2021) used

the autoregressive (AR) model to predict capacity. The predicted

capacity was used to update the degradation model parameters of

the particle filter algorithm to improve the prediction accuracy of

RUL. However, such methods rely on accurate and complex

battery capacity degradation models. In addition, due to the

inherent characteristics of particle filtering, neither traditional

particle filtering methods nor improved particle filtering

methods can address the issues of particle degradation and

impoverishment well. So it is difficult to predict the RUL of

FIGURE 1
RF algorithm model structure.

FIGURE 2
The percentage of false nearest neighbors of different
embedding dimensions.
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batteries accurately. Moreover, the complex equivalent structure

requires abundant professional knowledge and relevant

experience. These reasons lead to the fact that model-based

methods are not widely used.

The data-driven method does not need to consider the

electrochemical reaction process. It extracts the hidden

information from the historical data of the lithium-ion battery

to predict the RUL. These methods are mostly based on machine

learning and deep learning, including Artificial Neural Networks

(ANN) (Bai et al., 2014; Kang et al., 2014), Random Forest (RF)

(Yang et al., 2008), Relevance Vector Machine (RVM)(Liu and

Jianbao ZhouHaitao LiaoYu PengXiyuanPeng, 2015), and

Support Vector Machine (SVM) (Klass et al., 2014; Patil et al.,

2015). Li (Li et al., 2018) addressed an RF regression prediction

algorithm for battery capacity estimation. This method analyzes

various data sets measured by lithium-ion batteries in different

working environments and extracts critical features from the

current, voltage, and temperature curves. These features are used

for model training to approach the lithium-ion battery RUL

prediction. Ji (Ji et al., 2021) built a model combining monotonic

echo state network (MESN) and self-adaptive differential

evolution (SADE), and improves the prediction accuracy of

FIGURE 3
Flow chart of PSO-RF algorithm.

FIGURE 4
NASA battery aging test results and EOL line.

FIGURE 5
CALCE battery aging test results and EOL line.
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RUL and can achieve online prediction. Yang (Yang et al., 2020b)

elaborated a complex nonlinear battery dynamics model based

on the Gradient-enhanced regression tree (GBRT) and predicted

the RUL by extracting various battery characteristics. Zhang

(Zhang et al., 2021) applied a mixed prediction algorithm that

fuses Artificial Bee Colony (ABC), RF, and General Regression

Neural Network (GRNN) to predict the RUL. The RF algorithm

is used to calculate the importance of each feature in the feature

space for ranking. Ardeshiri (Ardeshiri et al., 2022) employed the

RF algorithm for optimal feature selection to filter unnecessary

features. Then the combination of gated recurrent unit (GRU)

and Least Squares Generative Adversarial Network (LSGAN) was

used to improve the prediction accuracy. Lin (Lin et al., 2022)

used constant current charging time (CCCT) to extract features

and used RF to predict SOH. The result shows that prediction

accuracy is improved but with reduced data utilization. However,

the approach to selecting the optimal parameters of the RF

algorithm still needs to be explored.

Long (Long et al., 2013) proposed a PSO algorithm and an

improved AR model to predict the RUL of lithium-ion batteries

with less error. Qin (Qin et al., 2015) expounded the PSO

algorithm to obtain the Support Vector Regression (SVR)

optimal parameters and established the PSO-SVR model. The

model can reflect the global degradation trend and realize

accurately RUL prediction. Mao (Mao et al., 2022) deduced

the PSO algorithm to optimize the Back Propagation (BP)

neural network to estimate the state of charge of the battery.

The prediction result of this method is better than that of the BP

neural network. Ren (Ren et al., 2021) applied the PSO algorithm

to optimize the selection of parameters in the Long Short-term

Memory (LSTM) neural network. The PSO algorithm is applied

to optimize the hyper-parameters of LSTM. Yao (Yao et al., 2022)

analyzed a PSO-ELM-RVM model to predict the RUL. The PSO

algorithm was used to optimize the parameters of both the RVM

and extreme learning machine (ELM) models.

The PSO algorithm is proven to exhibit good optimization

ability. Therefore, this paper proposes a PSO-RF prediction

method. This method uses the PSO algorithm to search the

two optimal parameters of the RF algorithm (the number of trees

and the number of random features for each split). The main

contributions of this paper are: 1) The PSO algorithm is used to

find the optimal parameters of the RF algorithm, which improves

the accuracy of the prediction while ensuring robustness. 2) The

PSO algorithm is introduced into the RF algorithm, which

achieves the adaptive selection of parameters and improves

the adaptability of the algorithm to different data sets. 3)

Compared with the traditional RF algorithm and BP neural

network algorithm, it is verified that the method proposed in

this paper has higher accuracy and robustness for RUL

prediction. The adaptability to different data sets has been

improved simultaneously.

The following content of this paper is mainly divided into the

following parts. Section 2 discusses the establishment process of

the PSO-RF model in detail. Section 3 introduces the data source

and processing method, verifies the feasibility of the PSO-RF

algorithm, gives the prediction results, and compares the PSO-RF

model with RF and BP neural networks. Section 4 completes a

summary of the paper.

TABLE 1 Parameters of PSO-RF model.

Parameter Value Parameter Value

Iteration number Tmax 100 Maximum inertia weight ωmax 0.9

Population size pop 10 Minimum inertia weight ωmin 0.4

ntrees ranges [50,1000] Initial value of acceleration factor c1i 2.5

ntrees search ranges [100,800] Final value of acceleration factor c1f 0.5

mfeatures ranges [2,8] Initial value of acceleration factor c2i 0.5

mfeatures search ranges [2,8] Final value of acceleration factor c2f 2.5

TABLE 2 Details of the experimental data sets.

Group Temperature/°C Discharge current Capacity/(A·h) Cut-off voltage/V

Data set Ⅰ B0005 24 2A/CC 2 2.7

B0006 2A/CC 2 2.5

B0018 2A/CC 2 2.5

Data set II CS2-33 24 0.5 A/CC 1.1 2.7

CS2-34 0.5 A/CC 1.1 2.7

CS2-35 1 A/CC 1.1 2.7

CS2-36 1.A/CC 1.1 2.7
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FIGURE 6
RMSE changes with the number of iterations.

FIGURE 7
Comparison of inertial weights.
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2 Establishment of PSO-RF model

2.1 PSO optimization principle

PSO is a stochastic global optimization technique. The PSO

algorithm discovers the optimal region in the complex search

space through the interaction between particles. At the beginning

of the calculation, PSO will randomly generate a group of

particles that meet the requirements and then iterate

continuously to find the optimal global particles according to

the optimal historical particles.

The velocity of the ith particle at k iterations is:

vk+1id � ωk+1vkid + ck+11 r1(pid − xk
id) + ck+12 r2(Gd − xk

id) (1)

Where i = 1,2,3...m; d = 1,2,3...D, ω is the inertial parameter, c1
and c2 are learning factors, which are constants, r1and r2are

random numbers, Pi,d is the optimal local value of the

d-dimensional component of the ith particle, and Gdis the

optimal global value of the d-dimensional component.

The location update equation is:

xk+1
id � xk

id + vk+1id (2)

where xk
idis the d-dimensional location component of k iterations

of the ith particle, and vk+1id is the d-dimensional velocity

component of the ith particle k iterations.

This paper adopts two methods to prevent the traditional

PSO algorithm from falling into the local optimum in the

optimization process. First, the inertia weight adopts a linear

differential decline method to enhance the ability of local

optimization in the later stage, as shown in Eq 3. Second, the

acceleration factor adopts a linear adjustment method to make

full use of particle cognition ability and searchability, as shown in

Eqs 4, 5.

ω � ω max − (ωmax − ωmin)( k

Tmax
)2

(3)

c1 � (c2f − c2i) k

Tmax
+ c1i (4)

c2 � (c2f − c2i) k

Tmax
+ c2i (5)

Where ωmax is the maximum iteration inertia weights, ωmin is

the minimum iteration inertia weights, k is the current

number of iterations, Tmaxis the maximum iteration

number, c1i, c2iare the initial value of acceleration factors

c1 and c2respectively, c1f and c2f are the final value of

acceleration factors c1and c2 respectively.

FIGURE 8
Acceleration factor comparison chart.
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2.2 RF algorithm

RF is a new machine learning method combining ensemble

learning and decision tree. RF algorithms have been successfully

applied to many different fields of classification and regression,

such as wind forecasting (Lahouar and Slama, 2017), wheat

biomass estimation (Wang et al., 2016), and spatial prediction

of soil organic carbon (Filho et al., 2016). The RF algorithm has

the advantages of excellent classification performance, minor

parameter adjustment, high training efficiency, and less

overfitting (Sun et al., 2019). In recent years, the RF model

has been extensively used in the health prediction of lithium-ion

FIGURE 9
Results and errors of B0005 prediction.
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batteries and RUL prediction of batteries and has achieved

remarkable results.

The fundamental idea of RF is the following. First, the

Bootstrap sampling method randomly selects samples from

the original data set and puts them back into the original data

set. The extracted samples constitute the training set. Then use

the Classification and Regression Trees (CART) method to build

a classification tree or regression tree for each new sample set.

Finally, the final prediction result is given based on the results of

all the decision trees.

Let X stand for the input vector including m features with

X � {x1, x2, ..., xm}, Y the output scalar, and Sn the training set

FIGURE 10
Results and errors of B0006 prediction.
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including n predictive values, which can be represented as

Sn � {(X1, Y1), (X2, Y2)/(Xn, Yn)}. The RF algorithm model

structure is depicted in Figure 1. The steps are as follows:

(1) Assuming that there are N samples in the training set data,

the Bootstrap sampling method extracts n samples from

them to form a training subset. The subset is considered as

the training sample of a single regression tree.

(2) Assuming that there are M features in the training subset,

randomly select m features as the split feature subset (m ≤
M), and then use the CART algorithm to split without

pruning.

FIGURE 11
Results and errors of B0007 prediction.
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(3) The predicted value for each regression tree can be obtained

for the unknown test set using each regression tree to

calculate the test set.

(4) The final prediction result of the RF model is achieved by

averaging the prediction values of each regression tree.

2.3 PSO-RF algorithm

Li (Li et al., 2018) considered the influence of the number of

trees and the number of random features to split when using the

RF algorithm to predict battery capacity. The results show that

adding optimization parameters of RF does not affect the final

results. Therefore, this paper used the PSO algorithm to select

these two parameters on its basis. They directly determine the

accuracy of the RF algorithm Table 1. However, there is a lack of

effective methods to guide the selection of RF parameters for the

time being. Therefore, this paper selects the PSO algorithm to

optimize the RF parameters.

The main steps of the RF algorithm are as follows:

(1) Data processing: First, the battery capacity data is

preprocessed and standardized. Lithium-ion battery

capacity degradation data is a one-dimensional time

series. The embedding theory is used to reconstruct the

data set. The phase space reconstruction process with

dimension d is as follows.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1

x2

..

.

xN−d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
z1
z2
..
.

zN−d

/
/
1
/

zd
zd+1
..
.

zN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

In order to determine the value of d, the false nearest

neighbors method is used for verification (Kennel et al.,

1992). The results are shown in Figure 2. When d = 9 the

percentage of false nearest neighbors is 0. Therefore, d = 9 is

chosen as the dimension of the reconstruction space. Therefore,

the battery capacity data of the kth~(k+8)-th cycle is used as

input, and the battery capacity data of the k+9-th cycle is used as

output.

(2) Model parameter setting: In the method proposed in this

paper, the learning factors c1i = 2.5, c1f = 0.5, c2i = 0.5, c2f =

2.5, iteration number Tmax = 100, population size pop =

10, inertia weight ωmax = 0.9, ωmin = 0.4, maximum

velocity Vmax = 1, minimum velocity Vmin = -1.

Initialize a swarm of particles randomly, and the

parameters are shown in .

(3) The RF model is established by the initialized particles. The

training data is divided into n training sets, and m split

features are extracted. The training sets are used to train to

establish n regression tree models, and the test data is used to

calculate n prediction results. The average of n predicted

results is the final results. The root mean square error

(RMSE) between the test samples and the results is the

particle fitness. The fitness is defined as:

f itness �
�������������
1
n
∑n
i�1
(yi − yi

∧ )2
√

(7)

Also, the fitness is the objective function.

(4) Iteratively update the position and velocity of the particles

according to Eqs 1–5 to update ntrees and mfeatures.

Furthermore, calculate the corresponding particle fitness.

After comparing with the particle fitness before the

update: a. Update the optimal historical position of each

particle; b. Find the optimal global particle position; c.

Update the optimal global particle position to achieve the

minimum RMSE.

(5) The iteration loop is terminated when the iteration count is

reached. Obtain the optimal parameters ntrees and mfeatures

and output the predicted values. Otherwise, return step (4).

This paper mainly adopts the RMSE to assess the selection of

ntrees and mfeatures parameters in the RF model. RMSE is used to

measure the deviation between predicted and real values and

characterize the accuracy of prediction. The flow chart of PSO-

RF algorithm is depicted in Figure 3.

3 Result analysis and discussion

3.1 Data set

In this study, the PSO-RF method is validated using two sets

of the RUL of lithium-ion battery data sets.

The RUL data set I of lithium-ion battery packages is

achieved from the NASA-Ames Prediction Center of

TABLE 3 Prediction results of different prediction starting points in the
NASA data set.

Data set Starting point MAE RMSE R2

B0005 40 0.0141 0.0185 0.9838

60 0.0109 0.0154 0.9804

80 0.0100 0.0147 0.9668

B0006 40 0.0190 0.0275 0.9692

60 0.0172 0.0260 0.9422

80 0.0144 0.0210 0.9440

B0007 40 0.0136 0.0188 0.9738

60 0.0100 0.0144 0.9708

80 0.0096 0.0147 0.9458
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Excellence (PCOE) data warehouse. Three battery packages,

B0005, B0006, and B0007, were elected to verify the proposed

method. The rated capacity of the corresponding battery

packages was 2Ah. The battery aging experiments were

carried out at room temperature. The process follows:

First, the constant current of 1.5A was applied to charge

the battery. When the battery voltage reaches 4.2V, the

charging ends. At another cycles, the constant voltage

mode was applied to charge the battery. When the

charging current dropped to 20mA, the charging was

completed. Then, the battery packages corresponding to

B0005, B0006, and B0007 were discharged in a constant

FIGURE 12
Results and errors of CS2-33 prediction.
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current mode of 2A. The discharging ends when the battery

voltage dropped to 2.7, 2.5, and 2.2V, respectively. The

battery end-of-life (EOL) line is reached when the battery

capacity degrades to 70% of the rated capacity. The

correlation between the battery capacity, the number of

cycles, and the end-of-life line are shown in Figure 4.

Data set II is the RUL data set from the CALCE. CS2-33, CS2-

34, CS2-35, and CS2-36 were selected to verify the proposed

method. First, the CS2 battery package was charged at a constant

current rate of 0.5C. When the voltage reached 4.2V, it was

charged with a 4.2V constant voltage. When the charging current

drops to 0.05A, the charging ends. Then, CS2-33 and CS2-34

FIGURE 13
Results and errors of CS2-34 prediction.
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were discharged at a constant discharge current of 0.5C. CS2-35

and CS2-36 were discharged at a constant discharge current of

1C. The battery EOL line is set as 70% of the rated capacity. The

correlation between the battery capacity, the number of cycles,

and the end-of-life line are shown in Figure 5.

The description of the data sets I and data sets II is shown in

Table 2.

The RUL refers to the number of cycles that the battery can

carry out from the current moment to the end of life. In this

paper, the battery reaches the end of life when the maximum

FIGURE 14
Results and errors of CS2-35 prediction.
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usable capacity drops to 70% of the rated capacity. The

calculation of RUL is shown in Eq 8:

RUL � CEOL − Ci (8)

where CEOL is the number of cycles required at the end of life, Ci

is the current number of cycles of the battery.

3.2 PSO-RF model analysis

It is necessary to consider the effect of the number of

iterations, the effect of the inertia weight, and the effect of the

acceleration factor of the PSO algorithm. This paper analyzes the

influence of the above factors in the data set AAA when the

prediction starting point is 80.

FIGURE 15
Results and errors of CS2-36 prediction.
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3.2.1 The influence of the number of iterations
If the iteration count is too small, the accuracy of the battery

life prediction will be affected. In contrast, a large number of

iterations will increase calculation. Figure 6 shows the change of

RMSE with the number of iterations as the independent variable.

The RMSE of the data sets has stabilized within 50 generations

and almost no longer decreased after that. Therefore, in this

work, the iteration count of the PSO-RF model is selected to

be 100.

3.2.2 The advantage of linear differential
decreasing in inertia weight

The inertia weight reflects the ability of a new generation of

particles to inherit the speed of the previous generation. Through

the analysis of the PSO algorithm, it can be concluded that it is

helpful for global search when the inertia weight is more

prominent. In contrast, a smaller inertia weight is helpful for

local search. Compared with fixed inertial weight, linear

differential decreasing inertial weight has a larger inertial

weight in the early stage of the search, strengthening the

global search ability and avoiding falling into the optimal

global solution. In the later search stage, the linear differential

decreasing inertia weight has a smaller inertia weight, which can

enhance the local search ability. On the premise of finding the

optimal global range, the optimal solution is more likely to be

locked.

When the inertia weight adopts linear differential decrease

and fixed weight ω = 0.65, the RMSE changes are shown in

Figure 7. It can be obtained from the figure that the linear

differential decreasing inertia weight can rapidly reduce the

RMSE in the early search stage, and the final result is better

than the fixed weight search method. Therefore, the linear

differential decreasing inertia weight can seek the optimal

solution and avoid falling into the optimal global so that the

prediction has accurate results.

3.2.3 Advantages of linear adjusted acceleration
factor

The acceleration factor c1 controls the individual historical

experience to update the individual velocity. A large acceleration

factor c1 will make the particles linger too much locally. The

acceleration factor c2 controls the group shared experience to

renewal the individual velocity. A considerable c2will

prematurely make the particles converge to the optimal local

solution with a large acceleration factor. The particles should fly

across the entire search space as far as possible to obtain the

diversity of the particles at the initial stage of the search. At the

end of the search, the particles should maintain a certain speed to

eliminate the interference of local extremes as much as possible.

Therefore, the linear adjusted acceleration factors should have a

large acceleration factor c1and a small acceleration factor c2in the

TABLE 4 Prediction results of different prediction starting points in the
CALCE data set.

Data set Starting point MAE RMSE R2

CS2-33 250 0.0037 0.0060 0.9981

350 0.0034 0.0057 0.9982

450 0.0030 0.0051 0.9982

CS2-34 250 0.0041 0.0070 0.9955

350 0.0039 0.0067 0.9949

450 0.0031 0.0059 0.9932

CS2-35 250 0.0036 0.0057 0.9942

350 0.0033 0.0052 0.9953

450 0.0032 0.0052 0.9941

CS2-36 250 0.0048 0.0069 0.9936

350 0.0043 0.0063 0.9928

450 0.0043 0.0063 0.9873

TABLE 5 The prediction results of NASA data set.

Algorithm Data set MAE RMSE Ref

Dual UPF-LSSVM B0005 0.0612 0.0659 Li et al. (Li et al., 2021)

B0006 0.0621 0.0753

B0007 0.0314 0.0333

PF-AR with CRP detection B0005 —— 0.0246 Ma et al. (Ma et al., 2021)

B0006 —— 0.0490

B0007 —— 0.0236

SADE-MESN B0005 0.0129 0.0172 Ji et al. (Ji et al., 2021)

B0006 0.0238 0.0340

B0007 0.0163 0.0214

PSO-ELM-RVM B0005 —— 0.0163 Yao et al. (Yao et al., 2022)

PSO-RF B0005 0.0100 0.0147 This work

B0006 0.0144 0.0210

B0007 0.0096 0.0147
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early stage. In contrast, a small acceleration factor c1 and a large

acceleration factor c2are required at the later search stage.

When the acceleration factor adopts a linear adjusted

acceleration factor and fixed acceleration factors (c1 = c2 =

1.5), the RMSE changes are shown in Figure 8. It can be

obtained from the figure that the linear adjusted acceleration

factor can find the optimal solution more quickly. Therefore, the

linear adjusted acceleration factor can strengthen the

optimization efficiency and reduce the iteration count to

reduce the calculation cost.

FIGURE 16
Prediction results comparison of NASA data set when prediction starting point is 80.
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3.3 Performance evaluation tools

Three metrics are used in this work to evaluate the accuracy

of PSO-RF model-generated predictions.

(1) Mean Absolute Error (MAE)

The MAE is the mean of absolute errors between predicted

and observed values. It is defined by Eq 9: The smaller the MAE

values, the more accurate the prediction result.

MAE � 1
n
∑n
i�1

∣∣∣∣yi − y
∧
i

∣∣∣∣ (9)

where n is the number of predicted samples,yi is the

experimental values andyi
∧

is the predicted values.

(2) RMSE

The RMSE is used to describe the difference between

prediction and observation value. RMSE is similar to MAE.

But it punishes a greater absolute value by giving more weight

than MAE. The variance of individual errors becomes more

prominent with the increase in the difference between MAE and

RMSE. RMSE is defined as

RMSE �
������������
1
n
∑n
i�1
(yi − y

∧
i)2√

(10)

(3) Goodness-of-fit (R2)

R2 is another indicator that measures the degree of matching

between the predicted value and the real value. The ideal R2value

of the model is 1, which indicates that the model can demonstrate

all the variations in the target class. R2 is defined as

R2 � 1 −
∑n
i�1
(yi − y

∧
i)2

∑n
i�1
(yi−)2 (11)

where n is the number of predicted samples, yi is the

experimental values, y
−

is the mean value and yi
∧

is the

predicted values.

3.4 Analysis of PSO-RF model prediction
results

The change in battery capacity directly represents the

degradation degree of the battery during the charge-discharge

cycle. Consequently, capacity can be used as an input value for

evaluating battery performance degradation to predict the RUL.

To verify the feasibility of the proposed method in the RUL

prediction of the lithium-ion battery, the battery degradation

data sets in Section 3.1 are used for testing. To verify the

effectualness of the method at different starting points, the

prediction starting points of the model are selected as 40, 60,

and 80 cycles. The cycle times of B0005, B0006, and B0007 in data

set I are all 168. After reconstructing the vector space, they are

160. The prediction starting points for data set Ⅱ are selected as

250, 350, and 450 cycles. The cycle times of CS2-33, CS2-34, CS2-

35, and CS2-36 in data set Ⅱ are all 700. After reconstructing the

vector space, they are 692.

For data set I, graphs (A), (C), and (E) in Figures 9, 10, 11

show that the PSO-RF algorithm exhibits a better convergence

FIGURE 17
Prediction results comparison of CALCE data set when
prediction starting point is 350.
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effect. The goodnesses of fit of the PSO-RF algorithm for the

three types of battery packages in the NASA data set at different

prediction starting points are all greater than 0.94. Most of the

prediction error data points fluctuate in a small range near 0, as

shown in (B), (D), and (F) in Figures 9, 10, 11. Table 3 illustrates

that as the prediction starting point moves backward, the data

used for training continues to increase. The MAE and RMSE of

the prediction results continue to decrease, but the results are not

much different. The consistency of results shows that the PSO-RF

algorithm has splendid long-term prediction accuracy. When the

prediction starting point is 80 cycles, the average MAE and

RMSE of the predicted values for the three types of battery

packages are 0.0113 and 0.0168, respectively.

Figures 12–15 show the prediction results of the PSO-RF

algorithm for data set II when the prediction starting point is 250,

350, and 450 cycles. The PSO-RF algorithm shows a good

convergence effect for all four types of battery packages.

When the prediction starting point is 450 cycles, the average

MAE and RMSE of the predicted values of the four types of

battery packages are 0.0034 and 0.0056, respectively. The rest of

the data are shown in Table 4.

3.5 Comparative analysis

In this paper, we first compared our prediction results with

the existing work by taking the NASA data set as an example, as

shown in Table 5. And we compared with random forest

algorithm and BP neural network algorithm.

3.5.1 Compare with RF algorithm
The PSO-RF algorithm is an optimized RF algorithm. The

PSO algorithm is applied to search for the optimal parameters of

the RF algorithm. Therefore, to verify the feasibility of the PSO-

RF algorithm, the RF algorithm selects general parameters for

comparison, that is, ntrees = 500, and mfeatures is the default value.

The default value of mfeatures is one-third of the total number of

features. As shown in Figure 16, the average MAE and RMSE of

the predicted values of the RF algorithm in the NASA data set are

0.0129 and 0.0180, respectively, when the prediction starting

point is 80 cycles. As shown in Figure 17, the average MAE and

RMSE of the predicted values of the RF algorithm in the CALCE

data set are 0.0039 and 0.0061, respectively, when the prediction

starting point is 450 cycles. Tables 6, 7 list the comparison results

of the prediction errors of the PSO-RF and RF algorithms. The

results show that the PSO-RF algorithm can predict the capacity

more accurately, thereby reducing the prediction error of RUL. In

addition, different battery packages have various capacity

changes during the aging process of charge and discharge.

General parameters of RF algorithms may not be able to

obtain relatively optimal solutions for different types of

battery packages. After the optimization by the PSO

algorithm, the ability of PSO-RF to find the optimal solution

is enhanced, and its adaptability to different data is improved.

3.5.2 Compared with BP neural network
The BP neural network is a multi-layer feedforward

network according to the error back propagation training.

Its fundamental idea is to minimize the average variance of

the real and expected output value of the network by the

gradient descent method. Since the BP neural network has

robust nonlinear mapping capabilities and flexible network

structures, it is used in the URL prediction of lithium-ion

batteries. As shown in Figure 16, the average MAE and RMSE

values of the predicted values of the three types of battery

packages in the NASA data set by the BP neural network are

0.0196 and 0.0258, respectively. The average MAE and RMSE

of the predicted value of the BP neural network are larger

than that of the predicted value of the PSO-RF algorithm.

Figure 17 shown that the average MAE and RMSE values of

the BP neural network for the predicted values in the CALCE

data set are 0.0088 and 0.0112. The prediction error

comparison results of PSO-RF and BP neural network are

listed in Tables 6, 7. It is demonstrated that the PSO-RF

TABLE 6 The RUL prediction results of NASA data set.

Data set Algorithm MAE RMSE R2

B0005 PSO-RF 0.0100 0.0147 0.9668

RF 0.0110 0.0159 0.9615

BP neural network 0.0161 0.0216 0.9288

B0006 PSO-RF 0.0144 0.0210 0.9440

RF 0.0175 0.0228 0.9345

BP neural network 0.0314 0.0388 0.8090

B0007 PSO-RF 0.0096 0.0147 0.9458

RF 0.0102 0.0153 0.9407

BP neural network 0.0114 0.0171 0.9260

TABLE 7 The RUL prediction results of CALCE data set.

Data set Algorithm MAE RMSE R2

CS2-33 PSO-RF 0.0030 0.0051 0.9982

RF 0.0033 0.0052 0.9981

BP neural network 0.0079 0.0103 0.9925

CS2-34 PSO-RF 0.0031 0.0059 0.9932

RF 0.0038 0.0065 0.9917

BP neural network 0.0118 0.0143 0.9604

CS2-35 PSO-RF 0.0032 0.0052 0.9941

RF 0.0036 0.0055 0.9934

BP neural network 0.0066 0.0097 0.9795

CS2-36 PSO-RF 0.0043 0.0063 0.9873

RF 0.0047 0.0070 0.9845

BP neural network 0.0087 0.0105 0.9648

Frontiers in Energy Research frontiersin.org18

Wu et al. 10.3389/fenrg.2022.937035

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.937035


algorithm showed higher accuracy. The prediction results of

MAE, RMSE, and R2in the PSO-RF algorithm are superior to

those obtained by the BP neural network.

4 Conclusion

Accurate RUL prediction is essential to ensure the

reliability and stability of lithium-ion batteries in the

application process. This paper proposes a PSO-RF

algorithm to predict the RUL, effectively solving the

problem of parameter selection in the RF algorithm. The

performance of the proposed method is validated using

original battery degradation data sets from NASA and

CALCE. The prediction results of the proposed method are

compared with the prediction results of the RF method and

the BP neural network method to verify the effectiveness of

the PSO-RF method. The comparison shows that the PSO

algorithm can optimize two parameters of the RF model. The

extracted battery capacity data are arranged according to the

number of cycles to form a capacity decay curve. Moreover,

the curve conforms to the time series and has prominent

nonlinear characteristics, which follow the characteristics of

the RF solution. The simulation experiment results show that

the PSO-RF algorithm can accurately predict the capacity of

aging batteries and has a good convergence effect. Therefore,

the algorithm is suitable for predicting the RUL.
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