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Abstract

In this paper, the problem of H∞ output-tracking control for T-S fuzzy markov jump systems(MJSs) with
imperfect premise matching is investigated. The conditional probability information between the system
and the controller is imperfectly known. Firstly, due to the influence of network-induce delay, the system
mode information can not be transmitted to the controller synchronously, thus, a discrete-time hidden
markov model(HMM) is established to describe the asynchronous phenomenon between the system and the
controller; Secondly, form the prospectively of practical applications, packet loss in two channels is taken
into consideration, which is caused by denial-of-service(DOS) attacks; Thirdly, in order to improve the data
transmission efficiency and save network bandwidth resources, a novel resilient adaptive event-triggered(AET)
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mechanism is proposed, in which the event-based threshold parameter is dynamically regulated over the
processing. Additionally, resorted the compensation principle and the lyapunov-krasovski(L-K) functions
methods, some sufficient conditions in form of liner matrix inequality(LMI) are achieved to co-guarantee the
stability and H∞ tracking property of the closed-loop system; Finally, two examples are given to verify the
effectiveness of our design mentality.

Keywords: Fuzzy markov jump systems; asynchronous H∞ control; denial-of-service attacks; resilient adaptive
event triggered mechanism; output tracking control.

1 Introduction

In practice, the analysis and synthesis of the systems become more difficult since most of complex network
systems are nonlinear. The T-S fuzzy system technology is one of the most effective methods to deal with the
problems of nonlinear systems. T-S fuzzy model is a nonlinear system described by a group of ”if-then” fuzzy
rules. Each rule represents a subsystem, and the whole fuzzy system is a linear combination of all subsystems.
It was first proposed in [1]. Based on this system, many stability and synchronization analysis methods of linear
systems can be extended to the study of nonlinear systems. In [2], the safety control problem of fuzzy interval
type-2 has been proposed. Using a random communication scheduling protocol to control the transmission from
the sensor to the controller, a mathematical model based on the compensation scheme is also constructed. The
T-S fuzzy methods have been widely researched in the complex nonlinear systems, such as bioengineer, medicine,
and many other results have been obtained in the relevant literature, see [3],[4],[5],and [6].

A MJS is a stochastic system with diversified modes. Based on a set of markov chains, the transition of
the system switches among the various modes. As a statistical analysis model, HMM was founded in the
1970s and developed in the 1980s which has become an important direction of signal procession. Its functions
are used through a conditional probability matrix between the system and the controller. The conditional
probability reflects the degree of asynchrony between the system and the controller. In[7], the stability and
H∞ performance of nonlinear MJSs with general transition probabilities (TPs) are investigated. Its TPs consist
of three situations which are known completely, known partially, and unknown completely,respectively. In [8],
an asynchronous control problem of nonlinear MJSs is investigated. The sampling data controller based on
the fuzzy quantization is designed. The stochastic stability of fuzzy nonlinear MJSs is guaranteed effectively.
There are also many other results on HMM [9]. For another example, [10] considered a finite-time asynchronous
H∞ fault tolerant control for a nonlinear HMM. In [11], the stability problems of both continuous-time and
discrete-time linear MJSs with partly unknown transition probabilities are investigated. In [12], the finite time
robust stability of MJSs with partially known transition rate is investigated. The robust stability conditions are
derived on account of the lyapunov stability theory and LMI technique. In [13], the problem of output feedback
sliding mode control for uncertain discrete-time interval type-2 (IT2) fuzzy Markov jump systems (MJSs) with
the preview target signal is investigated. The output of the original system can track the target signal better
under the designed preview controller.

Generally, communication network systems may suffer from malicious attacks inevitably , which can damage
the stability and the transmission performance of the network system. Thus, the scholars have conducted more
in-depth research on the security problems of network from the perspective of control theory. In general, common
attacks in network control systems(NCSs) include the DOS attacks and deception attacks. The destructiveness
of the deception attacks is mainly reflected in changing the data reliability, while DOS attacks mainly hinder
the data transmission. According to the past experience, DOS attacks are more possible to occur in NCSs.
Generally speaking, the description of the DOS attacks process in a NCS can be described by two types of
random process: markov chain and Bernoulli distribution variable. In [14], an asynchronous AET control for
IT-2 fuzzy NCSs subject to the aperiodic DOS attacks is studied. In [14], two resilient AETMs are applied
to the output of the sensor and the controller independently to resist the affect of aperiodic DOS attacks. In
[15], the problem of designing resilient dispersion sampling data filters for linear interconnected systems under
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DOS attacks is investigated. A method based on the piecewise L-K functions is proposed to determine filter
parameters and sample data communication schemes.

As an emerging communication mechanism, event triggered strategy (ETS) has attracted wide attention because
of its excellence in decreasing the network communication bandwidths [16], [17], [18]. The main idea of ETSs is
that the signals are sampled or transmitted only when the pre-specified event-triggered conditions are violated.
This applies that no data samples occupy the network channel during the event triggered instants. Thus, this can
save the network bandwidths resources effectively. In [19], the problem of network control for T-S fuzzy MJSs
with communication latency is studied. Based on aperiodic sampling data, a mode-dependent ETS can improve
the efficiency of data transmission greatly. In [19], an asynchronous controller based on HMM to stabilize a
fuzzy MJS with general transition probabilities is designed. However, few researchers investigates the problem
of ETS in the correlated fuzzy tracking control under DOS attacks, which is one of the initial motivations of
this paper.

In [20], based on the H∞ tracking control method, an adaptive dynamic programming (ADP) is proposed for
uncertain continuous time nonlinear MJSs. A neural network (NN) observer with the input and output of the
system is constructed. Thus, the equations of completely uncertain system and an augmented system consist
of dynamic tracking error and reference trajectory can be formulated. In [21], the tracking control problem
of nonlinear MJSs based on T-S fuzzy model with incomplete modal information is studied. Furthermore, the
designed controller can not fully control the mode which the system maintains at runtime. In this imperfect
modal information scenario, a mechanism based on HMM is improved to simulate the defect of modal asynchrony.
The main work of [22] is to solve the tracking control problem of the fuzzy MJSs. Additionally, the impact of
both disturbance and uncertainty in fuzzy MJSs is also considered. In [23],[24],[25], they all assume that the
designed tracking controllers keep the same mode as the system. But actually, the mode information of the
controller and the system are not always synchronized, which is also one of the initial motivations of this paper.

This paper presents an asynchronous H∞ fuzzy tracking control method for the fuzzy MJSs with partially known
modal information. The L-K function with fuzzy basis and mode-dependent are constructed to obtain some
sufficient criteria. These criteria can ensure that the state and the tracking error of the closed-loop system
achieve a stable stochastically for a specified H∞ tracking performance. The main contributions of this paper
are summarized as follows:

1. Due to the influence of network-induce delay, the system mode information can not be transmitted to the
controller synchronously. Therefore, a discrete-time HMM is established to describe the asynchronous
phenomenon. Moreover, the conditional probability between the system and the controller is known
incompletely. Specially, the method proposed in this paper also covers the case where the condition
probability is completely known. During the process of analysing the system stability, two inequality
conditions are introduced to deal with the problem of incomplete mode information;

2. This paper considers the DOS attacks occurring in both sensor-to-controller(S-C) and controller-to-
actuator(C-A) channels. This can make the proposed method more general;

3. A novel resilient AET mechanism is proposed to relieve the network communication burden and decrease
the affect caused by DOS attacks. When DOS attacks are not activated, the triggered detectors will be
updated to save more communication resource. Moreover, the triggered threshold is both related to the
membership functions(MFs) of the system and the MFs of the controller. Moreover, the average value of
the latest transmitted data also has influence on the change of the threshold.

4. Based on the latest transmitted data and the system mode signals, an asynchronous fuzzy controller
is designed to ensure the stochastic stability of the system. Compared with [26], the advantage of this
paper is that the designed controller combines the resilient AET mechanism with the attack compensation
principle. Furthermore, in order to solve the mismatch issue between the fuzzy MJSs and the controller,
the inequality relationship of MFs is constructed to deal with this problem in this paper.
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The remainder of this paper is arranged as follows: In Section 2, an asynchronous fuzzy controller is designed
for the fuzzy MJS with AET mechanism under DOS attacks; In Section 3, some sufficient principles which can
guarantee the stochastic stability and a prescribed H∞ tracking performance index for the nonlinear system;
Two examples are listed in Section 4; Finally, some conclusions can be obtained from this paper in Section 5.

Notations: l2[0,∞) represents the square summable sequences space; ‖X‖ denotes the Euclidean norm of X ; Rn̂
represents the n̂ dimensional Euclidean space; Rm̂×n̂ denotes the m̂× n̂ real matrices; P > 0(P < 0) applies that
the matrix P is symmetric and positive(negative)-definite. YT denotes the transposition of Y; ∗ in the symmetric
matrices represents the symmetric term which are omitted. Prob{â} and E{â} represent the probability and
the mathematical expectation of â in probability statistics; diag{Y} means that Y is a block-diagonal matrix;
λ̃min(·) and λ̃max(·) denote the minimum eigenvalue and maximum eigenvalue of a real matrix, respectively.

2 Preliminaries

2.1 System dynamics

Let s be the number of the fuzzy rules. A nonlinear fuzzy MJS is described by the following IF-THEN rules:
Plant Rule i : IF κ1(k) is ιi1,κ2(k) is ιi2 ,· · · ,and κν(k) is ιiν , THEN{

η(k + 1) = Aτk,iη(k) + Bτk,iu(k) + Eτk,iω(k)

z(k) = Cτk,iη(k) +Dτk,iu(k) + Fτk,iω(k)
(1)

where i ∈ I = {1, 2, · · · , s}. κ(k) = (κ1(k), κ2(k), · · · , κν(k))T denotes the vector consisting of the premise
variables; {ιij} (j = 1, 2, · · · , ν) denotes a fuzzy set; η(k) ∈ Rn1 , u(k) ∈ Rn2 , and z(k) ∈ Rn3 represent the
state of the system, control input, and the output of the system, respectively. ω(k) ∈ Ro denotes the external
interference belongs to l2[0,∞). Aτk,i, Bτk,i, Cτk,i, Dτk,i, Eτk,i, Fτk,i are all real matrices which have been
known. τk ∈ L = {1, 2, · · · , L} represents the mode number of the system, which is used to described the
markov jump. The transition probability matrix Π = {πmn} can be described as:

Prob{τk + 1 = n|τk = m} = πmn, m ∈ L, n ∈ L

where πmn is the transition probability of the system mode τk , Thus, πmn ∈ [0, 1],and
∑L
n=1 πmn = 1.

Through the fuzzy approach, let τk = m, the system (1) can be modified as:{
η(k + 1) = Amhη(k) + Bmhu(k) + Emhω(k)

z(k) = Cmhη(k) +Dmhu(k) + Fmhω(k)
(2)

where {
hi(κ(k)) = ιi(κ(k))∑s

i=1 ιi(κ(k)

ιi(κ(k) =
∏ν
j=1 ιij(κj(k))

and

Amh =

s∑
i=1

hi(κ(k))Ami, Bmh =

s∑
i=1

hi(κ(k))Bmi, Emh =

s∑
i=1

hi(κ(k))Emi

Cmh =

s∑
i=1

hi(κ(k))Cmi, Dmh =

s∑
i=1

hi(κ(k))Dmi, Fmh =

s∑
i=1

hi(κ(k))Fmi

ιij(κj(k)) denotes the grade of MFs κj(k) in ιij . hi(κ(k)) is the normalized MF of rule i. For ∀i ∈ I, hi(κ(k)) ≥ 0
and

∑L
n=1 hi(κ(k)) = 1. For simplicity, hi will replace hi(κ(k)) in the subsequent sections.
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Remark 2.1 Both the state vector η(k) and the output vector z(k) in the system (2) consider the external
disturbance ω(k) due that the network systems will inevitably be disturbed by various external factors at any
time.

2.2 Reference model

The tracking control problem implies that the asymptotic tracking of the system should be achieved while
suppressing the interference. So as to track the expected output signal well, the following steady reference
system is selected by this paper: {

ηr(k + 1) = Arηr(k) + Brr(k)

zr(k) = Crηr(k)
(3)

where ηr(k), zr(k), r(k) are the state vector, output vector, and the bounded reference input,respectively.
Ar,Br, Cr are known real matrices with appropriate dimensions.

Remark 2.2 According to [26] and [27], the system (3) is selected as the reference model of H∞ tracking control.
What’s more, the reference system is known and stable.

2.3 Resilient AET mechanism

The main principle of AET mechanism is that the measurement output or control signal will be released through
the network if the given event-triggered conditions are violated. This paper considers a resilient AET mechanism
to regulate data transmission.

According to [27], let ξ(k) = [ηT (k), ηTr (k)]T and Tn = [tn, tn + ln) as the separate packet transmission in the
system and no attack time intervals,respectively. When the invader does not launch attacks, the first trigger
moment is k = 0, and the next event-triggered moment needs to be analyzed by the following two situations:

Given 0 ≤ ε1 ≤ ε2,W =WT > 0. There are two possible cases which we should consider:

(a) If the sampling data ξ(k) satisfies :

‖W
1
2 ε(k, kn∗)‖

2

≥ ε(k)‖W
1
2 ξ(kn)‖

2

(4)

where ε(k) = ξ(kn∗)− ξ(k), and ε(k) is the threshold function described by:

ε(k) = ε1 + (ε2 − ε1)ψ(k)e−α1‖ξ(k)− 1
T

∑T−1
t=0 ξ(kn∗−t)‖α2 (5)

(b) The sampling data ξ(k) is abandoned purposely.

When the invaders launch attacks, the above AET mechanism is unable to decrease the adverse effects of the
attacks timely. Therefore, This paper construct a new resilient AETM:

kn∗+1 ∈ {kn∗ satisfying (4)|kn∗ ∈ Tn}
⋃
{tn} (6)

Remark 2.3 For the threshold function ε(k), ψ(k) =
r−

∑r
i=1[hi(η(k))−ĥi(%(ks))]2

r
, α1 > 0, α2 > 0, T > 0 , these

parameters can adjust the threshold resiliently through ε(k)ξ(kn∗−t) = ξ(0), n∗ − t < 0 in (5). AET generator
can determine the time of transmitting data in a dynamic way. In general, it can be summarized as two situation:
(i)ξ(kn∗+1) = ξ(k); (ii) the sampling data ξ(kn∗+1) will be transmitted to the controller through the system.
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2.4 HMM-based asynchronous fuzzy controller

In consideration of the environment of exist communication networks, it is unjustified to believe that the system
has the same premise variables with the controller. As a result, the IPM method of imperfect premise variables
matching is adopted. The fuzzy controller which can describe the asynchronous phenomenon is constructed as:
Controller rule j : IF %1(k) is ψj1, %2(k) is ψj2, · · · , %g(k) is ψjg, Then

u1(k) = Kφk,ju2(k) (7)

where j ∈ I = {1, 2, · · · , s}, s denotes the number of the fuzzy rules; %k = {%1(k), %2(k), · · · , %g(k)} represents
the premise variable. {ψjι} is a fuzzy set; Kφk,j ∈ Rm×n denotes the controller gain matrix. u1(k) is the
controller input. u2(k) is the controller output. φk ∈ T = {1, 2, · · · , T} denotes the controller mode. Fig.1
depicts that the structure of the communication network with the AET mechanism and DOS attacks. The
conditional probability between the controller and the system can be expressed by the matrix Ω = δmt.
The probability of φk can replace τk with:

Reference Model
r(k)

T-S Fuzzzy system

zr(k) e(k)

z(k)

Sensor

AETM

Network

Buffer

Dos Attacks

uc(k)

Actuator

u(k)

Fuzzy

Controller

Network

ur(k)

Dos Attacks

Fig. 1. The configuration of T-S fuzzy tracking control system with the AET mechanism and
DOS attacks

Prob{φk = t|τk = m} = δmt, t ∈ T , m ∈ L

where 0 ≤ δmt ≤ 1,
∑M
t=1 δmt = 1.

This paper considers the problem that the information of matrix Ω is known incompletely. For an example,when
L = 2 and T = 3, matrix Ω may be as: [

δ11 ? ?
δ21 ? δ23

]
where ”?” represents the unknown elements. For the convenience of analyzing, divided the set T into two parts,
i.e., T = T (m)

K + T (m)
UK with: {

T (m)
K , {t : δmt is known},
T (m)
UK , {t : δmt is unknown}.

If T (m)
K 6= ∅ and T (m)

UK 6= ∅, it can be rewritten as:{
T (m)
K = {K(m)

1 , · · · ,K(m)
s1 }, 1 ≤ s1 ≤ T

T (m)
UK = {UK(m)

1 , · · · ,UK(m)
s2 }, 1 ≤ s2 ≤ T
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where K(m)
s1 are the s1th known elements with the index K(m)

s1 in the mth row of matrix Ω, and correspondingly,

UK(m)
s2 is the s2th unknown element with the index UK(m)

s2 . Then, through the fuzzy approach, let φ(k) = t, the
controller (7) can be modified as:

u1(k) = Kthu2(k) (8)

where

Kth =

s∑
j=1

ĥj(%(k))Ktj , h̄j(%(k)) =
ψj(%(k))∑s
j=1 ψj(%(k))

, ψj(%(k)) = Πg
t=1ψjt(%(k))

Similar to the previous, ψjt(%(k)) is the grade of membership %(k) in ψjt. h̄j(%(k)) denotes the normalized MFs
of rule j. For ∀j ∈ I, h̄j(%(k)) ≥ 0 and

∑s
j=1 h̄j(%(k)) = 1. For notation simplicity, h̄j stands for h̄j(%(k)) in

the subsequent sections.

Remark 2.4 Note that the fuzzy controller in (8) is different from the controller in the system (2). The HMM
based fuzzy controller emphasizes the mismatch of the premise variables between the controller and the system.
The controller in (8) also emphasizes the asynchronous phenomenon between the controller and the system.
Unlike [28] emphasizes that the system transition probability matrix is incompletely known, this paper is focus
on the partially unknown conditional probability matrix between the controller and the system.

2.5 DOS attacks

Considering the random data packets missing caused by DOS attacks. Two variables which obey the Bernoulli
distribution θ1(k), θ2(k) ∈ {0, 1} are selected to describe the phenomenon of data missing in the two channels:
S-C and C-A. If either of θ1(k) = 0 and θ2(k) = 0 holds, the packet is lost. As a result, the controller input and
the actuator output can be described as follows:{

u2(k) = θ1(k)(η(k)− ηr(k))

ue(k) = θ2(k)u1(k)
(9)

where ue(k) denotes the output of the controller under DOS attacks. Then we define υ(k) = θ1(k)θ2(k). It is
obvious that υ(k) = 1 only when θ1(k) = θ2(k) = 1, which implies that the data transmit successfully. There
are the following probability expressions for υ(k):{

Prob{υ(k) = 1} = E{υ(k)} = E{υ2(k)} = γ

Prob{υ(k) = 0} = 1− γ

where γ represents the packet arriving rate.
From (8) and (9), we can obtain:

ue(k) = υ(k)Kth(η(k)− ηr(k)) (10)

In order to compensate the lost data packets due to the DOS attack, the actuator will always be the current
output if the controller is not renovated successfully. Hence,the ultimate controller can be designed as follows:

u(k) = υ(k)ue(kn∗) + (1− υ(k))u(k − 1) (11)

Remark 2.5 The cyber attacks are inevitable in network control systems. Among many attacks, DOS attacks
are considered to be more possible to occur. In the course of engineering practice, attacks launched by invader
are not always be successful because of the existence of safety protection from the protection agency. Thus,
under these circumstances, attacks occur in a random fashion. Therefore, two Bernoulli variables are used to
describe the packet loss phenomenon caused by DOS attacks in the two channels: S-C and C-A. The product
of the two variables is selected as the arrival rate of the actual packet. It is important to note that: when
θi(k)(i = 1, 2) = 0, DOS attacks is active, data packets are lost. When θi(k)(i = 1, 2) 6= 0, DOS attacks is silent,
data packets can be transmitted successfully. It is necessary to point out that the duration and the frequency
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of the DOS attack. sn denotes the start instant of the DOS attack becomes sleeping at the nth time and ln
denotes the ending instant of the DOS attack sleeps at the nth time. Let cn = ln − sn. Then, ln = cn + sn.
cn represents the duration of the nth time sleeping. Let bn = sn+1 − ln. bn denotes the duration of the DOS
attack. The following inequality is true:

0 < s0 < s1 < l1 < s2 < l2 < · · · < ln

and the frequency of its attacks satisfies: {
rmin ≤ infn∈N{cn}
fmax ≥ supn∈N{bn−1}

Remark 2.6 Refers to [27], this paper designs the controllers (11) which adopts the compensation principle.
Specifically, if DOS attacks are active, that is υ(k) = 0, the event triggers will no longer act on. At this time,
the output of the present controller will be replaced by the output of the last moment. If DOS attacks are silent,
that is υ(k) = 1, the output of the controller will be related to the start time of the event triggers.

2.6 Tracking error dynamic system

Combining (2),(3),(11),and e(k) = z(k)− zr(k).The following augmented tracking error dynamic system can be
obtained: {

ζ(k + 1) = Āmthζ(k) + B̄mthε(k) + Ēmhω̄(k)

e(k) = C̄mthζ(k) + D̄mthε(k) + F̄mhω(k)
(12)

where

ζ(k) = [ηT (k) ηTr (k) uT (k − 1)]T , ω̄(k) = [ωT (k) rT (k)]T ,

ῡ(k) = υ(k)− γ, ε(k) = ξ(kn∗)− ξ(k), ξ = [ηT (k) ηTr (k)]T

Ḡmth = Ḡ1mth + υ(k)Ḡ2mth, Ēmh =

s∑
i=1

hiĒmi, F̄mh =

s∑
i=1

hiF̄mi,

Ḡ1mth =

s∑
i=1

s∑
j=1

hih̄jḠ1mtij , Ḡ2mth =

s∑
i=1

s∑
j=1

hih̄jḠ2mtij

with G = A , B , C , D, where

Ā1mtij =

Ami + γBmiKtj −γBmiKtj Ktj − γBmiKtj

0 Ar 0
γKtj −γKtj Ktj − γKtj

 , Ā2mtij =

BmiKtj −BmiKtj −BmiKtj

0 0 0
Ktj −Ktj −Ktj

 ,
B̄1mtij =

γBmiKtj −γBmiKtj

0 0
γKtj −γKtj

 , B̄2mtij =

BmiKtj −BmiKtj

0 0
Ktj −Ktj

 ,
C̄1mtij =

[
Cmi +DmiKtj −Cr − γDmiKtj DmiKtj − γDmiKtj

]
, C̄2mtij =

[
0 −DmiKtj −DmiKtj

]
,

D̄1mtij =
[
γDmiKtj −γDmiKtj

]
, D̄2mtij =

[
DmiKtj −DmiKtj

]
,

Ēmi =

Emi 0
0 Br
0 0

 , F̄mi =
[
Fmi 0

]
.

In this paper, a fuzzy tracking controller (11) which can ensure the stochastic stability of the system(12) and
satisfy the given H∞ tracking performance level need us to design. The following definitions and some related
lemmas are necessary to explain.
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Lemma 2.1. (see [29]) Given a matrix R > 0, then the following inequality holds:

−X TR−1X ≤ −X T −X +R

where X is a matrix with appropriate dimensions.

Definition 2.1. (see [30])The system (12) is considered to achieve a stochastic stability when ω̄ = 0, if for an
arbitrary zero initial condition ζ(0),τ0 ∈ L,φ0 ∈ T , there has a inequality holds:

E{
∞∑
k=0

‖ζ(k)‖2|ζ(0), τ0, φ0} <∞

The aim of this work is to construct an HMM-based asynchronous fuzzy controller in the form of (7) such that
the system (12) is stochastically stable and meets an H∞ tracking performance index ρ, i.e. for all nonzero
ω̄(k) ∈ l2[0,∞) and under zero initial state, the following inequality holds:

E{
∞∑
k=0

eT (k)e(k)} ≤ ρ2
∞∑
k=0

ω̄T (k)ω(k).

3 Main Results

This section will firstly analyze the stochastic stability and H∞ tracking performance for the augment system(12)
with AETM and DOS attacks.

Theorem 3.1. For the given scalars `j, ρ > 0, ε2(ε2 < 1), the controller gain matrices Ktj(j ∈ I), and
γ ∈ [0, 1], the system (12) can achieve a stochastic stability and satisfy the prescribed H∞ tracking performance
index ρ, if h̄j − `jhj ≥ 0, and some real matrices Pmi = PTmi > 0, Qmti = QTmti > 0,W = WT > 0,Υi = ΥT

i

with appropriate dimensions such that for ∀m ∈ L, ∀t ∈ M,and ∀f, i ∈ I, the inequalities hold:∑
t∈T (m)
K

δmtQmti < Pmi,
∑

t∈T (m)
UK

δmtQmti < Pmi (13)

Θmtfij −Υi < 0 (14)

`iΘmtfij + (1− `i)Υi < 0 (15)

`jΘmtfij + `iΘmtfji + (1− `j)Υi + (1− `i)Υj < 0, i < j (16)

where

Θmtfij =


−Qmti + ε2I

T
1 WI1 ε2I

T
1 W 0 C̃Tmtij ΦT15

0 (ε2 − 1)W 0 D̃T
mtij ΦT25

0 0 −ρ2I F̃Tmi 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −Φ55



Φ15 =


√
πm1P̃1f Ãmtij√
πm2P̃2f Ãmtij
· · ·√

πmLP̃Lf Ãmtij

 , Φ25 =


√
πm1P̃1f B̃mtij√
πm2P̃2f B̃mtij
· · ·√

πmLP̃Lf B̃mtij

 , Φ55 =


P̃1f

P̃2f

· · ·
P̃Lf

 ,
C̃mtij =

[
C̄1mtij

γ̄C̄2mtij

]
, D̃mtij =

[
D̄1mtij

γ̄D̄2mtij

]
, F̃mi =

[
F̄mi

0

]
, Ãmtij =

[
Ā1mtij

γ̄Ā2mtij

]
,

B̃mtij =

[
B̄1mtij

γ̄B̄2mtij

]
.

with γ̄ =
√

(γ(1− γ)), I1 = [I 0].
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Proof. Select the Lyapunov functional candidate for the system (12) as follows:

V (k) = ζT (k)Pmhζ(k) (17)

where Pmh =
∑s
i=1 hiPmi,Pmi = diag{P1mi,P2mi,P3mi}.

When ω̄(k) ≡ 0.From (17), we can calculate the difference and mathematical expectation of V (k):

E{4V (k)} = E{ζT (k + 1)Pnh+ζ(k + 1)− ζT (k)Pmhζ(k)}

= E{ζT1 (k)

M∑
t=1

δmtΩ
T
mthP̃mh+Ωmthζ1(k)− ζT (k)Pmhζ(k)}

(18)

where

Ωmth =
[
Āmth B̄mth

]
, ζ1(k) =

[
ζ(k)
ε(k)

]
, P̃mh+ = diag{Pmh+ ,Pmh+}.

with Pmh+ =
∑L
n=1 πmnPnh+ , Pnh+ =

∑r
f=1 h

+
f Pnf , h+ = hk+1, Ωmth =

∑s
i=1

∑s
j=1 hih̄jΩmtij .

From the event-triggered condition (6), we can obtain :

εT (k)Wε(k) < ε2[ξ(k) + ε(k))TW(ξ(k) + ε(k)] (19)

Then, we can get:

E{4V (k)} <E{ζT1 (k)

M∑
t=1

δmtΩ
T
mthP̃mh+Ωmthζ1(k)} − ζT (k)Pmhζ(k)

+ε2[ξ(k) + ε(k))TW(ξ(k) + ε(k)]− εT (k)Wε(k)

=E{ζT1 (k)

M∑
t=1

δmtΩ
T
mthP̃mh+Ωmthζ1(k)}+ ζT1 (k)Wmhζ1(k) (20)

where

Wmh =

[
−Pmh + ε2I

T
1 WI1 ε2I

T
1 W

∗ (ε2 − 1)W

]
By calculating the mathematical expectation of the first term of (20), we can get:

E{4V (k)(ζ(k), τ(k))|ζ(k), τ(k), φ(k)} = ζT1 (k)Θ1mthζ1(k) (21)

where

Θ1mth =

[
ÃTmthP̃mh+Ãmth − Pmh + ε2I

T
1 WI1 ÃTmthP̃mh+B̃mth + ε2I

T
1 W

∗ B̃TmthP̃mh+B̃mth + (ε2 − 1)W

]
with Ãmth =

∑s
i=1

∑s
j=1 hiĥjÃmtij , B̃mth =

∑s
i=1

∑s
j=1 hih̄jB̃mtij .

In order to make full use of MFs information and decrease the conservativeness, the matrices Υi are introduced.
Based on the property of MFs, i.e.,

∑s
i=1 hi −

∑s
j=1 h̄j = 0. Then, according to [31], [32], [33], [34], combining

(14),(15),(16) with the system (12) and considering h̄j − `jhj ≥ 0,we obtain:

s∑
i=1

s∑
j=1

hi(hj − ĥj)Υi =

s∑
i=1

hi(

s∑
j=1

hj −
s∑
j=1

h̄j)Υi = 0 (22)
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Then , the following relationship is obtained:

Θmth =

s∑
f=1

s∑
i=1

s∑
j=1

h+
f hih̄jΘmtfij

=

s∑
f=1

s∑
i=1

s∑
j=1

h+
f hih̄jΘmtfij +

s∑
f=1

s∑
i=1

s∑
j=1

h+
f hi(hj − h̄j + `jhj − `j h̄j)Υi

=

s∑
f=1

h+
f [

s∑
i=1

h2
i (`jΘmtfij + (1− `j)Υi) +

s∑
i=1

s∑
j=1

hi(h̄j − `jhj)(Θmtfij −Υi)

+

s−1∑
i=1

s∑
j=1

hihj(`jΘmtfij + `iΘmtfij + (1− `j)Υi + (1− `i)Υj)] < 0

where

Θmth =


−Qmth + ε2I

T
1 WI1 ε2I

T
1 W 0 C̃Tmth Φ̃T15

0 (ε2 − 1)W 0 D̃T
mth Φ̃T25

0 0 −ρ2I F̃Tmh 0
∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −Φ̃55



Φ̃15 =


√
πm1P̃1h+Ãmth√
πm2P̃2h+Ãmth

· · ·√
πmLP̃Lh+Ãmth

 , Φ25 =


√
πm1P̃1h+B̃mth√
πm2P̃2h+B̃mth

· · ·√
πmLP̃Lh+B̃mth

 , Φ55 =


P̃1h+

P̃2h+

· · ·
P̃Lh+

 .
Base on the complement of Schur and Θmth < 0 , we can obtain that:

Θ2mth = W̃mh + Ω̃mth < 0 (23)

where

W̃mh =

[
−Qmh + ε2I

T
1 WI1 ε2I

T
1 W

∗ (ε2 − 1)W

]
,

Ω̃mth =

[
ÃTmthP̃mh+Ãmth ÃTmthP̃mh+B̃mth

∗ B̃TmthP̃mh+B̃mth

]
.

and
ΠT

1mthP̃mh+Π1mth + ΠT
2mthΠ2mth + Π3mth < 0 (24)

where

Π1mth =
[
Ãmth B̃mth 0

]
, Π2mth =

[
C̃mth D̃mth F̃mh

]
,

Π3mth =

−Qmh + ε2I
T
1 WI1 ε2I

T
1 W 0

∗ (ε2 − 1)W 0
0 0 −ρ2I


with

C̃mth =

s∑
i=1

s∑
j=1

hih̄jC̃mtij , D̃mth =

s∑
i=1

s∑
j=1

hih̄jD̃mtij , F̃mh =

s∑
i=1

hiF̃mi.

From the condition(13),we can get:∑
t∈T (m)
K

δmtQmth < Pmh,
∑

t∈T (m)
UK

δmtQmth < Pmh (25)
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Combining (23),(24) and (25),it can be derived that:∑
t∈M

δmtΩ̃mth +Wmh < Ω̃mth + W̃mh = Θ2mth < 0 (26)

and ∑
t∈M

δmt[Π
T
1mthP̃mh+Π1mth + ΠT

2mthΠ2mth + Π̃3mth] < 0 (27)

where

Π̃3mth =

−Pmh + ε2I
T
1 WI1 ε2I

T
1 W 0

∗ (ε2 − 1)W 0
0 0 −ρ2I


According to (26),it yields

E{4V (k)(ζ(k), τ(k))|ζ(k), τ(k), φ(k)} =E{ζT (k + 1)Pnh+ζ(k + 1)− ζT (k)Pmhζ(k)}

<− λ̃min[−
∑
t∈M

δmtΩ̃mth −Wmh]ζT1 (k)ζ1(k)

<− σζT1 (k)ζ1(k) < 0

where σ = inf{λ̃min(−
∑
t∈M δmtΩ̃mth −Wmh)}. Then, it can be concluded that:

E{
∞∑
k=0

‖ζ(k)‖2|ζ(0), τ0, φ0} < 1
σ
E{V (0)− V (∞)} < 1

σ
E{V (0)} <∞

Up to now, we can obtain that the system (12) has achieved a stochastic stability. The next work is that the
H∞ performance for the tracking control system (27) should be considered:

E{
∞∑
k=0

eT (k)e(k)− ρ2ω̄T (k)ω̄(k)}

< E{
∞∑
k=0

4V (k) + eT (k)e(k)− ρ2ω̄T (k)ω̄(k)}

<

∞∑
k=0

ζT2 (k)
∑
t∈M

δmt(Π
T
1mthP̃mh+Π1mth + ΠT

2mthΠ2mth + Π̃3mth)ζ2(k)

< 0 (28)

where ζT2 (k) = [ζT1 (k) ω̄T (k)]T . Thus, i.e.

∞∑
k=0

E{eT (k)e(k)} < ρ2ω̄T (k)ω̄(k)

The above formula explains that for ∀ω̄(t) ∈ l2[0,∞), the system (12) satisfies the prescribed H∞ tracking
performance ρ. Thus the proof is completed.

Remark 3.1 In system (12), h̄j(%(k)) 6= hi(κ(k)). Thus, we can not use the conventional parallel distribute
compensation(PDC) strategy. Therefore, this paper adopted an IPM approach to solve the mismatch problems.
Due to

∑s
i=1

∑s
j=1 hihj = 1 and

∑s
i=1

∑s
j=1 hih̄j = 1, those properties of the membership function can bring

less conservative stability.

In Theorem 3.1, some sufficient criteria which can guarantee the stochastic stability and achieve the given H∞
performance for the tracking control system (12) are derived. However, based on the theory analysis results in
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Theorem 3.1, the controller gains Ktj can not be parameterized directly because of the presence of nonlinear
terms such as P̃Lf Ãmtij . For the purpose of using the method of LMIs to solve the problem, the results of the
controller gains are calculated in the following theorem.

Theorem 3.2. For some given scalars `j, ρ > 0, ε2(ε2 < 1), and γ ∈ [0, 1], the controller gain matrices Kt,j,
the system (12) can achieve a stochastic stability and satisfy the prescribed H∞ tracking performance ρ, if there
exist the inequality h̄j − `jhj ≥ 0, and matrices P̂mi = P̂Tmi > 0,Q̂mti = Q̂Tmti > 0,W = WT > 0,Υ̂i = Υ̂T

i

,Λt,K̂t,j with appropriate dimensions such that for p, q = 1, 2, ∀m ∈ L, t ∈ M, and ∀f ∈ I, i, j ∈ I ,the
inequalities hold:

[
−P̂mi P(p)

mi

∗ −Q(q)
mi

]
< 0 (29)

Θ̂mtfij − Υ̂i < 0 (30)

`iΘ̂mtfii + (1− `i)Υ̂i < 0 (31)

`jΘ̂mtfij + `iΘ̂mtfji + (1− `j)Υ̂i + (1− `i)Υ̂j < 0, i < j (32)

Qmti − ε2I
T
1 WI1 > 0 (33)

where



P(1)
mi , P̂mi[

√
δ
mK(m)

1

√
δ
mK(m)

2

· · ·
√
δ
mK(m)

s1

]

Q(1)
mi , diag{Q̂

mK(m)
1 i

, Q̂
mK(m)

2 i
, · · · , Q̂

mK(m)
s1

i
}

P(2)
mi , P̂mi[1mUK(m)

1

1
mUK(m)

2

· · · 1
mUK(m)

s2

]

Q(2)
mi , diag{Q̂

mUK(m)
1 i

, Q̂
mUK(m)

2 i
, · · · , Q̂

mUK(m)
s2

i
}

Θ̂mtfij =


Φ̂11 Φ̂12 0 ĈTmtij Φ̂T15

0 Φ̂22 0 D̂T
mtij Φ̂T25

0 0 −ρ2I F̃Tmi 0
∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −Φ̂55
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Φ̂11 = Q̃mti − ΛT1t − Λ1t, Q̃mti = (Qmti − ε2I
T
1 WI1)−1,

Φ̂12 = ΛT1t + Λ2t − Ŵ , Ŵ = (ε2I
T
1 W)−1,

Φ̂22 = (W̃ − ΛT2t − Λ2t), Λ1t = diag{Λt Λt Λt},

Λ2t = diag{Λt Λt}, W̃ = [(1− ε2)W]−1

Φ̂15 =


√
πm1Âmtij√
πm2Âmtij
· · ·√

πmLÂmtij

 , Φ̂25 =


√
πm1B̂mtij√
πm2B̂mtij
· · ·√

πmLB̂mtij

 , Φ̂55 =


P̂1f

P̂2f

· · ·
P̂Lf


Âmtij =

[
Â1mtij

γ̄Â2mtij

]
, B̂mtij =

[
B̂1mtij

γ̄B̂2mtij

]
, Ĉmtij =

[
Ĉ1mtij

γ̄Ĉ2mtij

]
, D̂mtij =

[
D̂1mtij

γ̄D̂2mtij

]
,

Â1mtij =

AmiΛt + γBmiK̂tj −γBmiK̂tj K̂tj − γBmiK̂tj

0 ArΛt 0

γK̂tj −γK̂tj K̂tj − γKtj

 ,
Â2mtij =

BmiK̂tj −BmiK̂tj −BmiK̂tj

0 0 0

K̂tj −K̂tj −K̂tj

 ,
B̂1mtij =

γBmiK̂tj −γBmiK̂tj

0 0

γK̂tj −γK̂tj

 , B̂2mtij =

BmiK̂tj −BmiK̂tj

0 0

K̂tj −K̂tj

 ,
Ĉ1mtij =

[
CmiΛt +DmiK̂tj −CrΛt − γDmiK̂tj DmiK̂tj − γDmiK̂tj

]
,

Ĉ2mtij =
[
0 −DmiK̂tj −DmiK̂tj

]
, D̂1mtij =

[
γDmiK̂tj −γDmiK̂tj

]
,

D̂2mtij =
[
DmiK̂tj −DmiK̂tj

]
, P̂Lf = P̃−1

Lf , Υ̂i = diag{Υ1i,Υ2i, 0}.

Moreover, the H∞ fuzzy controller gains in(8)can be obtained by:

Ktj = K̂tjΛ
−1
t

.

Proof. Due to P̂mi = P̂Tmi > 0, Q̂mti = Q̂Tmti > 0, let P̂mi = P−1
mi , Q̂mti = Q−1

mti.
Considering the Schur complement and (29), it can be inferred that :

∑
t∈T (m)
K

δmtP̂miQ̂
−1
mtiP̂

T
mi < P̂mi∑

t∈T (m)
UK

δmtP̂miQ̂
−1
mtiP̂

T
mi < P̂mi

(34)

Pre and post-multiplying (34) by P̂−1
mi , one can obtain (13). This means that (29) is equivalent to (13).

Then, pre and post-multiplying (30) by diag{I, I, I, I, Φ̂−1
55 } and its transpose, respectively. It leads to:

Θ̂
(1)
mtfij − Υ̂i < 0 (35)

where

Θ̂
(1)
mtfij =


Φ̂11 Φ̂12 0 ĈTmtij Φ̄T15

0 Φ̂22 0 D̂T
mtij Φ̄T25

0 0 −ρ2I F̃Tmi 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −Φ55
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with

Φ̄15 =


√
πm1P̃1f Âmtij√
πm2P̃2f Âmtij
· · ·√

πmLP̃Lf Âmtij

 , Φ̄25 =


√
πm1P̃1f B̂mtij√
πm2P̃2f B̂mtij
· · ·√

πmLP̃Lf B̂mtij

 .
Notice that (Qmti − ε2I

T
1 WI1) > 0, hence the following inequality holds:

[(Qmti − ε2I
T
1 WI1)−1 − ΛT1t](Qmti − ε2I

T
1 WI1)[(Qmti − ε2I

T
1 WI1)−1 − Λ1t] > 0

According to the Lemma 2.1, it can lead to:

− ΛT1t(Qmti − ε2I
T
1 WI1)Λ1t < (Qmti − ε2I

T
1 WI1)−1 − ΛT1t − Λ1t (36)

Similarly, we can get:

− ΛT2t[(1− ε2)W]Λ2t < [(1− ε2)W]−1 − ΛT2t − Λ2t ,

ΛT1tε2I
T
1 WΛ2t > Λ1t + Λ2t − (ε2I

T
1 W)−1

(37)

From (35),(36) ,(37), one can obtain:

Θ̂
(2)
mtfij − Υ̂i < 0 (38)

where

Θ̂
(2)
mtfij =


−ΛT1t(Qmti − ε2I

T
1 WI1)Λ1t ΛT1tε2I

T
1 WΛ2t 0 ĈTmtij Φ̄T15

0 ΛT2t[(ε2 − 1)W]Λ2t 0 D̂T
mtij Φ̄T25

0 0 −ρ2I F̃Tmi 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −Φ55


Multiplying both side of (38) with the matrix diag{Λ−T1t ,Λ

−T
2t , I, I, I} and its transpose, respectively. (14) can

be obtained. This indicates that (14) can be deduced from (30).

Using the similar method, it can be obtained that (15),(16) is equivalent to (31) ,(32). Up to now, the proof is
completed.
Remark 3.2 It is worth emphasizing that the method adopted in this paper can calculate the matrix K̂tj

through the technique of LMI. Then, we can obtain the controller gains quickly, which greatly decrease the
complexity of the computation. In this paper, the information of the conditional probability between the system
and the controller is partially unknown. However, the method proposed in Section 3 is also applicable to the
situation where the conditional probability is completely known. The specific description is summarized in
Corollary 3.1.

Corollary 3.1. For some given scalars `j, ρ > 0, ε2(ε2 < 1), and γ ∈ [0, 1], the controller gain matrices Kt,j,
the system (12) can achieve a stochastic stability and satisfy the prescribed H∞ tracking performance ρ, if there
exist the inequality h̄j − `jhj ≥ 0, and matrices P̂mi = P̂Tmi > 0,Q̂mti = Q̂Tmti > 0,W = WT > 0,Υ̂i = Υ̂T

i

,Λt,K̂t,j with appropriate dimensions such that for p, q = 1, 2, ∀m ∈ L, t ∈ M, and ∀f ∈ I, i, j ∈ I , the
inequalities hold: [

−P̂mi Pmi
∗ −Qmi

]
< 0

Θ̂mtfij − Υ̂i < 0

`iΘ̂mtfii + (1− `i)Υ̂i < 0

`jΘ̂mtfij + `iΘ̂mtfji + (1− `j)Υ̂i + (1− `i)Υ̂j < 0, i < j
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Qmti − ε2I
T
1 WI1 > 0

where {
Pmi , P̂mi[

√
δm1

√
δm2 · · ·

√
δmT ]

Qmi , diag{Q̂m1i, Q̂m2i, · · · , Q̂mTi}

Moreover, the H∞ fuzzy controller gains in(8)can be obtained by:

Ktj = K̂tjΛ
−1
t

and the definition of other parameters are the same as those of Theorem 3.2.

4 Examples

To illustrate the effectiveness of the proposed methods, this paper cites two simulation examples in this section.
Example 1(numerical example): For the system (2), three operational modes are selected. The corresponding
three-dimensional transition probability matrix is :

Π33 =

0.2 0.5 0.3
0.1 0.6 0.3
0.2 0.3 0.5


The condition probability matrices are given except that some elements is partially unknown. Here lists two
cases: partially known (Theorem 3.2) and completely known (Corollary 3.1) , respectively (T = 3). For the
following simulation, the two cases are named as Case 1 and Case 2 whose corresponding condition probability
matrices are as follows:

Ω(1) =

0.3 0.3 0.4
0.2 0.1 0.7
0.5 0.4 0.1

 , Ω(2) =

0.3 ? ?
? ? 0.7

0.5 ? ?


Consider a 2-rules fuzzy MJS (1):
Fuzzy Rule 1 :IF η1(k) is −mτk , then{

η(k + 1) = Aτk,1η(k) + Bτk,1u(k) + Eτk,1ω(k)

z(k) = Cτk,1η(k) +Dτk,1u(k) + Fτk,1ω(k)
(39)

Fuzzy Rule 2 :IF η2(k) is mτk , then{
η(k + 1) = Aτk,2η(k) + Bτk,2u(k) + Eτk,2ω(k)

z(k) = Cτk,2η(k) +Dτk,2u(k) + Fτk,2ω(k)
(40)

Let m1 = m2 = 0.5 and the values of the coefficient matrix are as follows:

A11 = A12 =

[
0.15 0.01
0.01 0

]
, A21 = A22 =

[
0.25 0.02
0.03 0

]
, A31 = A32 =

[
0.45 0.03
0.05 0

]
,

B11 = B12 =

[
0.11
0.05

]
, B21 = B22 =

[
0.21
0.06

]
, B31 = B32 =

[
0.41
0.08

]
,

E11 = E12 =

[
0.15
0.05

]
, E21 = E22 =

[
0.25
0.06

]
, E31 = E32 =

[
0.45
0.08

]
,

C11 = C12 =
[
0 0.05

]
, C21 = C22 =

[
0 0.01

]
, C31 = C32 =

[
0 0.08

]
,

D11 = D12 = 0 , D21 = D22 = 0.1 , D31 = D32 = 0.5 ,

F11 = F12 = 0 , F21 = F22 = 0.2 , F31 = F32 = 0.5.
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The reference model is given by:

Ar =

[
−0.1 0.1
−0.1 0.005

]
, Br =

[
0.1
0.1

]
, Cr =

[
0.2
0.3

]
.

What’s more, the MFs of the system and the controller are selected as:h1(η1(k)) = 0.2(1− η1(k)
mτk

), h2(η1(k)) = 1− h1(η1(k))

h̃1(ηr1(k)) = 0.2(1− ηr1(k)
mτk

), h̃2(ηr1(k)) = 1− ĥ1(ηr1(k))

The external disturbance is selected as ω = 0.3sin(0.9k) , and the reference input are assumed as r(k) =
0.1cos(0.8k). The weight coefficients are given as `1 = `2 = 0.5. The initial value of the state vector are selected
as η(0) = [0.05 − 0.01]T , ηr(0) = [0.02 0.01]T . Both the system mode and the controller mode evolution is
shown in Fig.2. Fig.3 shows the output trajectories of system (2) and system (3) with above parameters but
without a controller. It can be seen that the system is not stable. When the designed controllers are added
to the system, from Fig.5, we can see that the state of the two fuzzy rules achieves a stochastic stability. Fig.
6 depicts the state trajectories of ζ(k) in system (12). It can be obtained that the system (12) achieves the
stochastic stability with the controllers in Theorem 3.2 around 15th second. For the above two cases, Figs.7-10
depict both the trajectories of the system output and the tracking errors, respectively. From these figures, it
can be obtained that the system output z(k) can track the reference output zr(k) perfectly with the constructed
controllers both in two cases. What’s more, when the condition probability information is unknown, the overall
tracking effect isn’t inferior.Fig.11 depicts the time instants of successful DOS attacks. Fig.12 shows the release
instants and release intervals of AET generator. In Fig.12, the triggered times are 105. Through computation,
there are 11.3% of the sampled signals be transmitted to the controller. Additionally, it can be obtained that
the maximal release interval is 1.100 and the average release interval is 0.432.
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Fig. 2. Mode evolution of the system (2) and the controller (11)

For the above two cases, let γ be the packet arriving rate and assign it a value 0.75. The controller gains can
be obtained from Corollary 3.1 and Theorem 3.2, respectively. Firstly, according to the solution of LMIs
(30)-(32) and Theorem 3.2. Meanwhile, the desired fuzzy controller gains with partially known condition
probability can be derived as follows:

K11 =
[
0.1809 −9.6007

]
, K12 =

[
−0.0267 3.6227

]
, K21 =

[
−0.0827 3.6876

]
,

K22 =
[
−0.1161 2.0200

]
, K31 =

[
−0.0105 3.8608

]
, K32 =

[
−0.0098 4.0270

]
.
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Fig. 3. The output trajectories of the system (2) and system (3) without a controller
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Fig. 4. The state trajectories of the system (2) without a controller
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Fig. 5. The state trajectories of the system (2) with controllers in Theorem 3.2

Then, according to the solution to LMIs in Corollary 3.1, the corresponding fuzzy controller gains when the
condition probability matrix Ω is completely known can be derived as follows:

K11 =
[
0.0908 −8.7006

]
, K12 =

[
−0.0168 1.8227

]
, K21 =

[
−0.0426 1.8976

]
,

K22 =
[
−0.0171 1.0101

]
, K31 =

[
−0.0095 1.9304

]
, K32 =

[
−0.0049 2.0398

]
.
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Fig. 6. The state trajectories of the system (12) with controllers in Theorem 3.2
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Fig. 7. (Case1) The output trajectories of the system (2) and system (3)
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Fig. 8. (Case1) The tracking error between the system (2) and system (3)

Then, when DOS attacks occurs, we will investigate that the value of the packet arriving rate γ how affects the
optimal H∞ tracking performance ρ∗.
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Fig. 9. (Case2) The output trajectories of the system (2) and system (3)
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Fig. 10. (Case2) The tracking error between the system (2) and system (3)
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Fig. 11. The time instants of successful Dos attacks with γ = 0.75

Let β be the incidence rate of DOS attacks, we can obtain that β and γ have counter proportional relationships.
Hence, Let β takes different values, the optimal tracking performance ρ∗ obtained by Theorem 3.2 in two cases
are listed in Table 1.
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Fig. 12. The AET release instants and release intervals in example 1
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Fig. 13. The state trajectories of η1(k) and η2(k) in example 2
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Fig. 14. The AET release instants and release intervals in example 2

From the table 4, Under the two cases, it can be obtained that when β takes the smaller value, ρ∗ will also
be smaller. What’s more, when β takes the same value, ρ∗ in Case 2 is relatively larger than ρ∗ of Case 1.
Additionally, it can be summarized that the stability of the network system will be destroyed by DOS attacks,
and the H∞ tracking performance will decrease when the probability of DOS attacks increases.
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Table 1. Optimal Performance ρ∗ For Different β under two cases

β ρ∗(Case1) ρ∗(Case2)

0.1 0.0015 0.00039
0.2 0.00023 0.0028
0.3 0.00098 0.0039
0.5 0.0038 0.0056
0.8 0.0049 0.0099
1 0.0098 0.0103

Example 2(practical example): Refer to [27], an example of a tunnel diode circuits model is applied in
this section to illustrate our effectiveness of proposed methods. The tunnel diode can be described as TD(k) =
0.01ςD(k) + χς3D(k), where χ ∈ [0.03, 0.05] is an unknown parameter. The state vectors are η1(k) = ςC(t) and
η2(k) = TL(k). Let Γ(k) = 0.001 + χς3D(k), then the tunnel diode circuits system can be modeled as :{

Mη1(k + 1) = Γ(k)η1(k) + η2(k)

Nη2(k + 1) = η1(k)− Sη2(k) + ω(k)
(41)

where the parameters of the system can be selected as M = 15mF ,N = 1.5H, S = 18Ω, η1(k) ∈ [−5, 5]. Then
, through the methods of the T-S fuzzy, the tunnel diode circuits system can be described as follows:

η(k + 1) =

2∑
i=1

λi(η1(k))[Amiη(k) + Bmiω(k)]

where

Am1 =

[
Γmin
C

45
2 15

]
, Am2 =

[
Γmax
C

45
2 15

]
, Bm1 =

[
1
0

]
, Bm2 =

[
1
0

]
, Γmin = 0.001, Γmax = 0.322.

and the values of other parameters are the same as in example 1, let γ = 0.65,ε1 = 0.4,ε2 = 0.6, the external
disturbance be :

ω(k) =


2.5, 0 ≤ k ≤ 5

2.5, 5 ≤ k ≤ 20

0, else

The initial states vector η(0) = [1, 0]T and ηr(0) = [0, 1]T . The state trajectories of η1(k) and η2(k) are
depicted in Fig.13. The AET instants and intervals are depicted in Fig.14. The simulated results explain that
the designed asynchronous fuzzy controller can estimate the signals of the reference output effectively under the
existence of DOS attacks [35-42].

5 Conclusion

This paper investigates an asynchronous H∞ tracking control problem for discrete-time FMJSs with a resilient
AET mechanism under the DOS attacks. Through the lyapunov functions based on the fuzzy basis and mode-
depend, some sufficient conditions which can guarantee the stochastic stability of the system are derived.
Moreover , under the condition of event-triggered, the stability of the final closed-loop system with a given
H∞ tracking performance can also have been ensured. This paper also designs an asynchronous controller which
covers two cases: partially known and fully known conditional probabilities. Finally, the effectiveness of the
proposed method is illustrated with two examples. In the end, it is hoped that the results can be extended to
other T-S FMJSs with time-varying delay, deception attacks, and DOS attacks described by the markov chains.
More AET mechanisms also encourage us to explore in the future works.
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