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Abstract 

 
This research presents a study of a dynamical system which models natural resources. Using fishes and water 

resources as the case study. In this work a model equation was used to determine the density of the resources. 

We also introduced second stage Runge Kutta method, which was used to obtain the result for harvesting 

terms  h p  from 10% to 50% producing the population of life in the pond after each harvesting. 

In this research work, the solution of a dynamic system that can model natural resources using the second 

stage Runge-Kutta method was reported. To actualize this result, a model, a first order ordinary differential 

equation and the famous Runge-Kutta second stage method is used. Harvesting terms  from 10% to 

50% is used for the iteration to demonstrate the validity of the result. The result of this study was applied to 

the population of fish in a pond, which is a renewable natural resource, with great success.  
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In line with the objectives stated at the beginning of the work, the results of this research has shown that by 

applying the second order Runge-Kutta method, the solution of a dynamical system can be obtained and 

applied to model natural resources with great success.  

 

 
Keywords: Natural resources; 2

nd
 order Runge Kutta; harvesting term; model equation. 

 

1 Introduction 
 

The sustainable use of natural resources is of utmost importance for every community. In particular, it is 

important for every given generation to plan in such a way that proper provision is made for future generations. 

The scientific understanding of resources used and appreciation for its life-supporting capacity is therefore 

essential [1]. Mathematical modeling has proved useful to inform the planning and management of strategies for 

sustainable use of natural resources [2]. Some specific topics in resource management have been studied 

intensively through many decades. In particular, mining, fisheries, forestry and water resources are among these. 

Instead of presenting a study of the latter topics, this dissertation presents a variety of cases of mathematical 

modeling in resource management. The aim is to improve the general understanding of the relevant problems 

[1]. A dynamical system is all about the evolution of something over time. To create a dynamical system, we 

simply need to decide what is the “something” that will evolve over time and what is the rule that specifies how 

that something evolves with time. In this way, a dynamical system is simply a model describing the temporal 

evolution of a system [3]. To study a dynamic system of natural resources we deploy the Runge-kutta method 

which has proven effective in solving problems of this kind [4]. Runge–Kutta method is an effective and widely 

used method for solving the initial-value problems of differential equations. Runge–Kutta method can be used to 

construct high order accurate numerical method by functions' self without needing the high order derivatives of 

functions [5-10]. The Runge-Kutta method attempts to overcome the problem of the Euler's method [5]. Amidst 

this background, our work employed the second order Runge Kutta method to establish the population of fishes 

in a pond with varying harvesting degree for a five-month period. Another objective was to develop a model for 

the population using different harvesting terms. This will pave the way for effective use if resources and 

appreciating the life support capacity of the pond. 
 

2 Preliminaries 
 

Basic terms related the modeling of natural resources using the runge kutta second stage method. 

 

2.1 “Classical second order Runge Kutta Method” 
 

A conventional one step method for the IVP which is given by 
 

( ( , ), ( ) , )y f x y y a a x b           (2.1) 

 

can be written as; 
 

1
( ( , , ) )

n n n n
y y h x y h


 

,
      (2.2) 

 

where ( , , )
n n

x y h  is called the increment function and it is given by  
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1

1 1
( , , ) ( , ) ( , )

(1 1) ! 2
n n

h h
x y h f x y f x y  


    (2.5) 

 

When     we have  

 

           
  

      
       

  

  
        

  

 
          (2.6) 

 

Summing (2.4), (2.5) and (2.6) we obtain 

 

             
 

 
        

  

 
                    (2.7) 

 

Next is to find the parameter , ( , )f f x y   and ( , )f x y  

 

From equation (2.3) ( , )
r

f x y  

 

where 0 (1) 1r P   denotes the derivative of ( , )f x y  and is given by 

 

1
( , ( )) ( )

r

r r
f x y x y x f

x y


  

   
        

(2.8) 

 

When     we obtain 

 
1

( , ) ( )f x y y x f        (2.9) 

 

When     we obtain 

 
1

2
( , ) ( )f x y y x f f

x y x y

    
      

    
 ,    

(2.10) 

 

where   ,  
x y

f f
x y

 
 

 
 

 

by substituting in (2.10) we obtain 

 

x y
f f f M          (2.11) 

 

When     we obtain  
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By expansion we have 
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2
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where, 
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f f f f f
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2 3

( , ) 2 0 ( )
xx xy xy y x y

f x y f ff f f f f ff h       
 

    (2.12) 

 

Put  
2

2  and  
xx xy xy x y

N f ff f f M f ff      

 

Substituting in equation (2.12) we obtain; 

 

( , )
y

f x y N M f  
                         

(2.13) 

 

Substituting equation (2.9), (2.11) and (2.13) into equation (2.7)  

 
2

2 2 3
( , , ) ( ) ( 2 ( ) ) 0 ( )

2 6
n n x y x x x y y y x y y

h h
x y h f f f f f f f f f f f f h                     (2.14) 
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h h
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Recall that the increment function is given by 

 

1

( , , )

R

n n r r

r

x y h c k



  which is also known as the R-stage                         (2.15) 

 

For consistency we have
1

1

R

r

r

c


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For stage two     

 

1 1 2 2

1

( , , )

R

n n r r

r

x y h c k c k c k



    (2.16) 

 

The general form of RungeKutta of stage 2 is given by   

 

1 1 1 2 2
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2.2 Model equation for harvesting of renewable natural resources 
 

If ( )p t  represent the population at time ( )t and
d p

d t
 is the rate of change at which the population grow at a 

certain time. Then the logistic equation becomes; 

 

( )
d p p r t

p r h p
d t k

   this can be written as;  

 

( )
d p r

p r t h p
d t k

 
   

  ,

            (3.1) 

 

where
d p

d t
 is the rate of change in population with time. 

p ,   is the animal population 

r ,   is the growth rate 

k ,   is the carrying capacity which is also known as the saturated level 

( )h p is the harvesting term 

 

3 Analysis and Interpretation of Result 
 

In this chapter, we present the numerical solution of dynamical system that model dynamical solution of fish 

population in a pond over a period of time, using second stage Runge-Kutta Methods. 

 

Definition 1. Renewable natural resources are natural resources that can reproduce and grow while non-

renewable resources are resources in which a fixed stock is depleted overtime. Some of the renewable natural 

resources are fishes in the ocean and sea. We introduce a mathematical model providing some insight into 

management of renewable resources. 

 

Using the model equation stated in 3.1 above. We will assume that humans will be harvesting from the animal 

population. The effect of harvesting a renewable natural resources such as fish can be model. 

 

Suppose  0 .5, 10% ,r h p   given that 1 0 0k   then from the model by putting the given values we have; 

( )
d p r

p r t h p
d t k

 
   

 

 

 

 

0 .5
0 .5 0 .1

1 0 0
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 
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 

  

 

0 .5 0 .0 0 5 0 .1
d p

p p t
d t

  

, 

 

which is the required model 

Applying Runge-Kutta Second Stage Method which is given by  
1 1 2

1 1

2 2
n n

p p h k k


 
   
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where; 
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1 2 1

1
( )  a n d  ,

2 2
n n n n

h
k h f p t k h f p t k

 
    

 

with the initial condition

0 0
( ) 0 0 , 0 , 0 .5p t p t h     [mesh size] 

 

Then  1 0 n
k h f p t  when 0n   
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Putting  and  in the equation below, 
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When the harvesting term  from the model which is given by 

 

( )
d p r

p r t h p
d t k

 
   
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Applying the Runge-Kutta formula 
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Then for 
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k  we have 
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Putting 
1

k  and  
2

k in the equation below, 
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Then the harvesting term   30% 0.3h p    

 

From the model 
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Applying the formula which is given by 
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Then; 
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For
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Putting  
1 2

 a n d  k k in the equation below, 

 

 

 
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3
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When the harvesting term   40% 0.4h p     from the model  
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d p r

p r t h p
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Applying the classical Runge-Kutta Method 

 

1 1 2
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where, 
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To find 2
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Putting 
1

k  and  
2

k in the equation below, 
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When the harvesting term   50% 0.5h p    from the model  
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Applying the classical Runge-Kutta Method 

 

1 1 2

1 1

2 2
n n

p p h k k


 
   

 

 

 

where, 

 

 

 

 

1 2 1

1 2 2 4

4 0

1
,  a n d  ,  fo r  4

2 2

,  w h e re  0 .3 2 1 8

4 0 4 0 .5 2

n n n n

h
k h f p t k h f p t k n

k h f p t p

t t h

 
     

 

  

    

 

 

Then  1
0 .5 0 .3218, 2k f   

 

 

 

     

 

 

 

1

1 4 4 4

1

1

1

1

1

0 .5 0 5 0 .0 0 5 , 0 .5

0 .5 0 .5 0 .0 0 5 0 .5

0 .5 0 .5 0 .3 2 1 8 0 .0 0 5 0 .3 2 1 8 2 0 .5

0 .5 0 .1 6 0 9 0 .0 0 3 2 1 8 0 .5

0 .5 0 .1 6 0 9 0 .4 9 6 7 8 2

0 .5 0 .6 5 7 6 8 2

0 .3 2 8 5

n n n
k p p t

k p p t

k

k

k

k

k

  

  

     

   

  

 

 

 

 

for 2
 k  

 

2 1

2 4 4

1
,   a t  4

2 2

0 .3 2 8 8
0 .5 ,

2 2

n n

hk h f p t k n

k h f p t

 
    

 

   
     

  

 



 

 
 

 

Oguara et al.; Asian J. Prob. Stat., vol. 21, no. 1, pp. 37-49, 2023; Article no.AJPAS.95932 
 

 

 
48 

 

 

 

 

 

     

 

 

2

2

2

2 4 4 4

2

2

2

2

0 .5 0 .3 2 1 8 0 .2 5 , 2 0 .1 6 4 4

0 .5 0 .0 7 1 8 ,1 8 3 5 6

0 .5 0 5 0 .0 0 5 , 0 .5

0 .5 0 5 0 .0 0 5 , 0 .5

0 .5 0 .0 7 1 8 0 .0 0 5 0 .0 7 1 8 1 .8 3 5 6 0 .5

0 .5 0 .0 3 5 9 0 .0 0 0 6 5 8 9 8 4 0 .5

0 .5 0 .0 5 5 9 0 .4 9 9 3 4 1 0 1 9

0 .5 0 .

n n n

k f

k f

k p p t

k p p t

k

k

k

k

   

 

  

  

     

   

  

  

2

5 3 5 6 4 1 0 1 9

0 .2 6 7 6k  

 

 

putting
1

k  and  
2

k in the equation below, 
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Table 1. Summary of results 

 

Number (N) Harvesting Term  h p  
1n

p


 

0         
1

p            

1         
2

p          

2         
3

p          

3         
4

p          

4         
5

p          

 

Where 0 ,1, 2 , 3, 4  an d  5 .n   

 

4 Summary 
 

In this research work, the solution of a dynamic system that can model natural resources using the second stage 

Runge-Kutta method was reported. To actualize this result, a model, a first order ordinary differential equation 

and the famous Runge-Kutta second stage method is used. Harvesting terms  from 10% to 50% is used 

for the iteration to demonstrate the validity of the result. The result of this study was applied to the population of 

fish in a pond, which is a renewable natural resource, with great success. 
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5 Conclusion 
 

In line with the objectives stated at the beginning of the work, the results of this research has shown that by 

applying the second order Runge-Kutta method, the solution of a dynamical system can be obtained and applied 

to model natural resources with great success. Thus, the full objectives of the study have been achieved. The 

population in the pond at each harvesting determined the remain life in the pond. It is observed that after the first 

harvesting, one fish is taken out of the pond which is 0.94. The second harvesting, 13.5 is taken out of the pond. 

The third harvesting, 21.12. after the fourth harvesting, 32.18 is taken out of the pond. While the last harvesting 

(fifth) 105.19 was taken out of the pond which is above 100 meaning that all fishes in the ponds are exhausted. 

For continue existence of live in the pond, we may not exceed harvesting limit of 40%   
 

6 Recommendations 
 

From the experiences gathered during the course of this study, it is recommended that further studies on 

dynamical systems should be encouraged using the Runge-Kutta method, specifically, extending this study to 

the third stage of the method. Furthermore, other methods should be explored for the developing models for the 

natural resources that are abundant within the country as this will give a better picture on the economic 

prospects of these resources and serve as a benchmark for further research. 
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