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ABSTRACT 
 
In coastal Winneba-Ghana, drought occurrence negatively affects the ecosystems and agriculture 
and threatens food security and socio-economic livelihoods. Nevertheless, there exist dearth of 
information on a detailed statistical evaluation of drought indices over this area. This study made a 
comparative assessment of Standard Precipitation Index (SPI) and Standard Precipitation 
Evapotranspiration Index (SPEI) over coastal-Winneba. A daily temperature and rainfall data from 
1980-2019 acquired from the Ghana Meteorological Agency was used to perform SPI and SPEI. 
Pearson correlation coefficient and cross-correlation, and Bland and Altman plot were used to test 
for the strength and direction and the degree of agreement, respectively between SPI and SPEI. 
Results showed a strong and positive association between SPI and SPEI (0.90, 0.91, 0.84, and 
0.93) at 1-, 3-, 6-, and 12-month timescales, respectively. Results again, showed a good degree of 
agreement between SPI and SPEI (-0.06138, -0.00736, -0.05211, and -0.01810) at 1-, 3-, 6-, and 
12-month timescales, respectively. Results further, showed that while both SPI and SPEI correlated 
strongly with each other, SPEI performed better in the detection of severe and extreme droughts at 
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all timescales than SPI. Additionally, results showed that in the absence of temperature data to 
perform SPEI, the SPI can be used since the study found an acceptable degree of agreement 
scores between SPI and SPEI at all timescales in the study area. The study, therefore, 
recommends the utilization of numerous drought indices in drought performance assessment at a 
particular region or locality to arrive at a strong decision. 
 

 
Keywords: Climate change; coastal; drought; SPEI; SPI; Winneba. 
 

1. INTRODUCTION 
 
Drought, which is an intrinsic  characteristic of a 
changing climate, is a naturally reoccurring event 
described by several climatological and 
hydrological variables [1]. Drought, thus, 
indicates a reduction in precipitation over 
extended time duration, which may range from 
several months to years [2]. Depending on the 
frequency, duration, magnitude and severity, 
drought can be considered as a meteorological, 
agricultural, or hydrological, and socioeconomic 
[3] and these classifications are often connected 
to each other. For example, a meteorological 
drought can lead to agricultural drought, 
hydrological drought, and socioeconomic drought 
[4].  
 
Over the years, there have been several 
improvements in the measurement of drought 
extreme and severity, and these have led to the 
creation of different drought indices: The Palmer 
Drought Severity Index (PDSI) developed in 
1965 [5], the Standard Precipitation Index (SPI) 
in 1993 [6], and the Standard Precipitation 
Evapotranspiration Index (SPEI) in 2010 [7]. As 
confirmed by [7], the PDSI was a significant 
development of drought indices as it enables the 
determination of both positive (wetness) and 
negative (dryness) values. These determinations 
were based on the quantity and need hypothesis 
of the water balance equation [7], and therefore, 
requires precipitation, temperature, moisture 
supply, runoff, and surface evaporation [7,8]. 
However, the PDSI has some weaknesses such 
as the inability to assess multi-scale drought 
characteristics [9] and the strong effect of the 
calibration period [10].  
 
The above-mentioned weaknesses caused the 
development of the SPI [6], which addresses the 
issue of multi-scalar type of drought. While many, 
including the World Meteorological Agency 
(GMA) identify the SPI as the principal reference 
drought index [11], it has been deficient by its 
ability to use only precipitation data and ignore 
other important climatic variables such as 
temperature and evapotranspiration [7,12]. The 

SPI thus emphasises the variations in 
precipitation as the major determinant of drought. 
[13] have stressed against the exclusion of 
temperature. [13] in their study on the role of 
temperature and precipitation in the PDSI, found 
equal responses in both variables. Precipitation 
variability was stronger only at the point where 
temperature variability was lesser [13]. The SPEI 
provides a simple evaluation and presents 
detailed drought data by considering monthly 
water changes [8]. It thus can determine the 
differences between precipitation and potential 
evapotranspiration [8]. The SPI                            
and the SPEI indices have been employed in this 
study. 
 
Several pieces of studies on drought indices and 
occurrences have been performed worldwide 
[14,15,16,17,18]. [14] employed different drought 
indices to assess climate change impacts. [15] 
also, utilized different drought indices to assess 
the evolution of drought impacts on corn yield in 
Moldova. [16] have also used different drought 
indices for ecological, agricultural, hydrological 
performances. Besides, [17] applied different 
drought indices in China. [18] has further 
examined the performance of SPI, SPEI, and 
PDSI indices for agricultural drought in North 
China Plain. 
 
The occurrence of drought has remained one of 
the greatest challenges in many parts of the 
world especially, in the water scarcity zones 
[19,20]. [4] in their study on drought modelling, 
considered drought as a severe and expensive 
event worldwide because of climate change and 
other extreme natural occurrences. Findings from 
the study of [21] confirmed a major increase in 
the frequency, severity, and duration of drought 
in Africa, Southern Australia, and eastern Asia. 
Findings from a study by [22] further emphasized 
the increases in intensity of future drought 
occurrences a result of global warming.  
 
Drought has a regional trajectory, and its 
occurrence differs from one climatic region to the 
other [23].  According to the data from the 
Emergency Events Database (EM-DAT), 
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between 1900 to 2020, drought affected over 2 
billion people worldwide, and caused damages 
over 182 million United States Dollars with over 
11 million deaths [24]. On continental level, Asia 
is the most affected by drought (78.4%) of the 
world’s total followed by Africa (16.6%), the 
Americas (4.0%), Europe (0.6%) and the 
Oceania (0.4%) [24]. While Asia is considered 
the most affected continent, Africa has the 
highest number of drought occurrences with 
Ethiopia and Somalia recording the highest 
drought occurrences in Africa between 1900 and 
2020 [24,25]. Ghana has experienced many 
severe and extreme                                               
drought in the 1970’s, 1980’s, and 2000-2013 
[24,26].  
 
There exist several pieces of evidence on 
drought occurrences in Ghana 
[27,28,29,30,31,32,33]. Many of these studies 
have either analysed drought occurrences for the 
whole Ghana or for the Volta basin zones 
[27,30,31,33]. However, data for these studies 
are either analysed for the whole country or 
whole agro-ecological zone. While such analyses 
are essential to filling the information gap on 
drought in the country, they tend to limit details of 
specific places especially, looking at the 
variability in rainfall from the local to regional and 
to the global level. These studies have also 
employed only the Standard Precipitation Index 
(SPI) in their analyses and while this is important 
for drought indices assessment, a comparison of 
drought indices provides a comprehensive 
assessment of drought occurrences [8].  [31] 
made the effort to compare both SPI and SPEI to 
assess drought indices over the entire Volta 
basin of Ghana. Consequently, there is no single 
study that has employed both the SPI and SPEI 
in assessing drought indices over specific place 
in Ghana. A specific site assessment for drought 
is, thus needed. Such study will not only bridge 
the information gap on drought on specific site in 
Ghana but will enrich the literature on drought 
occurrences in Ghana.  
 
This study, therefore, seeks to assess the 
performance of SPI and SPEI over Winneba-
Ghana. The study specifically, compared SPI 
and SPEI indices, performed correlation analysis 
between SPI and SPEI, and examined the 
degree of agreement between SPI and SPEI. 
The study is organized as follows: section 2 
provides a brief description of the study area and 
highlight the data and methods, section 3 shows 
the results and discussion, and section 4 
provides conclusion. 

2. MATERIAL AND METHODS 
 

2.1 Study Area 
 
Winneba, the capital of the Effutu municipality is 
geographically located between latitude 5° 20′ N 
and longitude 0° 37′ W (Fig. 1). It is a coastal 
town, and its climatological features fall into the 
coastal savannah agroecological zones of 
Ghana. Annual mean temperatures range from 
22°C to 28°C. The main rainfall season starts 
from April to July and drops in August while the 
minor season begins in September and ends in 
November [34]. Annual rainfall in Winneba 
ranges between 400 millimetres to 500 
millimetres [34] and have June and January are 
the wettest and driest months, respectively. 
Winneba has coastal savannah grassland 
vegetation which is suitable for vegetable 
farming. Soils in this area are mostly clayey with 
high salinity [34]. Two major rivers drain the area: 
the Ayensu and the Gyahadze rivers. Winneba 
had a total population of 68,597 as of 2012 with 
32,795 and 35,802 males and females, 
respectively [34]. Fishing and farming are the 
major economic activities followed by services. 
 

2.2 Data and Quality Control 
 
The study used daily temperature (maximum and 
minimum) and rainfall data of Winneba synoptic 
station of the Ghana Meteorological Agency 
(GMet). The GMet has provided meteorological 
data in Ghana for many years. In 1937, the 
Meteorological Department was established right 
after the Second World War. The department 
was however, handed over to Ghana’s Ministry 
of Communications in 1957 where Ghana 
officially became independent. 14 synoptic 
stations, fully equipped with meteorological 
equipment were established in 1957 and were 
supported by about 350 stations measuring 
precipitation, temperature, humidity, wind, 
clouds, among others. More expansions were 
made during the 1960s but the economics crises 
which occurred in Ghana in the 1970s and 1980s 
caused a declined in the operations of the 
meteorological stations. Upgrades were made in 
the late 1990s and currently GMet has 22 
synoptic stations and about 310 meteorological 
stations operating every 24 hours a day [35]. 
 
Quality control check was performed on the 
temperature (maximum and minimum) and 
rainfall datasets to see the percentage of missing 
values and any outliers within the data. From this 
analysis, the total percentage of missing values 
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in the dataset were less than 1%.  Missing data 
were given a value of -99.9 in the R statistical 
package. The period of data employed in the 
analysis ranged from 1980-2019 (40 years). 
Outliers (values greater or less than 3σ from the 
long-term average value for a particular month) 
were noticed in the monthly daily maximum and 
minimum data and rainfall.  

 
2.3 Methods 
 
The Standard Precipitation Evapotranspiration 
Index (SPEI), Standard Precipitation Index (SPI), 
Pearson correlation coefficient, cross-correlation, 
and the Bland and Altman plot were the methods 
utilized in this study. 
 
2.3.1 Standard Precipitation Evapotranspira- 

tion Index (SPEI) 
 
The SPEI [7] was computed using the SPEI 
package in the R statistical package [36]. The 
SPEI package requires long term temperature 
(maximum and minimum) and rainfall data. The 
SPEI has been employed in many drought 
studies and has been found suitable 
[8,37,38,39,40]. To estimate the value of SPEI, 
the variation in water balance is normalized as 
log-logistic probability distribution. The probability 
density function as used by [41] is expressed in 
the equation below. 
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Where α, β, and γ are scale, shape, and origin, 
respectively [41]. The probability distribution 
function can, therefore, be expressed as: 
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The calculation of the SPEI by [7] is shown 
below. 
 

����  =   �  −  
�� � ���  � ���

� � ���  � ��� � � ��� �            (3) 

 
 

When P ≤ 0.5, W = � −  2��(�), and P > 0.5, W = 

� −  2��(1 − �), C0 = 2.5155, C1 = 0.8028, C2 = 

0.0203, d1 = 1.4327, d2 = 0.1892, d3 = 0.0013. 
 
2.3.2 Standard Precipitation Index (SPI) 
 
The SPI [6] was also computed from the SPEI 
package in the R statistical package [36]. The 

SPI has also been widely employed in assessing 
drought [26,41,42,43,44,45,46]. The SPI is 
calculated by applying long-term precipitation 
data. An incomplete gamma distribution is then 
mounted and changed to normal distribution. The 
gamma is shown as the probability density 
function [47,48]. The SPI is mathematically 
expressed as: 
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�
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�
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Where, α and β are shape and scale, 
respectively. � is precipitation amount and Γ(a) is 
the gamma function. The Γ(a) is expressed as: 
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The greatest values of α and β are assessed by 
the likelihood method as shown below. 
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number of precipitation sequence. 

 
The aggregate probability of a particular month is 
expressed in the equation below. 
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The SPI can, therefore, be computed as: 
 

��� =  � 
� �(��� � ���) � ��
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                       (8) 

 

� =  ��� 
1

�(�)�
  

 
Where X is the precipitation amount, G(X) is the 
gamma function of precipitation probability 
distribution, S is the positive and negative 
coefficient of the aggregate probability 
distribution, when G(X) > 0.5, S = 1, and when 
G(X) ≤ 0.5, S = -1, C0 = 2.5155, C1 = 0.8028, C2 
= 0.0103, d1 = 1.4327, d2 = 0.1892, d3 = 0.0013. 
 
2.2.3 Pearson correlation coefficient and 

cross-correlation 

 
To establish a relationship between SPI and 
SPEI, statistical technique such as the Pearson 
correlation and cross- correlation was used. The 
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Pearson correlation and cross- correlation have 
been used by [8,49,50,51,52] to establish 
statistical relationships for drought indices.  The 
Pearson correlation coefficient is considered by 
[53] and [54]  as the most common statistical 
method to detect the relationship between two 
variables. The Pearson correlation coefficient 
ranges from a perfect positive linear relationship 
with value of +1 to a perfect negative linear 
relationship with value of -1. Cross-correlation on 
the other hand assess the similarity between two 
different variables at different time lags [55]. 
Cross-correlation value also ranges -1 to +1. The 
closer the value is to +1, the more positive and 
stronger the variables are correlated. 
 
2.3.4 Bland and Altman Plot 
 
The Bland and Altman plot was used to examine 
the degree of agreement between SPI and SPEI. 
The Bland and Altman’s plot, which is a graphical 
representation has been used in several studies 
(e.g., [56,57,58] to examine the degree of 
agreement between methods. [59] established 
the Bland and Altman plot for comparing the 

difference and mean between two methods. The 
results of the  difference are plotted on the y-axis 
against the mean on the x-axis. The difference in 
mean and the standard deviation are used to 
design the  limits of agreement, which quantifies 
the agreement between two methods. [60] has 
established that the high dispersion of points on 
the Bland and Altman plot indicates an uneven 
bias between the two methods. Therefore, based 
on the rules established by [59], the differences 
and mean of every single set of SPI and SPEI 
values were calculated separately. In this study 
however, the mean difference (Bias) and the 
standard deviation (SD) were calculated from the 
difference of every single set of SPI and SPEI 
values. The lower (Bias -1.96) and the upper 
(Bias +1.96) limits of agreement were computed 
at 95% confidence interval. 
 
The study employed 1-, 3-, 6-, 9-, and 12- 
months’ SPI and SPEI for analysis. This was 
done to reveal drought occurrences, severity and 
extreme in short, medium, and long terms.  
Drought categorization of SPI and SPEI values 
(Table 1) based on [61] is adopted in this study. 

  

 
 
Fig. 1. Geographical map of the Effutu municipality showing Winneba (Cartography, GIS, and 

remote sensing laboratory of the university of education, Winneba) 
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Table 1. Drought categorization based on SPEI and SPI values [61] 

 
SPI and SPEI values Category 
2.00 and above Extremely wet 
1.50 to 1.99 Very wet 
1.00 to 1.49 Moderately wet 
-0.99 to 0.99 Mild drought 
-1.00 to -1.49 Moderate drought 
-1.50 to – 1.99 Severe drought 
≤-2.00 Extreme drought 

 
Table 2. Drought characteristics over Winneba 

 
 SPI-1 SPEI-1 SPI-3 SPEI-3 SPI-6 SPEI-6 SPI-12 SPEI-12 
Mild drought 427 401 391 402 387 389 373 381 
Moderate drought 33 51 54 33 62 34 66 34 
Severe drought 18 20 29 34 21 31 27 30 
Extreme drought 2 8 4 9 5 21 3 24 

 

3. RESULTS AND DISCUSSION 
 
3.1 Comparison between SPI and SPEI 
 
Fig. 2a, b, c, and d report SPI and SPEI values at 
1-, 3-, 6-, and 12-month timescales over 
Winneba respectively from 1980-2019. It is 
obvious that both SPI and SPEI have identified 
more of mild type of drought in the short-term (1-
and 3-month), medium-term (6-month) and the 
long-term (12-month) (Table 2). However, there 
exist great disparities in SPI and SPEI in terms of 
drought severity and extreme at all timescales.  

 
Based on the short-term, the 1-month SPI 
detected extreme (severe) droughts in 1990 and 
2015 (1980-1982, 1984, 1987, 1988, 1990, 1998, 
and 2011) while SPEI detected extreme (severe) 
drought in 1980, 1982, 1984-1986, and 1990 
(1980-1982, 1984, 1985, 1990, 1992, 2007, and 
2008). The 3-month SPI also identified extreme 
(severe) droughts in 1980 and 1990 (1980-1982, 
1984-1986, 1990, 1998, and 2009) while that of 
SPEI detected extreme (severe) droughts in 
1980, 1982-1984, 1989, and 1990 (1980-1984, 
1986, 1990, 1992, 1995, 1998, 2001, and 2009).  

 
On the medium-term, the 6-month SPI identified 
extreme (severe) in 1980, and 1981 (1980-1984, 
and 1986) and that of the SPEI identified 
extreme (severe) droughts in 1980, 1981-1984, 
and 1990 (1980-1984, 1986, 1988, and 1990). 
On the long-term, the 12-month SPI identified 
extreme (severe) in 1981 (1980, 1981, 1983-
1986) while that of the SPEI identified extreme 
(severe) droughts in 1980, 1981, 1983, 1984, 

and 1986 (1981, 1982, 1984-1986, 1990, and 
1991). 
 
In summary, both SPI and SPEI are better 
indices to be employed in drought severity and 
extreme assessment as has been confirmed in 
studies such as [8,18,30,31,62,63,64]. In this 
study, SPEI was able to identify clearer extreme 
and severe droughts over Winneba than SPI. It 
thus, can be said that SPEI is better suited for 
extreme and severe drought assessment in the 
short, medium, and long terms. The SPEI’s 
clearer performance in this study conforms to 
studies such as [8,62,65].  
 
[65] employed SPI and SPEI in drought analysis 
at different timescales in Inner Mongolia and their 
findings suggested a more utilization of the SPEI 
than the SPI in drought assessment. A similar 
finding showing the SPEI robustness has again 
been established by [62] who compared the 
suitability of the SPI and SPEI for drought 
probability distributions in Europe. Also, findings 
by [8] who compared SPI and SPEI indices on 
drought severity and extreme in Bangladesh, 
indicated the better performance of SPEI than 
SPI. As reported by [65], climate dynamics and 
variations in climatic conditions in different 
regions and localities will always result in 
variations between the SPI and SPEI. There is 
no doubt that SPI is a better index for detecting 
drought variations. However, its neglect of the 
effect of evaporation on drought makes it 
deficient and may not be appropriate for drought 
monitoring in arid and semi-arid regions or 
localities [66,67,68]. The SPI in this study only 
considered precipitation over Winneba as the 
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main index and this probably resulted to less 
detection of the drought values. It must be noted 
that, the SPI was able to identify extreme drought 

in the August 2015 while the SPEI identified mild 
drought.  

 

 
 

 
 

 
 

 
 

Fig. 2. SPI and SPEI values for Winneba. (a) 1-, (b) 3-, (c) 6-, and (d) 12-month timescales 
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As established by [69], temperature in Winneba 
has been increasing and the inclusion of 
temperature in the SPEI index resulted in its 
better performance at all timescales (Fig. 3) 
making the performance of the SPI deficient in 
this study. Findings by [8] stressed the better 
performance of the SPEI due to its utilization of 
the potential evapotranspiration (PET) parameter 
as an additional input. This finding is again 
supported by [70] who reported a greater 
reliability in the utilization of PET with the 
hydrological drought index. Findings in the study 
[71] also emphasised that the SPEI detects 
actual drought situations since increasing 
temperature and decreasing rainfall causes 
higher evaporation. This study thus supports the 
statement by [8] that precipitation and PET 
propagate unique climatic changeability of 
drought extreme and severity.  
 
Fig. 3 illustrates the number of severe and 
extreme drought occurrences at different 
timescales over Winneba. SPEI clearly identified 
more extreme and severe drought occurrences 
over Winneba than SPI. For the 1-month 
timescale, SPEI recorded 8 and 20 months of 
extreme and severe droughts, respectively while 
that of the SPI recorded 18 and 2 months of 
severe and extreme droughts, respectively. For 
the 3-month timescale, a similar pattern was 
identified for extreme (9 months) and severe (34 
months) for SPEI and extreme (4 months) and 
severe (29 months) for SPI. The 6-month 
timescale also recorded extreme of (21 months) 
and severe of (31months) while that of the SPI 
recorded extreme of (5 months) and severe (21 
months).  
 
For the 12-month timescale, SPEI recorded 
extreme of (24 months) and severe of (30 
months) while that of the SPI recorded extreme 
of (3 months) and severe of (27 months).  This 
study has detected decadal extreme and severe 
droughts occurrence in the 1980s, 1990s, 2000s 
and 2010s over Winneba. This result can be 
compared with other drought studies in Ghana 
(e.g., [26,27,30]. [26] has utilized the SPI index to 
mild to extreme drought in coastal Ghana. [27] 
has also employed the SPI index to identify 
drought in the Volta Basin of Ghana.  [30] further 
utilized the SPI index to detect drought in the 
Volta Region of Ghana.  
 

3.2 Correlation Analysis of SPI and SPEI 
 
The Pearson correlation coefficient was 
employed to determine the linear correlation 

between SPI and SPEI at different timescales 
(Fig. 4). Strong and significant linear correlation 
was found between SPI and SPEI at all 
timescales: 1-month (r=0.90 at P = .05), 3-month 
(r=0.91 at P = .05), 6-month (r=0.84 at P = .05), 
and 12-month (r=0.93 at P = .05) and both 
indices show increasing trend. This finding is in 
consistent with SPI and SPEI comparison study 
done by [8] in Bangladesh, [58] in Tigray Region, 
Northern Ethiopia, [72] in Pakistan, and [73] in 
the Upper Blue Nile Basin, Ethiopia. In 
disagreement with the finding of this study is that 
of [74] who compared SPI and SPEI indices in 
the Chi River basin, Thailand and reported a 
decreasing trend. Other inconsistent studies 
including [75] in Bangladesh and [76] in Iran 
compared the SPI to other indices such as 
Effective Drought Index (EDI) and found better 
performance in the EDI than the SPI.   
 
The cross-correlation method was again used to 
examine the relationship between lagged SPI 
and SPEI. At 1-month time lag, strong and 
positive correlations were established for both 
the short-term (0.92 and 0.95), medium-term 
(0.92), and long-term (0.96) droughts. In this 
study, all trends in SPI and SPEI indices have 
been identified to be strong and positive and 
drought occurrences are frequent.  This finding, 
therefore, reinforces [77] and [78] assertion that 
global warming has increased drought 
occurrences in this century in many regions and 
localities of the world.  
 
[79] do not accept the use of the Pearson 
correlation as a method of examining the degree 
of agreement between two variables. [79] are of 
the view that two variables can be positively 
(negatively) correlated however, with no 
agreement between them. [80] and [54] have 
also advised against the use of correlation for 
comparing variables. Therefore, the correlation 
analysis in this study shows the strength and 
direction of the linear association between the 
SPI and the SPEI and not the level of agreement 
or differences. 
 

3.3 Degree of Agreement between SPI 
and SPEI 

 
To detect the degree of agreement or difference 
between SPI and SPEI, the Bland and Altman 
plot was employed (Fig. 5). As has been reported 
by [60], the Bland and Altman plot provide a 
graphical illustration of the agreement between 
two assessments. To detect a better degree of 
agreement in the Bland and Altman’s plot, the 
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differences in the average of the two methods or 
variables should be close to zero [54]. In this 
study, SPI and SPEI detected mean difference 
values close to zero ( -0.06138, -0.00736, -
0.05211, and -0.01810) for 1-, 3-, 6-, and 12-
month timescales, respectively. Thus, a good 
agreement exits between SPI and SPEI at all 
timescales. This finding is conformity with the 
finding of [58] who employed the Bland and 
Altman’s plot to detect the degree of agreement 
between SPI and SPEI as drought assessment 

tools in Tigray Region of Northern Ethiopia. The 
finding also conforms to [80] who asserted that a 
good agreement is achieved if point dispersion is 
reduced, and points get closer to the mean (bias) 
line. Fig. 5 thus, shows a good degree of 
agreement since majority of the points at all 
timescales are closer to the bias line and with 
majority of the dispersion confined within the 
upper (+1.96SD) and lower (-1.96SD) limits of 
each timescale. 

 

 
 

Fig. 3. Frequency of severe and extreme drought events in Winneba (1980-2019) based on SPI 
and SPEI 

 

 

 
 

Fig. 4. Correlation between SPI and SPEI at (a) 1-, (b) 3-, (c) 6-, and (d) 12-month timescales 
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Fig. 5. Bland and Altman plot showing SPI and SPEI at (a) 1-, (b) 3-, (c) 6-, and (d) 12-month 
timescales 

 

4. CONCLUSION 
 
The study compared the performances of SPI 
and SPEI drought indices over Winneba-Ghana. 
The SPI and SPEI featured drought occurrences, 
severity and, extreme from 1980-2019. The 
association and the degree of agreement 
between SPI and SPEI were established using 
Pearson correlation coefficient and cross-
correlation, and the Bland and Altman plot, 
respectively.  
 
Results show that between 1980-2019, the mild 
drought type has occurred many times in 
Winneba under both SPI and SPEI. SPI and 
SPEI performances with respect to drought 
severity and extreme were the focus of the study. 
The results again, show a strong and positive 
association between SPI and SPEI (0.90, 0.91, 
0.84, and 0.93) at 1-, 3-, 6-, and 12-month 
timescales, respectively. Also, a good degree of 
agreement was found between SPI and SPEI (-

0.06138, -0.00736, -0.05211, and -0.01810) at 1-
, 3-, 6-, and 12-month timescales, respectively.  
 
The study further, established that while both the 
SPI and SPEI correlate very well with each other, 
the SPEI performed better than the SPI in 
drought occurrences, severity, and extreme 
detections in Winneba at all timescales. The 
SPEI’s great performance was due to the 
inclusion of PET in the analysis.  Variations in 
PET affect the water balance system such as 
surface runoff and natural water need. Increases 
in PET will, therefore, have a negative effect on 
crop yield in Winneba whose agricultural activity 
is rain-fed. This thus, makes evaporative 
requirement an essential                                          
element in defining drought conditions in 
Winneba.  
 
The results of the study have shown strength in 
SPEI than SPI as drought assessment tools in 
Winneba. Nevertheless, the significance of SPI 
cannot be overlooked. This is because the SPI 



 
 
 
 

Ankrah; JGEESI, 25(6): 39-54, 2021; Article no.JGEESI.70982 
 
 

 
49 

 

showed a good agreement with SPEI in the 
agreement analysis. Also, the SPI was able to 
the detect decadal extreme drought in the 2010s 
in the periods analysed while the SPEI failed. 
The SPI can, therefore, be used when there 
exists unavailability of temperature data to 
perform SPEI. This study, therefore, 
recommends the utilization of numerous drought 
indices when assessing the duration, extreme, 
and severity of drought at a particular region or 
locality to arrive at a strong decision.  
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