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ABSTRACT 
 

In response to shifting consumer demands, food packaging's conventional function is continuing to 
change. Consumer desire for healthier, safer and good quality meals with longer shelf-life is one of 
the current causes that are challenging the food packaging sector to produce new and better 
technology packaging solutions. Therefore, Active packaging (AP) can be used to satisfy these 
requirements. The biggest advantage of Active packaging (AP) is less food waste because the 
items have a longer shelf life. Undoubtedly, active packaging is a great option for a variety of food 
sector applications. In the upcoming years, the commercial success of active packaging systems 
should be anticipated as they represent the growth of food packaging in the future. In this review, a 
summary of active packaging technologies, including oxygen scavenger, moisture scavenger, 
ethylene absorber, antioxidant-releaser, CO2 emitter, and antimicrobial packaging systems are 
provided. In particular, reviews of scientific studies emphasizing the advantages of these 
technologies for certain food products are conducted. However, the development of food nano-
packaging is still in its early stage, despite having numerous opportunities to enhance packaging 
materials and functions. Although, due to the advancements in nanotechnology there might be 
higher chances of enabling the creation of better active packaging. This article also discusses 
current breakthroughs in food nano packaging based on active nanoparticles. 
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NOMENCLATURES 
 
AP :  Active Packaging   
BHA :  Butylated Hydroxyanisole  
BHT :  Butylated Hydroxytoluene  
EDTA :  Ethylenediaminetetraacetic Acid  
EVOH :  Ethylene Vinyl Alcohol  
HDPE :  High-density Polyethylene  
LDPE :  Low-density Polyethylene   
LLDPE :  Linear low-density Polyethylene   
NP’s :  Nanoparticles  
MA :  Modified Atmosphere   
MAP :  Modified Atmosphere Packaging  
OS :  Oxygen Scavenger  
PCL :  Polycaprolactone   
PE :  Polyethylene   
PET :  Poly (Ethylene Terephthalate)  
PLA :  Polylactic Acid  
PLGA :  Poly (Lactide-co-glycolic) Acid  
PP :  Polypropylene  
PVC :  Poly (Vinyl Chloride) 
 

1. INTRODUCTION 
 
Packaging is a crucial component of the food 
supply chain. The main purpose of food 
packaging is to increase the shelf life of 
packaged food materials by inhibiting adverse 
variations brought on by chemical impurities, 
temperature changes, microbial spoilage, 
moisture, O2, external force and light as well as 
to maintain the safety and quality of food items 
from the stage of manufacturing to the end of 
consumption [1].The noticeable shifts in 
customer demand and behavior that are likely to 
have an impact on the way we utilize as well as 
anticipate packaging in the upcoming years are 
driving innovations in packaging [2]. 

Nanotechnology is the fabrication, modification, 
and characterization of items, structures, or 
materials with at least one dimension and a 
length of 1–100 nm. Additionally, nanotechnology 
has sparked a new technological growth by 
enabling a vast scope of opportunities or the 
creation and application of systems, materials, 
and structures with novel or better quality in 
several sectors, including food, agriculture, 
medicine, and others [3]. In order to increase 
shelf life, it is also possible to construct nano 
food packaging to release enzymes, 
antioxidants, antimicrobials as well as 
nutraceuticals. Food nanostructured ingredients 
and food nanosensing are the two main 
applications of nanotechnology in the food 
business [4]. The subject of food nanosensing 
improves the safety and quality of food, but 
nanostructured food ingredients have a broad 
spectrum like food packaging and food 
processing (Fig. 1). The biggest anticipated 
application of nanotechnology in the food 
business in the near future is novel food 
packaging technology, as recently described by 
Dasgupta and others regarding its usage in the 
agro-food industries, as one of the quickest 
developing fields in nano-research [5]. 
 
Several types of packaging materials utilized in 
food industry including improved packaging, 
active packaging, and smart packaging. The 
main goal of this article, however, is to give a 
general summary of active packaging systems 
which have recently been effectively used in 
food, emphasizing the advantages for the 
specific food products. The current 
commercialization of food packaging containing 
nanomaterials will also be highlighted. 
 

 

 
 

Fig. 1.  Use of nanotechnology in several food business sectors 
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2. ACTIVE PACKAGING (AP) 
 
In AP systems, active substances like ethylene 
removers, water vapour absorbers, oxygen 
absorbers, preservatives, and others are 
purposefully added to packages to increase their 
protection function [6]. Active packaging systems 
fall into two groups: active-releasing systems 
(emitters) and active scavenging systems 
(absorbers). While the former eliminates 
undesirable components like odour, ethylene, 
CO2, O2, or moisture from the food or its 
environment, the latter adds substances like 
antimicrobials, CO2, antioxidants, flavours, 
ethylene, or ethanol to the packaged food or into 
the headspace (Fig. 2). Nanocomposites (metal 
NP’s like copper, silver, and oxides like 
magnesium oxide and titanium dioxide), gas 
scavengers and antimicrobial film are the          
major components of active food packaging       
[7]. 
 
It extends the standard packaging's capabilities 
to offer protection, easy to use, prolonged shelf-
life and storage period. It has been said that 
“packing of the future will not only be a barrier 
but it will also interact with packaged products” 
[8]. Expert predictions have also been stated that 
the future of food packaging lies with the newest 
generations of active packaging.  

 
Active packaging, as opposed to conventional 
packaging materials, increases the shelf-life of 
food and maintains its superior quality while 
interacting with the internal environment and the 
product [9]. As a result, active packaging 

solutions ought to be viewed as a novel 
approach to food packaging. They interact with 
the packaged item, alter its surroundings, and 
regulate its quality all at once. 
 

3. ACTIVE PACKAGING TECHNOLOGIES 
 

3.1 Oxygen Scavenger (OS) 
 
The growth of microorganisms including yeasts, 
aerobic bacteria, and molds, the existence of O2 
in food packaging hastens product degradation 
and the oxidation of lipid and vitamins in food. It 
damages nutrients in food and causes color 
changes, disagreeable flavors, bad odors, and 
unpleasant tastes [10]. A high level of oxygen 
also reduces its shelf life.  
 
The O2 in headspace gases reacts with 
perishable food into the package and speeds up 
the spoilage of various food products (e.g., 
spices, milk powder, sausages or meat), the 
breakdown of vitamins, and the rancidification of 
fatty foods, nuts, and oils as it encourages the 
growth of microbes. The remaining oxygen levels 
inside the package are actively reduced by 
oxygen scavengers.  
 
The oxidative mode of action of the various types 
of OS could be either: (a) chemical, using cobalt 
[11],  ferrous or iron salts [12], gallic acid, 
ascorbic acid, fatty acids or photosensitive dyes, 
(b) biological (through the use of immobilized 
yeast on a solid material) or (c) biochemical 
(using enzymes) [13]. Iron is therefore the most 
prevalent kind of OS. 

 

 
 

Fig. 2. Active packaging systems 
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As per the following general theoretical 
equations, water activates iron-based OS, which 
then scavenge oxygen:  
 

4Fe + 3O2 + 6H2O → 4Fe(OH)3 → 2Fe2O3. 
3H2O  
4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3 → 
2Fe2O3 . 3H2O  

 
Mu et al. have developed a nano- Fe based 
oxygen scavenger (Table 1). Fe-NPs 
incorporated with and CaCl2, NaCl and activated 
carbon and then filled into sachets [14]. 
 

3.2 Moisture Scavengers  
 

The amount of moisture and the activity of the 
water in various types of meals are important 
elements impacting their quality and safety. 
According to Yildirim and others (2019), there are 
various types of moisture control strategies used 
in packaging, such as vacuum packaging, which 
involves removing the humid air from the 
headspace, moisture prevention (using barrier 
packaging), moisture reduction (by modified 
atmosphere packaging or MAP), which involves 
substituting the humid air in the headspace with 
dry MA gas, or and moisture elimination (by 
using a desiccant or absorber) [19]. Table 2 
contains some examples of food product 
applications; however, pads are eliminated 
because they are already widely utilized in the 
market.  

3.3 Ethylene Absorber 
 

Climacteric respiration is the major metabolic 
process occurring in many fruits and vegetables 
after harvesting [24]. Thereby, ethylene, a natural 
plant hormone, accelerates respiration, leading 
to maturity, softening the product tissues, and 
therefore accelerating senescence. On the other 
side, its accumulation can cause the yellowing of 
green vegetables and may be responsible for a 
number of undesirable reactions, such as the 
development of bitter flavors and chlorophyll 
degradation. 
 
The most common agent of ethylene removal is 
potassium permanganate [25], which oxidizes 
ethylene to acetate and ethanol. Due to its 
toxicity, however, potassium permanganate 
cannot be integrated into packaging material with 
food contact and is therefore usually applied in 
sachets [26]. Ethylene can also be removed by 
physical adsorption on active surfaces such as 
zeolite, clays, or activated carbon, which may be 
incorporated in packaging materials. Inorganic 
nanoparticles including metals such as palladium 
(Pd) or silver (Ag), and metal oxides, such as 
zinc oxide (ZnO) or titanium oxide (TiO2), have 
gained interest due to their attractive 
physicochemical properties. The authors showed 
that the Palladium-promoted material efficiently 
scavenged ethylene that was either exogenously 
supplied or generated by avocado or banana 
(Table 3). 

 
Table 1. Oxygen-scavenging packaging systems 

 

Active Substance Package Material/Application Benefit Reference 

Iron In sachets HDPE and LLDPE 
films + modified kaolinite, NaCl 
and CaCl2 , activated carbon and 
Fe-NPs, 

Inhibition of lipid oxidation 
[14]

 

 
 
 

[14] 

Iron-(II)-chloride 
and α-tocopherol 

Nanoencapsulated 
polycaprolactone in fish gelatin 
film 

Possibility of use in retortable 
pouches

 
[15] 

Titanium dioxide Placed on various polymer films 
Ethyl cellulose film 

Possibility of packets that 
scavenge oxygen 

[16] 
 

Palladium, 
platinum 

Nylon 6,6, PET, LDPE, PP Regulate the transport of 
oxygen through active 
membrane components 

[17] 
 

Palladium Deposited on poly (ethylene 
terephthalate) 
 film 

Potential use in ham and 
bakery products 

[18] 

TiO2 or Alumina 
(Al2O3) and 
ascorbate 
enzyme systems 

TiO2-NPs, edible oils 
CaAsc/laccase, oleic acid, or 
Al2O3-NPs Coated or printed on 
PET films 

Formulation of oxygen-
scavenging ink for interior 
packaging surfaces 

[13] 
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Table 2. Moisture-scavenging packaging systems [20-23] 
 

Active Substances Package Material/Application Food Tested Benefit Reference 

CaCl2/ sorbitol Powder in bags/trays in the package Mushroom Reduction in browning index (BI 14.8) 
compared to control (BI 18), better product 
appearance, and an increase in shelf-life from 
1-5 days at 10°C. Decreased moisture 
condensation inside the packaging. 

[20] 

Poly (acrylic acid) 
sodium salt 

Powder in porous “tea bag” in sealed 
containers 

Corn Decrease in the presence of aflatoxin [21] 

Sodium chloride Thermoformed multilayer trays: 
polyethylene /foamed hygroscopic 
ionomer-sodium chloride/polyethylene 
Thermoformed multilayer trays: 
Polypropylene /foamed and stretched 
polypropylene– 
Sodium chloride/PE/ethylene vinyl 
alcohol 

Strawberries 
and tomatoes 
 
Mushroom 

Control of in-package RH below 97 percent 
for seven days at various temperatures 
Water loss at 5°C decreased from 4.5 to 1.3 g 
Water loss at 5°C decreased from 4.5 to 1.3 g 
 

[22] 
 
 
[23] 

 
Table 3. Ethylene-scavenging packaging systems [24,27-30] 

 

Active Substances Package Material/Application Food Tested Benefit Reference 

Palladium Zeolite Banana and avocado Scavenged ethylene [27] 

ZnO Coating a poly (vinyl chloride) film Fresh cut apples Showed a much lower rate of fruit deterioration [28] 

TiO2 LDPE film Strawberries The ethylene produced by strawberries in the 
nano-TiO2 LDPE-package was drastically 
reduced 

[29] 

Ag Cellulose-hybrid material Fresh cut melon The senescence of the melon cuts was delayed, 
implying blockage of ethylene-mediated effects 
on the ripening, resulting in a lesser amount of 
ripe product. 

[24] 

Ag + Titanium 
dioxide 

Polyethylene 
film (+kaolin) 

Date, strawberries and 
bayberries 

Browning with climate change were both 
severely hampered 

[30] 
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3.4 Antioxidant Releaser 
 
The creation of packaging that releases 
antioxidants for food applications has picked up 
in recent years. To stop the oxidation of lipid, 
synthetic antioxidants like butylated 
hydroxyanisole and butylated hydroxytoluene are 
frequently employed in food packaging. 
 
On the other hand, due to potential negative 
effects on human health, customers today prefer 
to utilize foods devoid of any synthetic additives. 
Due to their biodegradability and safety, natural 
antioxidants would be a good replacement for 
synthetic antioxidants [31,32]. Today's research 
focuses on adding natural antioxidants to 
polymer- and biopolymer-based food films            
[33-36]. Natural antioxidants like essential oils 
(EOs), plant extracts, tocopherols, and 
polyphenols, are becoming more and more 
popular for use in active packaging materials 
[37,38]. Table 4 summarises a few recent 
advancements in this area. 
 

3.5 Carbon Dioxide Emitter 
 
CO2 positively affects the preservation of food's 
initial freshness and prevents the development of 
odor-related deterioration [46]. CO2 is widely 

used in the food sector for quality preservation 
and increased shelf-life due to its beneficial 
antibacterial qualities. 
 
For poultry, fish, fresh meat, and non-climacteric 
fruits, high CO2 concentrations would typically be 
chosen to successfully inhibit the growth of 
microorganisms, which lengthens the lag phase 
and time during the logarithmic microorganism's 
phase through a complicated array of methods 
[47]. By incorporating CO2 emitters into modified 
atmosphere packaging, it may be possible to 
boost fill levels, reduce package sizes, increase 
transport effectiveness, and reduce 
environmental impact overall. In addition to 
preventing packaging deformation, the release of 
CO2 from a tailored emitter system can offset the 
initial storage-related CO2 absorption into the 
food product.  
 
The active chemicals inside the absorbent pad 
react when liquid is caught that is leaking out of 
the product, creating CO2.  When the absorbent 
pad catches liquid that is leaking out of the 
product, the active chemicals inside react, 
releasing CO2.Table 5 summarises the carbon 
dioxide releaser techniques that are now present 
for preserving food, along with their uses and 
advantages for various food products.  

 
Table 4. Antioxidant- releaser packaging systems 

 

Active Substances Package 
Material/Application 

Food Tested Benefit Reference  

Butylated 
hydroxytoluene 

LDPE film Fresh fish Less tissue 
damage, less lipid 
oxidation, less 
protein 
denaturation, and 
preserved firmness 

[39] 

BHA, BHT and α 
Tocopherol 

PLGA film Dry buttermilk 
powder and dry 
whole milk 

An increase in 
oxidative stability 

[40] 

α Tocopherol Multilayer film: 
LDPE/high-density 
polyethylene/ethylene 
vinyl alcohol 
low-density 
polyethylene film 
Poly (lactic acid) film 
 

Whole milk 
powder 
 
 
Corn oil 
 
Soyabean oil 

An increase in 
oxidative stability 
 
 
An increase in 
oxidative stability 
An increase in 
oxidative stability 

[41] 
 
 
 
[42] 
 
[43] 

Green tea extract Chitosan film Pork sausage Improvement of 
color and oxidative 
stability 

[44] 

Acerola and mango 
pulp 

Cassava starch film Palm oil An increase in 
oxidative stability 

[45] 
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Table 5. Carbon dioxide emitters in packaging systems 
 

Packaging Method with Emitter Food tested Quality Parameters Benefit Reference 
 

Modified atmosphere packaging 
(60% carbon dioxide, 40% 
nitrogen) and vacuum 

Cod Drip loss, microbial assay, 
sensory analysis 

Extension of sensory and 
microbiological shelf-life and 
improvement of initial freshness 

[46] 

MAP (60% CO2, 40% N2) Reindeer meat Cooking loss, antioxidant 
capacity, drip loss, pH, sensory 
analysis, microbial analysis 

Reduced drip loss (3.0 wt% in MAP 
packages without a carbon dioxide 
emitter, 1.0 wt% in MAP with a 
carbon dioxide emitter), and 
decreased growth of bacteria 

[48] 

MAP (100% CO2) Chicken Drip loss, microbial assay, pH Increased sensory and 
microbiological shelf-life; 100% CO2 
packing made easier; less drip loss; 
CO2 emitter 

[49] 

Modified atmosphere packaging 
(60% CO2, 40% O2) 

Cod pH, sensory analysis, drip loss, 
microbial assay 

At a reduced g/p ratio, sensory and 
microbiological shelf-life are 
maintained. 

[50] 
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3.6 Antimicrobial Packaging Systems 
 
The primary goal of antimicrobial packaging is to 
preserve and increase the shelf-life of the food 
item by prohibiting the microorganism growth. 
This could be achieved by incorporating an 
active substance inside the packing material or 
by adding a coating layer there [51]. 
Antimicrobial agents behave variably depending 
on the pathogenic bacteria because of different 
physiologies. There are two ways that an 
antimicrobial agent works: either by blocking a 
microorganism's vital metabolic processes 
(lactoferrin and ethylenediaminetetra acetic acid 
act as coupling agents of charged polymers), or 
by destroying the membrane structure or cell 
wall. Fig. 3 displays several antibacterial 
substances that could be used in food packaging 
methods. 
 
Nanomaterials containing Ag, TiO2 and ZnO 
NP’s have a good antimicrobial activity which is a 
very suitable agent for antimicrobial AP systems 
[52]. Food packaging frequently uses TiO2 
nanoparticles, which are not toxic to humans as 
well as authorized as food additives and food 
contact materials [53]. 
 
However, the stabilization of essential oils during 
processing, enhancement of their 
physicochemical qualities, and enhancement of 
their health-promoting benefits are all possible by 
using nanoencapsulation techniques. Herbs and 
spices offer potentially extremely useful sources 

of biodegradable, renewable compounds like 
polyphenols, which have strong antibacterial and 
antioxidant effects. They are therefore suitable 
materials to include in active food packaging [54]. 
Because of the prevention of microbial growth in 
various food products, essential oil-loaded 
biopolymeric nanocarriers in particular exhibit 
promising antibacterial and antioxidant activity 
and are appropriate material for active food 
packaging [55]. 
  
Allyl isothiocyanate, natamycin, chlorine dioxide, 
glucose oxidase, triclosan, silver zeolite and 
silver are also often utilized as active 
components in commercially available 
antimicrobial AP systems [56]. In a very recent 
study, researchers increased the shelf life of 
fresh chicken held at 4°C by several 
polyethylene films containing TiO2 and Ag 
nanoparticles and created as potential active 
packaging films. The findings showed that the 
most effective antimicrobial film for both gram-
negative bacteria (Escherichia coli) and gram-
positive (Staphylococcus aureus) was one that 
contained 5% Ag and 5% TiO2 nanoparticles 
[57]. Ag nanoparticles and Accasellowiana 
extracts functionalized into nanocomposite poly 
(ethylene oxide) films also showed antibacterial 
activity against Escherichia coli and 
Staphylococcus aureus [58]. Antimicrobial 
nanoparticles are examined independently 
because the nanosize boosts or permits 
antimicrobial action (Table 6). 

 

 
 

Fig. 3. Various antimicrobial substances for antimicrobial active packaging systems 

Natural extract Polymers Fungicides Bacteriocins Enzymes Organic acids Nanoparticles 
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Table 6. Antimicrobial food packaging systems [59-64] 
 

Active substances Package Material/ 
Application 

Microorganisms tested Food tested Benefit Reference  

Silver/titanium dioxide LLDPE/Low-density 
polyethylene 

Aspergillus flavus Cooked rice Decrease of A. flavus by ten times [59] 

Ag Polyethylene Bacillus cereus, Bacillus 
subtilis, molds, yeasts 

Bread Increased shelf life byup to six 
days 

[60] 

Silver/Zinc oxide Low-density 
polyethylene 

Listeria monocytogenes, 
Pseudomonas aeruginosa 
and Escherichia coli 

Chicken breast 
fillets 

Reduction in the growth of 
bacteria  (destruction of 99.99% of 
inoculated microorganisms) 

[61] 

Zinc oxide Active films (based on 
glycerol, CaCl2 and 
sodium alginate) 

Staphylococcus aureus, 
Salmonella typhimurium 

Poultry meat Initial bacterial count decline [62] 

TiO2 LDPE Rhodotorula mucilaginosa Fresh pears Reduction of more than 2 log 
CFU/g in mesophilic bacteria and 
yeasts 

[63] 

Copper Polylactic acid Pseudomonas spp. isolated 
from spoiled fiordilatte cheese 

Fiordilatte 
cheese 

Extended shelf life of up to 9 days [64] 
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4. CONCLUSION 
 
Many studies have been conducted in recent 
years on the development of novel active 
packaging technologies, resulting in a diverse 
range of AP systems that could be utilized to 
increase the shelf-life of food products. This 
study highlights the huge scope of AP systems 
as well as concludes that all active packaging 
technology categories examined have similar 
implementation challenges when applied to 
practical food applications. Additionally, it is 
evident from all the research done over the past 
10 years that nanotechnology presents a lot of 
potential for innovative advancements in food 
packaging that will benefit both consumers and 
businesses. Even at this early level, the use of 
nanotechnology has shown significant benefits in 
enhancing the characteristics of packaging 
materials, and it will continue to need 
expenditures to finance research as well as 
advancements to comprehend the benefits and 
drawbacks of involving nanotechnology in AP 
packaging systems. The application of 
nanotechnology in the fabrication of food 
packaging can offer several advantages in terms 
of increased functional qualities. Numerous 
nanomaterials have been evaluated in vitro 
towards microbes, particularly those used in 
antimicrobial packaging solutions. However, food 
tests are very essential since the ingredients in 
food may have an impact on the action of the 
active substances. The efficient and effective 
deployment of active nanoparticles in food 
packaging requires broad consumer acceptance 
and legislative support, as well as a cost that is 
consistent with the value realized by the 
particular food product.  
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