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Abstract

In this study, we formulated and analyzed a fractional-order model for malaria disease
transmission using Atangana-Beleanu-Caputo in sense to study the effects of heterogeneity vector
biting exposure on the human population. To capture effects the heterogeneity vector biting
exposure, we sub-divided the human population into two sub-groups namely; the population in
high and low risk areas. In the model analysis, we computed the basic reproduction number
R0 and qualitatively used to assess the existence and extinction of disease in the population.
Additionally, we used the fixed point theorem to prove the existence and uniqueness of solutions.
Numerical schemes for both Euler and Adam-Bathforth-Moulton are present in details and
used in model simulations. Furthermore, we performed the numerical simulation to support the
analytical results in this study. From numerical simulations, we estimated the values of model
parameters using least square fitting method for the real data of malaria reported in Zimbabwe.
The sensitivity analysis of the model parameters was done to determine the correlation between
model parameters and R0. Finally, we used the Euler and Adam-Bashforth-Moulton scheme to
simulate the model system using estimated parameters. Overall, we noted that fractional-order
derivatives have more influence on the dynamics of malaria disease in the population.
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1 Introduction

Malaria is a protozoan disease caused by parasites of the genus Plasmodium like P. falciparum, P.
malariae, P. ovale, and P. vivax [1]. Humans acquire the disease through bites of infected female
Anopheles mosquitoes and the life cycle of the parasites depends on sexual and asexual phases
in mosquitoes and humans respectively [2]. The latest reports released in December 2019 show
that close to 230 million malaria cases occurred globally in 2018 alone [2]. Malaria deaths were
approximated at 400000 in the same year. Out of the several Plasmodium parasites, P. falciparum
is the most common cause of malaria in Africa and Asia where it is responsible for 80 and 90%
of all cases and deaths respectively [3]. The disease is predominant in African countries where it
constitutes a huge socioeconomic threat with an estimated annual economic burden of USD 8 billion
[4, 5].

Over the years, much scientific research has been undertaken to understand the parasite-vector-
host interactions and biology [50]. Nevertheless, the complexities in the parasite’s life cycle,
coupled with the highly complex social and environmental interactions, and movement of people
between endemic and non-endemic areas continue to promote morbidity and mortality from malaria.
Although combined global efforts are underway to develop a malaria vaccine [7], [8], [9], [10], there
is currently no perfect vaccine against the disease. As such, concerted attempts are still being made
to understand malaria disease dynamics and effective control measures.

Mathematical models have been used for more than a century to provide a clear framework for
the transmission dynamics of malaria in human populations. The spread of malaria disease in
human and mosquito populations has been described mathematically using compartmental models
governed by ordinary differential equations (for example, [11], [12], [13]). A number of studies have
used the optimal control theory in malaria models. Blayneh et al., [54] developed an optimal control
model to study the effects of time-dependent malaria treatment and prevention efforts. Okosun &
Makinde [3] also studied a co-infection model of malaria with optimal control. Agusto et al., [15]
applied the optimal control theory to study optimal strategies for controlling malaria transmission
using treatment, insecticide-treated bed nets and insecticide sprays as control variables, while Gosha
et al., [16] proposed a mathematical model to explore the biological control of malaria. In [17] used
the optimal control theory to investigate the effects of treatment, larvacide and vaccine in the
dynamics of malaria disease transmission. Their results demonstrate that effective and optimal use
of preventive measures in the population without use of larvacide the disease can not be eliminated
in the population. Authors in [18] assessed the effects of vector reduction, person protection and
blood screening strategies in the control of malaria disease in the population. Their results showed
the aforementioned controls have the potential to minimize the spread of disease in the population.
Additionally, their results also demonstrated that model with standard incidence exhibits back
bifurcation and this has an implication in disease eradication in the population. In [19] formulated
and analyzed a malaria model with control strategies that interplay between human and mosquito
populations. The authors assessed the effects of insecticide-treated bed nets, anti-malaria drugs
and social boosting measures in minimizing the spread of the disease in population. Their results
revealed that combination of insecticide-treated bed nets and vector control is the most efficient
innervation, while the combination of anti-malaria drugs and social boosting measure is the more
cost-effective in elimination of the disease in the population. Optimal bed-net and vaccination
control efforts in populations with varying levels of naturally acquired immunity were studied by
Prosper et al., [20]. Recently, Otieno et al., [21] investigated the malaria transmission dynamics
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in Kenya by including time-dependent control measures such as indoor residual spray, treatment,
intermittent preventive treatment of malaria in pregnancy, and insecticide treated bed nets. It
is clear that several efforts have been made to model malaria transmission dynamics and control.
However, the disease still persists in many countries where it is endemic and great source of public
health concern. Cognizant of this, it is necessary to continue developing mathematical models of
Malaria disease.

Fractional calculus have been classified as generalization of classical calculus and has been utilized as
a tool for modeling and investigating the dynamics of real world problems [22]. The most common
definitions of fractional calculus are Caputo-fractional and Riemann Liouville operators which are
defined by power decay and derivatives as a kernels [23], [24],[58]. These operators have led the
existence of Atangana-Baleanu and Caputo-Fabrizio which are not operating under the power-
distribution and have non-singular Kernels [52], [15]. The Atangana-Beleanu in Caputo sense is
superior and the best option for modeling real world problems including infectious disease compared
to Caputo-fibrizio. Additionally, Caputo-Fibrizio which is hinge on power law is not able to capture
complex systems while Atangana-Beleanu in Caputo sense, has the properties that kernel is non-
singular and non-local which can describe well the behavior of an epidemic models [27]. Fractional
calculus have been extensively used for modeling real world problems such as heat conduction,
control theory, chaotic theory and biological processes [28],[15]. Fractional order calculus are
popular field that describe the application of non-integer order derivative in disease dynamics [29].
From literature, it is believed that modeling of physical and real problems using non-integer order
derivative is more precise compared to integer-order derivatives [30],[58]. The main advantages of
using fractional order derivative in disease dynamics is that, they can properly capture the memory
effects and hereditary properties of species that exist in biological systems [31],[32],[54],[15],[58].
Additional, it is believed that cell membrane of living organisms containing some fractional-order
electrical conductance which are classified in the groups of non-integer order models. However,
many researchers such engineers, mathematicians, epidemiologist and other scientists are still behind
with this knowledge of application of fractional order derivatives in modeling real world problems.
Therefore, application of fractional order derivatives is still poorly understood in most of researchers
[33], [34], [35],[58]. This paper add knowledge and encourage scientists on using application of
Atangana-Baleanu-Caputo operator in modeling real world problems.

Mathematical models of infectious disease using fractional order via Atangana-Beleanu derivative
have been formulated and analyzed in order to explore the dynamics of disease in the population
and references cited therein (see, [28], [36], [37], [38]). Khan et al., [28] formulated and studied a
new fractional order model for tuberculosis with relapse via Atangana-Beleanu derivative. From
the model analysis they proved the existence and uniqueness of model solution using point fixed
theorem. In [36], formulated and studied a fractional order model for Hepatitis B virus using
Atangana-beleanu in cuputo sense.

Motivated by the previous study on fractional order models via Atangana-Beleanu derivative, the
present study was designed to develop a fractional order model using Atangana-Beleanu Cuputo
(ABC) in sense to study malaria transmission dynamics with heterogeneity. The main advantage of
using ABC operator fractional order derivative with respect to another function is that, it has a non-
local and non-singular kernel [39],[40],[33],[41]. This provide suitable classification differentiation
operator and suitable function in modeling real world-problems such as infectious diseases [52]. The
organization of the paper is as follows: section 2 discusses the model formulation and analytical
results. The numerical simulation of the model is presented in section 3, while the concluding
remarks are in Section 4.
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2 Model Formulation and Analytical Results

2.1 Mathematical model

In this paper, we formulated and studied a new fractional-order model which is an extension of
the classical model studied in [42]. The model take into account the interplay between vector
(mosquitoes) and human populations governed by the following assumptions:

(i) The vector population is sub-divided into three compartments: susceptible Sv(t), exposed
Ev(t) and infected Iv(t). Thus, the total population of vector is denoted by Nv(t) and defined
by: Nv(t) = Sv(t)+Ev(t)+Iv(t). We denote the subscript v and h throughout the document
to represent the parameters and variables for vectors and humans respectively.

(ii) The total human population is denoted by Nh(t) and is sub-divided into two sub-groups
according the exposure to heterogeneous vector biting, we denote Nh1(t) and Nh2(t) to
represent the total human population in high and low risk areas respectively, thus, Nh(t) =
Nh1(t) + Nh2(t). The human population in both low and high risk areas is sub-divided
into five non-intersecting compartments: susceptible Shi(t), exposed Ehi(t), infected with
symptomatic disease (severe and clinical cases) Ihi(t), infected with asymptomatic disease
Ahi(t) and temporary immune individuals Rhi(t) for i = 1, 2. With these divisions, the
total human populations in both low and high risk areas at time t are given as, Nh1(t) =
Sh1(t)+Eh1(t)+Ih1(t)+Ah1(t)+Rh1(t), Nh2(t) = Sh2(t)+Eh2(t)+Ih2(t)+Ah2(t)+Rh2(t).

(iii) The average life span of humans in malaria endemic regions is 1/µαhi, where µαhi is the natural
mortality rate of humans for i = 1; 2. Similarly, the average life span of mosquitoes is 1/µαv ,
where µαv is the natural mortality rate of mosquitoes. The recruitment rates of susceptible
human and mosquito populations are denoted by Λαhi for i = 1; 2, Λαv , respectively. Human
recruitment consists of new births and immigration. The susceptible human population
increases due to natural recovery and treatment of symptomatically infected individuals at
the rate θαhiγ

α
hi for i = 1; 2. Temporary immune individuals move to the susceptible class

after losing their immunity at the rate γαui, hence
1

γαui
for i = 1; 2 is the average duration of

immunity.

(iv) The exposed human and vector populations grow as a result of new infections and decline
due to natural mortality and move to the infected classes at the rate γαei for i = 1; 2. For
humans and γαv for vectors. It is assumed that a proportion of the exposed human class
(ραi γ

α
ei(0 ≤ ραi ≤ 1)) is developing a symptomatic disease, while the rest ((1− ραi )γαei) is still

asymptomatic. The infected human population with symptomatic disease (severe and clinical
cases) Ihi(t) decreases as a result of natural death and is further reduced by disease-related
mortality at a rate δαhi. By clinical treatment or natural recovery, a proportion of the infected
population θαhiγ

α
hi returns to the susceptible state while the rest moves to the asymptomatic

state at the rate (1 − ραhi)γαhi. Those in the asymptomatic state may additionally develop
disease through superinfection at rate ρiλ

α
hi(t).

(v) In this framework, we assume that the transmission of infection in humans occurs solely
when susceptible individuals are bitten by an infectious vector and the disease transmission
rate is modeled by the equation (2.1):

λαhi(t) =
βαh Iv(t)

Nhi(t)
, λαv =

βαv (Ihi(t) + σiAhi(t))

Nhi(t)

The parameter βαh is the effective contact rate of humans, and is defined as the product of the
average number of mosquito bites received by humans and the probability of transmission from an
infectious human to a susceptible mosquito. Similarly, βαv is the effective contact rate of vectors
which is defined as the product of the biting rate of mosquitoes and the probability of transmission
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per bite from an infectious mosquito to a susceptible human. Susceptible individuals who are rich
assumed to have reduced chances of infection modelled by (1 − εαh) with 0 < εαh < 1. A reduction
in susceptibility is attributed to the fact that because some can afford mosquito nets and repellents
because they are rich. We denote the rate of individual progression to high and low risk area by
pαh1 and pαh2 respectively

Definition 1. (see [43]), given the function y ∈ H
′
(0, T ), T > 0 and α ∈ (0, 1], the fractional

operator:

ABCDα
0+y(t) = M(α)

1−α

∫ t
0
Eα

(
−α
1−α (t − τ)α

)
y
′
(τ)dτ is called ABC-fractional operator where

M(α) denotes the normalization and satisfies M(0) = M(1) = 1 and Eα(.) denotes the Mittag-

Leffler function of the form: Eα(v) =
∞∑
k=0

vk

Γ(αk+1)

Definition 2. (see [43]) the fractional operator;
ABCIα0+z(t) = 1−α

M(α)
z(t) + α

M(α)Γ(α)

∫ t
0

(t− τ)1−αz(t)dτ, t > 0

is called the integral operator of sense ABC-fractional derivatives.
Based on the above assumptions and definitions, the proposed model in the sense of ABC-fractional
derivatives, for i, j = 1, 2 is given as follows:

ABCDα
0 Shi(t) = Λαhi −

βαhShi(t)Iv(t)

Nhi(t)
− µαhiShi(t)− pαh1Shi(t) + pαhjShj(t)

+γαuiRhi(t) + θαhiγ
α
hiIhi(t),

ABCDα
0Ehi(t) =

βαhShi(t)Iv(t)

Nhi(t)
− µαhiEhi(t)− γαeiEhi(t),

ABCDα
0 Ihi(t) = ραhγ

α
eiEhi(t) +

ραi β
α
hAhi(t)Iv(t)

Nhi(t)
− (µαhi + δαhi + γαhi)Ihi(t),

ABCDα
0Ahi(t) = (1− ραh)γαeiEhi(t)−

ραi β
α
hAhi(t)Iv(t)

Nhi(t)
+ (1− θαh )γαhiIhi(t)− γαaiAhi(t)

−µαhiAhi(t),
ABCDα

0Rhi(t) = γαaiAhi(t)− (µαhi + γαui)Rhi(t).


ABCDα

0 Sv(t) = Λαv −
βαv Sv(t) (Ihi(t) + σαi Ahi)

Nh1
−

(1− εαh)βαv Sv(t)
(
Ihj(t) + σαj Ahj

)
Nhj

−µαvSv(t),

ABCDα
0Ev(t) =

βαv Sv(t) (Ihi(t) + σαi Ahi)

Nhi
+
βαv Sv(t)

(
Ihj(t) + σαj Ahj

)
Nhj

− (µαv + γαv )Ev(t),

ABCDα
0 Iv(t) = γαv Ev(t)− µαv Iv(t).


(2.1)

and Shi(0) = Sh(i,0)
, Ehi(0) = Eh(i,0)

, Ihi(0) = Ih(i,0)
, Ahi(0) = Ah(i,0)

, Rhi(0) = Rh(i,0)
,

Sv(0) = Sv0 , Ev(0) = Ev0 , Iv(0) = Iv0 . Where 0 < α ≤ 1 and ABCDα
0 is Atangana-Beleanu in

Caputo sense of order α.

2.2 Model analysis

2.2.1 Non-negativity and boundness of model solutions

Theorem 1. For the model system (2.1), there exists a unique solution in (0,∞), however, the
solution is always positive for all values of t ≥ 0 and remains in R2

+.

Proof. From the model system (2.1), for i, j = 1, 2 we first show that:
R2

+ ={(Nhi, Nv)∈ R2
+ : Nhi ≥ 0, Nv ≥ 0} is a positive invariant. Now we have to demonstrate that

each hyper-plane bounding the positive orthant and the vector field points to R3
+. Let us consider

the following cases:
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Case 1: Let us assume that there exists a t∗ > t0 such that Nhi(t∗) = 0, and Nhi(t) < 0 for
t ∈ (t∗, t1), where t1 is sufficiently close to t∗, if Nhi(t∗) = 0, then we have that:
ABCDα

0Nhi(t∗) = Λαhi − µαhiNhi + pαhjShj + pαhiShi > 0. This implies that c
aD

α
t Nhi(t) > 0 for all

t ∈ [t∗, t1].

Case 2: Let us assume that there exists a t∗ > t0 such that Nv(t∗) = 0, and Nv(t) < 0 for t ∈ (t∗, t1),
where t1 is sufficiently close to t∗, if Nv(t∗) = 0, then we have that:
ABCDα

0Nv(t∗) = Λαv − µαvNv > 0. This implies that ABCDα
0Nv(t) > 0 for all t ∈ [t∗, t1].

The above discussion show that the three hyper-plane bounding the orthants, that is the vector
field points to R3

+. This show that all the solutions of the model system (2.1) remain positive for
all t ≥ 0.

Theorem 2. Let Φ(t) = (Nhi(t), Nv(t)) be the unique solution of the model system (2.1) for all
t ≥ 0, then the solution Φ(t) is bounded above, that is, Φ(t) ∈ Ω where Ω is the feasible region
defined as:

Ω =

{ (
Nhi(t)
NV (t)

)
∈ R2

+

∣∣∣∣ 0 ≤ Nhi(t) ≤ Chi,
0 ≤ NV (t) ≤ Cv

}
which is interior denoted by int(Ω) and given by:

int(Ω) =

{ (
Nhi(t)
NV (t)

)
∈ R2

+

∣∣∣∣ 0 < Nhi(t) < Chi,
0 < NV (t) < Cv

}
Proof. Here we prove that the solutions of model system (2.1) are bounded for all t ≥ 0. Biologically,
the least possible value of each state of the model system (2.1)is zero. Next, we determine the upper-
bound of the states. Based on this discussion, it easy to show that the following conditions hold for
biological relevance of species. 0 ≤ Nhi(t) ≤ Chi, and 0 ≤ Nv(t) ≤ Cv. From these conditions, we
have:

ABCDα
0Nhi ≤ Λθhi − µθhiNhi(t)

Using the Laplace transformation conditions, we have:

SαL[Nhi(t)]− Sα−1Nhi(0) ≤ Λαhi
S
− µαhiL[Nhi(t)]

Collecting the likely terms, we have:

L[Nhi(t)] ≤ Λαhi
S−1

Sα + µαhi
+Nhi(0)

Sα−1

Sα + µαhi
.

= Λαh1
Sα−(1+α)

Sα + µαh1

+Nhi(0)
Sα−1

Sα + µαh1

Using the inverse Laplace transform, we have:

Nhi(t) ≤ L−1

{
Λαhi

Sα−(1+α)

Sα + µαhi

}
−Nhi(0)L−1

{
Sα−1

Sα + µαhi

}

≤ Λαhit
αEα,θ+1(−µαhi)tα +Nhi(0)Eα,1(−µαhi)tα

≤ Λαhi
µαhi

tαEα,α+1(−µαhi)tα +Nhi(0)Eα,1(−µαhi)tα

≤Max

{
Λαhi
µαhi

, Nhi(0)

}(
tαEα,α+1(−µαhi)tα + Eα,1(−µαhi)tα

)
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=
C

Γ(1)
= Chi.

Where Chi = Max

{
Λαhi
µα
hi
, Nhi(0)

}
. Therefore, Nhi(t) is bounded above. From the vector population,

we have:

ABCDα
0Nv ≤ Λαv − µαvNv(t)

Using the Laplace transformation conditions, we have:

SαL[Nv(t)]− Sα−1Nv(0) ≤ (1− pαv )Λαv
S

− µαvL[Nv(t)]

Collecting the likely terms we have

L[Nv(t)] ≤ Λαv
S−1

Sα + µαv
+Nv(0)

Sα−1

Sα + µαv
.

= Λαv
Sα−(1+α)

Sα + µαv
+Nv(0)

Sα−1

Sα + µαv

Using the inverse Laplace transform, we have:

Nv(t) ≤ L−1

{
Λαh

Sα−(1+α)

Sα + µαv

}
−Nv(0)L−1

{
Sα−1

Sα + µαv

}

≤ Λαv t
αEα,α+1(−µαv )tα +Nv(0)Eα,1(−µαv )tα

≤ Λαv
µαv

tαEα,α+1(−µαv )tα +Nv(0)Eα,1(−µαv )tα

≤Max

{
Λαv
µαv

, Nv(0)

}(
tαEα,α+1(−µαv )tα + Eα,1(−µαv )tα

)

=
C

Γ(1)
= Cv.

Where Cv = Max

{
(Λαv
µαv

, Nv(0)

}
. Therefore, Nv(t) is bounded above and this complete the proof.

2.3 The basic reproduction number and existence of equilibria

In this section, we compute the threshold quantity R0 which determines the power of disease to
spread in the population. The model system (2.1) always has a disease-free equilibrium E0 given
by:

E
0 :

(
S0
h1, E

0
h1, I

0
h1, A

0
h1, S

0
h2, E

0
h2, I

0
h2, A

0
h2, S

0
v , E

0
v , I

0
v

)
=

(
S0
h1, 0, 0, 0, S

0
h2, 0, 0, 0, S

0
v , 0, 0

)
.
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Where by:

S0
h1 =

Λαh1

µαh1 + pαh1

+
pαh2Λαh2

(
µαh1 + pαh1

)
+ pαh1p

α
h2Λαh1(

µαh1 + pαh1

)(
(µαh1 + pαh1)(µαh2 + pαh2)− pαh1p

α
h2

) ,
S0
h2 =

Λαh2

(
µαh1 + pαh1 + pαh1Λαh1

)
µαh2

(
µαh1 + pαh1

)
+ pαh2

(
µαh2 + pαh2

)
− pαh1p

α
h2

,

S0
v =

Λαv
µαv

.


(2.2)

Following the next generation matrix approach as used in [?], [51], the non-negative matrix F that
denotes the generation of new infection and the non-singular matrix V that denotes the disease
transfer among compartments evaluated at E0 are defined as follows:

F =



0 0 0 0 0 0 0 βαh
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 (1− εαh)βαh
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0
βvS

0
v

S0
h1

βvS
0
v

S0
h1
σα1 0

(1−εαh )βvS
0
v

S0
h2

(1−εαh )βαv S
0
v

S0
h2

σα2 0 0

0 0 0 0 0 0 0 0


(2.3)

V =



µαh + γαe1 0 0 0 0 0 0 0
−ααhγαe1 µαh1 + δαh1 + γαh1 0 0 0 0 0 0

−(1− ααh)γαe1 −(1− θαh1)γαh1 µαh1 + γθa1 0 0 0 0 0
0 0 0 µαh2 + γαe2 0 0 0 0
0 0 0 −ααhγαe2 n1 0 0 0
0 0 0 −(1− ααh)γαe2 n2 n3 0 0
0 0 0 0 0 0 n4 0
0 0 0 0 0 0 −γαv µαv


(2.4)

with n1 = µαh2 + δαh2 + γαh2, n2 = −(1− θαh2)γαh2, n3 = γαa2 + µαh2, n4 = µαv + γαv .
Therefore, from (2.3) and (2.4) it can easily be verified that the basic reproduction number of
system (2.1) is given as:

R0 =
√
M1M2 +M3M4,

with:

M1 =
βαh γ

α
v

(µαv + γαv )µαv
,

M2 =
βαhS

0
vα

α
1 γ

α
e1

S0
h1(µαh1 + γαe1)(µαh1 + δαh1 + γαh1)

+
βαv S

0
vσ

α
1

S0
h1

A1,

M3 =
(1− εαh)βαh γ

α
v

(µαv + γαv )µαv
,

M4 =
(1− εh)βαhS

0
vα

α
hγ

α
e2

S0
h2(µαh2 + γαe2)(µαh2 + δαh2 + γαh2)

+
(1− εαh)βαv S

0
vσ

α
2

S0
h2

A2,

A1 =
(µαh1 + δαh1 + γαh1)(1− ααh)γαe1 + ααhγ

α
e1(1− θαh )γαh1

(µαh1 + δαh1 + γαh1)(µαh1 + γαe1)(µαh1 + γαa1)
, and

A2 =
(µαh2 + δαh2 + γαh2)(1− ααh)γαe2 + ααhγ

α
e2(1− θαh2)γαh2

(µθh2 + δαh2 + γαh2)(µαh2 + γαe2)(µαh2 + γαa2)
.
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The basic reproduction number R0 is defined as the expected number of secondary cases (vector
or host) produced in a completely susceptible population, by one infectious individual (vector or
host respectively) during its lifetime as infectious. The square root here is due to the fact that the
generation of secondary cases in vector-borne diseases require two transmission process.

2.4 Existence and uniqueness of solution

In this section, we study the existence and uniqueness of solution of the model system (2.1) using the
techniques of fixed point theorem. First, we denote the Banach space of all continuous real-valued
function equipped with the norm by B = `([0, T ],<), defined as:

||Shi, Ehi, Ihi, Rhi, Ahi, Sv, Ev, Iv|| = ||Shi||+ ||Ehi||+ ||Ihi||+ ||Rhi||+ ||Ahi||+ ||Sv||+ ||Ev||+ ||Iv||,

where:

||Shi(t)|| = supt∈[0,T ] |Shi(t)|, ||Ehi(t)|| = supt∈[0,T ] |Ehi(t)|, ||Ihi(t)|| = supt∈[0,T ] |Ihi(t)|,
||Rhi(t)|| = supt∈[0,T ] |Rhi(t)|, ||Ahi(t)|| = supt∈[0,T ] |Ahi(t)|, ||Sv(t)|| = supt∈[0,T ] |Sv(t)|, ||Ev(t)|| =
supt∈[0,T ] |Ev(t)|, ||Iv(t)|| = supt∈[0,T ] |Iv(t)|.

In what follows, we utilize the fractional integral operator ABIα0+ on both sides of the system (2.1),
for i, j = 1, 2 we get:

Shi(t)− Shi(0) = ABIα0+

{
Λαhi −

βαhShi(t)Iv(t)

Nhi(t)
− µαhiShi(t)− pαhiShi(t) + pαhjShj(t)

+γαu1Rhi(t) + θαhiγ
α
hiIhi(t)

}
,

Ehi(t)− Ehi(0) = ABIα0+

{
βαhSh1(t)Iv(t)

Nhi(t)
− µαhiEhi(t)− γαeiEhi(t)

}
,

Ihi(t)− Ihi(0) = ABIα0+

{
ραhγ

α
eiEhi(t) +

ραi β
α
hAhi(t)Iv(t)

Nhi(t)
− (µαhi + δαhi + γαhi)Ihi(t)

}
,

Ahi(t)−Ahi(0) = ABIα0+

{
(1− ραh)γαeiEhi(t)−

ραi β
α
hAhi(t)Iv(t)

Nhi(t)
+ (1− θαh )γαhiIhi(t)

−γαaiAhi(t)− µαhiAhi(t)
}
,

Rhi(t)−Rhi(0) = ABIα0+

{
γαaiAhi(t)− (µαhi + γαui)Rhi(t)

}
,


(2.5)

Sv(t)− Sv(0) = ABIα0+

{
Λαv −

βαv Sv(t) (Ihi(t) + σαi Ahi)

Nhi
− (1− εh)βαv Sv(t) (Ihj(t) + σα2Ahj)

Nhj

−µαvSv(t)

}
,

Ev(t)− Ev(0) = ABIα0+

{
βαv Sv(t) (Ihi(t) + σαi Ahi)

Nhi
+

(1− εh)βαv Sv(t)
(
Ihj(t) + σαj Ahj

)
Nhj

−(µαv + γαv )Ev(t)

}
,

Iv(t)− Iv(0) = ABIα0+

{
γαv Ev(t)− µαv Iv(t)

}
.


(2.6)
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Which implies that, for k = 1, 2, 3...13 we have:

Shi(t) = Shi(0) +
(1− α)

M(α)
(Fi(t, Shi(t)) +

α

M(α)

1

Γ(α)

∫ t
0
Fk(t, Shi(t))dτ,

Ehi(t) = Ehi(0) +
(1− α)

M(α)
(Fk(t, Ehi(t)) +

α

M(α)

1

Γ(α)

∫ t
0
Fk(t, Ehi(t))dτ,

Ihi(t) = Ihi(0) +
(1− α)

M(α)
(Fk(t, Ihi(t)) +

α

M(α)

1

Γ(α)

∫ t
0
Fk(t, Ihi(t))dτ,

Rhi(t) = Rhi(0) +
(1− α)

M(α)
(Fk(t, Rhi(t)) +

α

M(α)

1

Γ(α)

∫ t
0
Fk(t, Rhi(t))dτ,

Ahi(t) = Ahi(0) +
(1− α)

M(α)
(Fk(t, Ahi(t)) +

α

M(α)

1

Γ(α)

∫ t
0
Fk(t, Ahi(t))dτ,

Sv(t) = Sv(0) +
(1− α)

M(α)
(Fk(t, Sv(t)) +

α

M(α)

1

Γ(α)

∫ t
0
Fk(t, Sv(t))dτ,

Ev(t) = Ev(0) +
(1− α)

M(α)
(Fk(t, Ev(t)) +

α

M(α)

1

Γ(α)

∫ t
0
Fk(t, Ev(t))dτ,

Iv(t) = Iv(0) +
(1− α)

M(α)
(Fk(t, Iv(t)) +

α

M(α)

1

Γ(α)

∫ t
0
Fk(t, Iv(t))dτ.



(2.7)

Where:

Fk(t, Shi(t)) = Λαhi −
βαhShi(t)Iv(t)

Nhi(t)
− µαhiShi(t)− p

α
hiShi(t) + p

α
hjShj(t)

+γαuiRhi(t) + θαhiγ
α
hiIhi(t),

Fk(t, Ehi(t)) =
βαhShi(t)Iv(t)

Nhi(t)
− µαhiEhi(t)− γ

α
eiEhi(t),

Fk(t, I(hi)(t)) = ραhγ
α
eiEhi(t) +

ραi β
α
hAhi(t)Iv(t)

Nhi(t)
− (µ

α
hi + δ

α
hi + γ

α
hi)Ihi(t),

Fk(t, Rhi(t)) = γαaiAhi(t)− (µαhi + γαui)Rhi(t),

Fk(t, Ahi(t)) = (1− ραh )γ
α
eiEhi(t)−

ραi β
α
hAhi(t)Iv(t)

Nhi(t)
+ (1− θαh )γ

α
hiIhi(t)− γ

α
aiAhi(t)

−µαhiAhi(t),

Fk(t, Sv(t)) = Λ
α
v −

βαv Sv(t)
(
Ihi(t) + σαi Ahi

)
Nhi

−
(1− εh)βαv Sv(t)

(
Ihj(t) + σαj Ahj

)
Nhj

−µαv Sv(t),

Fk(t, Ev(t)) =
βαv Sv(t)

(
Ihi(t) + σαi Ahi

)
Nhi

+
(1− εh)βαv Sv(t)

(
Ihj(t) + σαj Ahj

)
Nhj

−(µαv + γαv )Ev(t),
Fk(t, Iv(t)) = γ

α
v Ev(t)− µαv Iv(t).



(2.8)

The kernels Ni with 0 ≤ Qk < 1, i = 1, 2, ...13, satisfy the Lipschitz condition in equation (2.8) if
and only if Shi(t), Ehi(t), Ihi(t), Rhi(t), Ahi(t), Sv(t), Ev(t), and Iv(t), with i = 1, 2 have an upper
bound. In-general, suppose Shi(t) and S∗hi(t) are two functions, we have:

||Fkt, Shi(t)− Fk(t, S∗hi(t))|| = ||Λαhi −
βαhShi(t)Iv(t)

Nhi(t)
− µαhiShi(t)− p

α
hiShi(t) + p

α
hjShj(t)

+γαuiRhi(t) + θαhiγ
α
hiIhi(t)−

(
Λαhi −

βαhS
∗
hi(t)Iv(t)

Nhi(t)
− µαhiS

∗
hi(t)

−pαhiS
∗
hi(t) + pαhjS

∗
hj(t) + γαuiRhi(t) + θαhiγ

α
hiIhi(t)

)
||,

=

(
βαh Ihi
Nhi

+ µαh + pαhi

)
||Shi − S∗hi||,

≤
(
βαh supt∈[0,T ] Ihi(t)

supt∈[0,T ] Nhi(t)
+ µαh + pαhi

)
||Shi − S∗hi||,

= Qk||Shi − S∗hi||.



(2.9)

Where Qk =
βαh supt∈[0,T ] Ihi(t)

supt∈[0,T ] Nhi(t)
+ µαh + pαhi. Thus:

||Fkt, Shi(t)− Fk(t, S∗hi(t))|| ≤ Qk||Shi − S∗hi|| (2.10)

Using the same techniques as in (2.9), we get:

||Fkt, Ehi(t)− Fk(t, E∗hi(t))|| ≤ Qk||Ehi − E∗hi||,
||Fkt, Ihi(t)− Fk(t, I∗hi(t))|| ≤ Qk||Ihi − I∗hi||,
||Fkt, Rhi(t)− Fk(t, R∗hi(t))|| ≤ Qk||Rhi −R∗hi||,
||Fkt, Ahi(t)− Fk(t, A∗hi(t))|| ≤ Qk||Ahi −A∗hi||,
||Fkt, Sv(t)− Fk(t, S∗v (t))|| ≤ Qk||Sv − S∗v ||,
||Fkt, Ev(t)− Fk(t, E∗v (t))|| ≤ Qk||Ev − E∗v ||,
||Fkt, Iv(t)− Fk(t, I∗v (t))|| ≤ Qk||Iv − I∗v ||.


(2.11)
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Whereby Qi(i = 1, 2, ...12) is the Lipschitz constant for the function Fi(.) for i = 1, 2, ..12. Indeed,
equation (2.7) in recursive form as follows:

Shi(t) = Shi(0) +
(1− α)

M(α)
Fk(t, Shi,n−1(t)) +

α

M(α)

1

Γ(α)

∫ t
0

(t− τ)
α−1

Fk(τ, Shi,n−1(τ))dτ,

Ehi(t) = Ehi(0) +
(1− α)

M(α)
Fk(t, Ehi,n−1(t)) +

α

M(α)

1

Γ(α)

∫ t
0

(t− τ)
α−1

Fk(τ, Ehi,n−1(τ))dτ,

Ihi(t) = Ihi(0) +
(1− α)

M(α)
Fk(t, Ihi,n−1(t)) +

α

M(α)

1

Γ(α)

∫ t
0

(t− τ)
α−1

Fk(τ, Ihi,n−1(τ))dτ,

Ahi(t) = Ahi(0) +
(1− α)

M(α)
Fk(t, Ahi,n−1(t)) +

α

M(α)

1

Γ(α)

∫ t
0

(t− τ)
α−1

Fk(τ, Ahi,n−1(τ))dτ,

Rhi(t) = Rhi(0) +
(1− α)

M(α)
Fk(t, Rhi,n−1(t)) +

α

M(α)

1

Γ(α)

∫ t
0

(t− τ)
α−1

Fk(τ, Rhi,n−1(τ))dτ,



(2.12)

Sv(t) = Sv(0) +
(1− α)

M(α)
Fk(t, Sv,n−1(t)) +

α

M(α)

1

Γ(α)

∫ t
0

(t− τ)
α−1

Fk(τ, Sv,n−1(τ))dτ,

Ev(t) = Ev(0) +
(1− α)

M(α)
Fk(t, Ev,n−1(t)) +

α

M(α)

1

Γ(α)

∫ t
0

(t− τ)
α−1

Fk(τ, Ev,n−1(τ))dτ,

Iv(t) = Iv(0) +
(1− α)

M(α)
Fk(t, Iv,n−1(t)) +

α

M(α)

1

Γ(α)

∫ t
0

(t− τ)
α−1

Fk(τ, Iv,n−1(τ))dτ.


(2.13)

Suppose Ψk, k = 1, 2, ..13 be the difference between successive components in (2.12) and (2.13).
We have the following:

Ψk
n = Shin(t)− Shi,n−1(t) = 1−α

M(α)

(
Fk(t, Shi,n−1(t))− Fk(t, Shi,n−2(t))

)
+ α
M(α)

1
Γ(α)

∫ t
0

(t− τ)α−1
(
Fk(τ, Shi,n−1(τ))− Fk(τ, Shi,n−2(τ))

)
dτ,

Ψk
n = Ehi,n(t)− Ehi,n−1(t) = 1−α

M(α)

(
Fk(t, Ehi,n−1(t))− Fk(t, Ehi,n−2(t))

)
+ α
M(α)

1
Γ(α)

∫ t
0

(t− τ)α−1
(
Fk(τ, Ehi,n−1(τ))− Fk(τ, Ehi,n−2(τ))

)
dτ,

Ψk
n = Ihi,n(t)− Ihi,n−1(t) = 1−α

M(α)

(
Fk(t, Ihi,n−1(t))− Fk(t, Ihi,n−2(t))

)
+ α
M(α)

1
Γ(α)

∫ t
0

(t− τ)α−1
(
Fk(τ, Ihi(n−1)(τ))− Fk(τ, Ihi,n−2(τ))

)
dτ,

Ψk
n = Ahi,n(t)−Ahi,n−1(t) = 1−α

M(α)

(
Fk(t, Ahi,n−1(t))− F7(t, Ahi,n−2(t))

)
+ α
M(α)

1
Γ(α)

∫ t
0

(t− τ)α−1
(
Fk(τ, Ahi,n−1(τ))− Fk(τ, Ahi,n−2(τ))

)
dτ,

Ψk
n = Rhi,n(t)−Rhi,n−1(t) = 1−α

M(α)

(
Fk(t, Rhi,n−1(t))− Fk(t, Rhi,n−2(t))

)
+ α
M(α)

1
Γ(α)

∫ t
0

(t− τ)α−1
(
Fk(τ, Rhi,n−1(τ))− Fk(τ,Rhi,n−2(τ))

)
dτ,

Ψk
n = Sv,n(t)− Sv,n−1(t) = 1−α

M(α)

(
Fk(t, Sv,n−1(t))− Fk(t, Sv,n−2(t))

)
+ α
M(α)

1
Γ(α)

∫ t
0

(t− τ)α−1
(
Fk(τ, Sv,n−1(τ))− Fk(τ, Sv,n−2(τ))

)
dτ,

Ψk
n = Ev,n(t)− Ev,n−1(t) = 1−α

M(α)

(
Fk(t, Ev,n−1(t))− Fk(t, Ev,n−2(t))

)
+ α
M(α)

1
Γ(α)

∫ t
0

(t− τ)α−1
(
Fk(τ, Ev,n−1(τ))− Fk(τ, Ev,n−2(τ))

)
dτ,

Ψk
n = Iv,n(t)− Iv,n−1(t) = 1−α

M(α)

(
Fk(t, Iv,n−1(t))− Fk(t, Iv,n−2(t))

)
+ α
M(α)

1
Γ(α)

∫ t
0

(t− τ)α−1
(
Fk(τ, Iv,n−1(τ))− Fk(τ, Iv,n−2(τ))

)
dτ.



(2.14)

Considering that Shi,n(t) =
n∑
r=1

Ψk
r (t), Ehi,n(t) =

n∑
r=1

Ψk
r (t), Ihi,n(t) =

n∑
r=1

Ψk
r (t), Ahi,n(t) =

n∑
r=1

Ψk
r (t), Rhi,n(t) =

n∑
r=1

Ψk
r (t), Sv,n(t) =

n∑
r=1

Ψk
r (t), Ev,n(t) =

n∑
r=1

Ψk
r (t), and Iv,n(t) =

n∑
r=1

Ψk
r (t).

Taking the norm on both sides of the equation and using equations (2.14) and (2.10), we have:

||Ψk
n(t)|| = 1−α

M(α)
Qk||Qkn−1(t)||+ α

M(α)
Qk

Γ(α)

∫ t
0

(t− τ)α−1||Qkn−1(τ)||dτ, (2.15)

In what follows, we state and prove the following theorem based on the results in (2.15).

Theorem 3. The model system (2.1) has a unique solution for t ∈ [0, T ] if the condition below
satisfies.
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(
1− α
M(α)

Qk +
1

M(α)

Qk
Γ(α)

Tα
)
, k = 1, 2, ...13 (2.16)

Since the function Shi(t), Ehi(t), Ihi(t), Ahi(t), Rhi(t), Sv(t), Ev(t) and Iv(t) are bounded
and satisfy the Lipschitz condition, and using (2.16), we have:

||Qkn(t)|| ≤ ||Shi,n(0)||
(

1−α
M(α)

Qk + 1
M(α)

Qk
Γ(α)

Tα
)n
,

||Qkn(t)|| ≤ ||Ehi,n(0)||
(

1−α
M(α)

Qk + 1
M(α)

Qk
Γ(α)

Tα
)n
,

||Qkn(t)|| ≤ ||Ihi,n(0)||
(

1−α
M(α)

Qk + 1
M(α)

Qk
Γ(α)

Tα
)n
,

||Qkn(t)|| ≤ ||Ahi,n(0)||
(

1−α
M(α)

Qk + 1
M(α)

Qk
Γ(α)

Tα
)n
,

||Qkn(t)|| ≤ ||Rhi,n(0)||
(

1−α
M(α)

Qk + 1
M(α)

Qk
Γ(α)

Tα
)n
,

||Qkn(t)|| ≤ ||Sv,n(0)||
(

1−α
M(α)

Qk + 1
M(α)

Q11
Γ(α)

Tα
)n
,

||Qkn(t)|| ≤ ||Ev,n(0)||
(

1−α
M(α)

Qk + 1
M(α)

Qk
Γ(α)

Tα
)n
,

||Qkn(t)|| ≤ ||Iv,n(0)||
(

1−α
M(α)

Qk + 1
M(α)

Qk
Γ(α)

Tα
)n
.



(2.17)

Therefore, the sequence in (2.17) exist, and ||Qkn|| → 0 as n→∞, k = 1, 2, ...13. In addition, using
the triangular inequality in (2.17), for any s we have:

||Shi,n+s − Shi,n|| ≤
n+s∑
r=n+1

qrk =
qn+1
1 −qn+s+1

k
1−qk

,

||Ehi,n+s − Ehi,n|| ≤
n+s∑
r=n+1

qrk =
qn+1
k
−qn+s+1
k

1−qk
,

||Ihi,n+s − Ihi,n|| ≤
n+s∑
r=n+1

qrk =
qn+1
k
−qn+s+1
k

1−k5
,

||Ahi,n+s −Ahi,n|| ≤
n+s∑
r=n+1

qr7 =
qn+1
k
−qn+s+1
k

1−qk
,

||Rhi,n+s −Rhi,n|| ≤
n+s∑
r=n+1

qr9 =
qn+1
k
−qn+s+1
k

1−qk
,

||Sv,n+s − Sv,n|| ≤
n+s∑
r=n+1

qr11 =
qn+1
k
−qn+s+1
k

1−qk
,

||Ev,n+s − Ev,n|| ≤
n+s∑
r=n+1

qrk =
qn+1
k
−qn+s+1
k

1−qk
,

||Iv,n+s − Iv,n|| ≤
n+s∑
r=n+1

qr13 =
qn+1
k
−qn+s+1
k

1−qk
.



(2.18)

Where qk, k = 1, 2, ...13 are the terms inside the brackets in (2.17). Thus, Shi(t), Ehi(t), Ihi(t),
Ahi(t), Rhi(t), Sv(t), Ev(t) and Iv(t), i = 1, 2 are the Cauchy sequences in B. Therefore, one
can note that as n→∞ in (2.13), the limit of these sequences is the unique solution of the model
system (2.1). This completes the proofs of unique solution of the system (2.1).

2.5 Euler approximation scheme of model (2.1) using Atangana-
Baleanu-Caputo derivative sense

Here, we discuss the an efficient of numerical scheme called Euler fractional approximation method
for proposed model (2.1) in the sense of Atangana-Baleanu-Caputo fractional derivatives as used in
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[58]. The proposed model differential equation equations can be presented in the following form:

ABCDα
0 Shi(t) = G1(t, Shi)

ABCDα
0Ehi(t) = G2(t, Ehi)

ABCDα
0 Ihi(t) = G3(t, Ihi)

ABCDα
0Ahi(t) = G4(tShi)

ABCDα
0Rhi(t) = G5(t, Rhi)

ABCDα
0 Sv(t) = G6(t, Sv)

ABCDα
0Ev(t) = G7(t, Ev)

ABCDα
0 Iv(t) = G8(tIv)


(2.19)

In what follows, we represent equation (2.19) for G1(t, Shi) which satisfies the Lipschitz condition
and the Shi(0) is the initial conditions. Now applying the non-integer operator to equation (2.19)
we have that:

Shi(t) = Shi(0) +ABC Iα0 G1(t, Shi) (2.20)

Where ABCIα0 represent the fractional integer operator with respect to the ABC fractional derivatives.
For the proposed numerical method, we consider an interval length [0, d] with time step size h = d

N

where N ∈ N. Let Shik be the numerical approximation of Shi(t) at t = tk, where tk = 0 + kh and
k = 0, 1 2 3; ...N. Applying Euler method in (2.20), we have the following ABC operator formula:

Shik+1(t) = Shi(0) +
1− α
M(α)

G1(Shik+1) +
hα

M(α)Γ(α)

k∑
p=0

zk+1,pG1(Ship), k = 0, 1, 2, ...N − 1

(2.21)
Where zk+1,p = (k+ 1− p)α− (k− p)α, p = 0, 1, ..., k. The stability analysis of the proposed model
is given by the following theorem:

Theorem 4. The numerical approximation scheme (2.21) is conditionally stable

Proof. Let S̃hi0 and S̃hip be approximations of Shi0 and Ship , p = 0, ..., k+1. From equation (2.21)
we have:

Shik+1 + S̃hik+1 = Shi0 + S̃hi0 + 1−α
M(α)

G1(Shik+1 + S̃hik+1) + hα

M(α)Γ(α)

∑k
p=0 zk+1,pG1(Ship + S̃hip)

(2.22)
Using equation (2.21) in (2.22), we get:

|S̃hik+1 | = |Shi0 + 1−α
M(α)

[G1(Shik+1 + S̃hik+1)−G1(Shik+1)]+
αhα

M(α)Γ(α+1)

∑k
p=0 zk+1,p[G1(Ship + S̃hip)−G1(Ship)]| (2.23)

Applying the Lipschitz condition and triangular inequality, one get the following:

|S̃hik+1 | ≤ ε0 + (1−α)V1
M(α)

|S̃hik+1 |+
αhαV1

M(α)Γ(α+1)

∑k
p=0 zk+1,p|S̃hip | (2.24)

Where ε0 = max0≤k≤N{|S̃hi0 |+
αhαV1zk,0
M(α)Γ(α+1)

|S̃hi0 |} Equation (2.24) can be further simplified and we
get the following:

|S̃hik+1 | ≤ V1V1αε0 +
αhαV1V1α
M(α)Γ(α+1)

∑k
p=0 zk+1,p|S̃hip | (2.25)

Where V1α = M(α)
|(α−1)V1+M(α)| . Finally we have that | ˜Shik+1 | ≤ CV1αε0 and this complete the proof.

3 Numerical Simulations

In this section, we use the MATLAB programming language to perform the numerical simulation
of the model system (2.1) to gain insight into the behavior of the solution for fractional-order
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derivatives. We utilized the fractional Adam-Bashforth-Moulton scheme to simulate the model
(2.1) as illustrated below;

Consider the nonlinear differential equation:

c
bD

α
t Φ(t) = f(t,Φ(t)), 0 ≤ t ≤ T (3.1)

With the initial conditions:

Φp(t) = Φp0, p = 0, 1, 2, ...[q]− 1 (3.2)

Now, with operating by the fractional integral operator on the equation (3.1), we can obtain on the
solution Phi(t) by solving the following equation:

Φα(t) =

|α|−1∑
p=0

Φp

p!
tp +

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ,Φ(τ))dτ (3.3)

Diethelm [45] used the predictor-corrector scheme based on the Adam-Bashforth-Moulton algorithm
to solve the equation 3.1. setting h = T

N
, tn = nhand n = 0, 1, 2, ..., N ∈ Z+. Therefore we can

discretion the equation (3.1) as follows:

Φh(tn+1) =

|α|−1∑
p=0

Φp0
p!
tpn+1 +

hα

Γ(α+ 2)

n∑
m=0

am,n+1f(tm,Φm) +
hα

Γ(α+ 2)
f(tn+1,Φ

v
n+1) (3.4)

where Where by tm = mh with some fixed h and:

am,n+1 =


nα+1 − (n− α)(n+ α)α, m = 0,
(n−m+ 2)α+1 + (n−m)α+1 − 2(n−m+ 1)α+1, 1 ≤ m ≤ n,
1 if m = n+ 1.

and the predicted value :

Φptn+1 =

|α|−1∑
p=0

Φp0
p!
tpn+1 +

1

Γ(α)

n∑
m=0

bm,n+1f(tm,Φh(tm)) (3.5)

With

bm,n+1 =
hα

α

(
(n+ 1−m)α − (n−m)α

)
(3.6)

The error estimate is

max
0≤m≤k

|Φ(tm)− Φh(tm)| = O(hp) (3.7)

with k ∈ N and p = min(2, n+ α)

3.1 Application of Adam-Bashforth-Moulton Scheme to the proposed
model

In this section, we utilize the Adam-Bashforth-Moulton method to numerically solve the nonlinear
fractional-order model (2.1). In the view to the generalized Adam-Bashforth-Moulton scheme, the
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proposed model (2.1) has the following form:

Shi(tn+1) = S
0
hi +

hα

Γ(α + 2)
fShi

(
tn+1, S

p
hi

(tn+1), E
p
hi

(tn+1), I
p
hi

(tn+1), A
p
hi

(tn+1),

R
p
hi

(tn+1), Spv (tn+1), Epv (tn+1), Ipv (tn+1)
)

+
hα

Γ(α + 2)

n∑
m=0

am,n+1fShi

(
tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
,

Ehi(tn+1) = E
0
hi +

hα

Γ(α + 2)
fEhi

(
tn+1, S

p
hi

(tn+1), E
p
hi

(tn+1), I
p
hi

(tn+1), A
p
hi

(tn+1),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
,

+
hα

Γ(α + 2)

n∑
m=0

am,n+1fEhi

(
tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
,

Ihi(tn+1) = I
0
hi +

hα

Γ(α + 2)
fIhi

(
tn+1, S

p
hi

(tn+1), E
p
hi

(tn+1), I
p
hi

(tn+1), A
p
hi

(tn+1),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
,

+
hα

Γ(α + 2)

n∑
m=0

am,n+1fIhi

(
tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
,

Ahi(tn+1) = A
0
hi +

hα

Γ(α + 2)
fAhi

(
tn+1, S

p
hi

(tn+1), E
p
hi

(tn+1), I
p
hi

(tn+1), A
p
hi

(tn+1),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
,

+
hα

Γ(α + 2)

n∑
m=0

am,n+1fAhi

(
tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
.



Rhi(tn+1) = R0
hi +

hα

Γ(α+ 2)
fRhi

(
tn+1, S

p
hi(tn+1), Ephi(tn+1), Iphi(tn+1), Aphi(tn+1),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
,

+
hα

Γ(α+ 2)

n∑
m=0

am,n+1fRhi
(
tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
,

Sv(tn+1) = S0
v +

hα

Γ(α+ 2)
fSv
(
tn+1, S

p
hi(tn+1), Ephi(tn+1), Iphi(tn+1), Aphi(tn+1),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
,

+
hα

Γ(α+ 2)

n∑
m=0

am,n+1fSv
(
tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
,

Ev(tn+1) = E0
v +

hα

Γ(α+ 2)
fSv
(
tn+1, S

p
hi(tn+1), Ephi(tn+1), Iphi(tn+1), Aphi(tn+1),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
,

+
hα

Γ(α+ 2)

n∑
m=0

am,n+1fEv
(
tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
.

Iv(tn+1) = I0
v +

hα

Γ(α+ 2)
fIv
(
tn+1, S

p
hi(tn+1), Ephi(tn+1), Iphi(tn+1), Aphi(tn+1),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
,

+
hα

Γ(α+ 2)

n∑
m=0

am,n+1fIv
(
tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm),

Rhi(tm), Sv(tm), Ev(tm), Iv(tm)
)
.



(3.8)
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Where

Sphi(tn+1) = S0
hi +

1

Γα

n∑
m=0

bm,n+1fShi(tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm)

Sv(tm), Ev(tm), Iv(tm)),

Ephi(tn+1) = E0
hi +

1

Γα

n∑
m=0

bm,n+1fEhi(tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm)

Sv(tm), Ev(tm), Iv(tm)),

Iphi(tn+1) = I0
hi +

1

Γα

n∑
m=0

bm,n+1fIhi(tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm)

Sv(tm), Ev(tm), Iv(tm)),

Aphi(tn+1) = A0
hi +

1

Γα

n∑
m=0

bm,n+1fAhi(tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm)

Sv(tm), Ev(tm), Iv(tm)),


Rphi(tn+1) = R0

hi +
1

Γα

n∑
m=0

bm,n+1fRhi(tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm)

Sv(tm), Ev(tm), Iv(tm)),

Spv (tn+1) = S0
v +

1

Γα

n∑
m=0

bm,n+1fSv (tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm)

Sv(tm), Ev(tm), Iv(tm)),

Epv (tn+1) = E0
v +

1

Γα

n∑
m=0

bm,n+1fEv (tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm)

Sv(tm), Ev(tm), Iv(tm)),

Ipv (tn+1) = I0
v +

1

Γα

n∑
m=0

bm,n+1fIv (tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm)

Sv(tm), Ev(tm), Iv(tm)).



(3.9)

In what follows we have:

ABCDα
0 Shi(t) = fShi(tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm), Sv(tm), Ev(tm), Iv(tm))

ABCDα
0Ehi(t) = fEhi(tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm), Sv(tm), Ev(tm), Iv(tm))

ABCDα
0 Ihi(t) = fIhi(tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm), Sv(tm), Ev(tm), Iv(tm))

ABCDα
0Ahi(t) = fAhi(tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm), Sv(tm), Ev(tm), Iv(tm))

ABCDα
0Rhi(t) = fRhi(tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm), Sv(tm), Ev(tm), Iv(tm)),


ABCDα

0 Sv(t) = fSv (tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm), Sv(tm), Ev(tm), Iv(tm))
ABCDα

0Ev(t) = fEv (tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm), Sv(tm), Ev(tm), Iv(tm))
ABCDα

0 Iv(t) = fIv (tm, Shi(tm), Ehi(tm), Ihi(tm), Ahi(tm), Rhi(tm), Sv(tm), Ev(tm), Iv(tm)).

(3.10)

Additionally, the quantities

fShi(tn+1, S
p
hi(tn+1), Ephi(tn+1), Iphi(tn+1), Aphi(tn+1), Rphi(tn+1), Spv (tn+1), Epv (tn+1), Ipv (tn+1)),

fEhi(tn+1, S
p
hi(tn+1), Ephi(tn+1), Iphi(tn+1), Aphi(tn+1), Rphi(tn+1), Spv (tn+1), Epv (tn+1), Ipv (tn+1)),

fIhi(tn+1, S
p
hi(tn+1), Ephi(tn+1), Iphi(tn+1), Aphi(tn+1), Rphi(tn+1), Spv (tn+1), Epv (tn+1), Ipv (tn+1)),

fAhi(tn+1, S
p
hi(tn+1), Ephi(tn+1), Iphi(tn+1), Aphi(tn+1), Rphi(tn+1), Spv (tn+1), Epv (tn+1), Ipv (tn+1)),

fRhi(tn+1, S
p
hi(tn+1), Ephi(tn+1), Iphi(tn+1), Aphi(tn+1), Rphi(tn+1), Spv (tn+1), Epv (tn+1), Ipv (tn+1)),

fSv (tn+1, S
p
hi(tn+1), Ephi(tn+1), Iphi(tn+1), Aphi(tn+1), Rphi(tn+1), Spv (tn+1), Epv (tn+1), Ipv (tn+1)),

fEv (tn+1, S
p
hi(tn+1), Ephi(tn+1), Iphi(tn+1), Aphi(tn+1), Rphi(tn+1), Spv (tn+1), Epv (tn+1), Ipv (tn+1)),

fIv (tn+1, S
p
hi(tn+1), Ephi(tn+1), Iphi(tn+1), Aphi(tn+1), Rphi(tn+1), Spv (tn+1), Epv (tn+1), Ipv (tn+1)).


(3.11)
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3.2 Sensitivity analysis of the reproduction number

The results from model system (2.1) have shown that the basic reproduction number is an important
threshold parameter for persistence and extinction of cholera disease in the population. Most of the
parameters in this study have been drawn from the literature as presented in Table 1 and some are
estimated. Therefore, it important to perform the sensitivity analysis to demonstrate the influence
of each parameter in the magnitude of basic reproduction number R0.

Definition 3. (See, [15]) The normalized sensitivity index of R0 which depends on differentiably
of parameter, ζ is defined as follows:

ΦR0
ζ =

∂R0

∂ζ
× ζ

R0
(3.12)

The implication of the sensitivity analysis is that the model parameters whose sensitivity index
is positive increase the magnitude of R0 whenever they are increased and those with a negative
index decrease the R0 whenever they are increased. In what follows that, using (3.12), the value of
normalized sensitivity index for each parameter used in the model (2.1) is summarized in Table 2.

Table 1. Description of parameters used in the model system (2.1)

Symbol Description Value Units

Λh New recruitment of human population 0.033 Day−1 [42]

Λh New recruitment of vector population 1000 Day−1 [42]

ph1 proportion of human movement from high to low risk areas 0.00002 Day−1

ph2 proportion of human movement from low to high risk areas 0.00001 Day−1

µh Human population birth/natural death rate 0.0056 Day−1 [?]

µv Vector population birth/ mortality rate of 0.033 Day−1 [?]

γu Rate at which temporary immune humans lose immunity γu = 0.03 Day−1 [46]

dh Disease mortality rate for humans 0.00009 Day−1 [?]

γv Rate at which exposed mosquito become infectious 0.091 Day−1 [?]

γe Rate at which exposed individuals become infectious 0.1 Day−1 [?]
εh Reduction factor of disease infection in low risk areas fitted

κh Incubation rate of human population 1
10

Day−1 [?]

κh Incubation rate of animal population 1
12

Day−1 [?]

κh Incubation rate of vector population 1
25

Day−1 [?]

γa Animal recovery rate 1
120

Day−1 [?]

ρh Progression rate individuals from asymptotic to infection class 0.03 Day−1 [?]
θh Treatment rate of infected humans fitted

βh Infection rate for mosquito-to-susceptible human population 0.092 Day−1 [?]

βv Infection rate for human-to-susceptible mosquito population 0.03 Day−1 [?]
αh Progression rate of individuals from exposed to infected class fitted

Table 2. Sensitivity analysis of parameters for the model system (2.1)

Parameter Λh Λv µh µv βh βv ρh γh
Index -0.5 +0.5 +0.0023 -0.3926 +0.5348 +0.4652 +0.4652 −0.0228

Parameter θh γu γa γv αh ph1 εh
Index -0.0035 +0.0968 -0.0592 +0.3919 +0.0263 -0.0083 -0.3297

From the results in Fig. 1, it was noted that model parameters Λv, βh, βv, σ, γu, γv and αh
have the positive influence on the R0, that is, whenever they are increased, the magnitude of R0

increases. For instance, an increase in βh by 30% will lead to an increase in the magnitude of the
R0 by 53.48%. Model parameters with negative index values have a negative influence on R0, for
example, an increase in vector mortality rate by µv by 33% will lead to a decrease on magnitude of
R0 by 39.26%.
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Fig. 1. Sensitivity analysis of the model system (2.1)

(a) (b)

Fig. 2. Effects of varying (a) disease transmission rate from infected mosquitoes to
susceptible humans modeled by parameter βh on R0 (b) disease transmission rate
from infected humans to susceptible mosquitoes modeled by parameter βv on R0

Numerical results in Fig. 2. (a) shows the disease transmission rate from infected mosquitoes to
susceptible humans modeled by parameter βh on R0. From the results we note that increase on the
disease transmission rate from infected mosquito to susceptible human increases the size of R0. In
particular, whenever the transmission rate of disease from mosquitoes to humans in the population
is greater than 10% the disease persists in the community. Fig. 2 (b) demonstrates the effect
of disease transmission rate from infected humans to susceptible mosquitoes. Overall we observe
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that whenever the transmission rate of disease from humans to mosquitoes is greater than 25% the
disease can not be eliminated in the population. Simulations in Fig. 3 (a) depicts the effects of

(a) (b)

Fig. 3. Effects of varying (a) new recruitment of susceptible mosquitoes βv on R0 (b)
progression rate of asymptotically humans to infectious class ρh on R0

varying new recruitment on susceptible mosquitoes βv on R0. The results shows that increase in
the new recruitment of susceptible mosquitoes increase the magnitude of R0. In particular, we can
note that whenever Λv is greater than 50% the disease persists in the community. Fig. 2 (b) shows
the effect of progression rate of asymptotically humans to infectious class. Overall we can note that
whenever the ρh is greater than 60% the disease remain endemic in the community. Numerical

(a) (b)

Fig. 4. Effects of varying (a) reduction factor of disease transmission in low risk area
εh on R0 (b) new recruitment of susceptible humans in the population Λh on R0

illustrations in Fig. 4 (a) shows the effect of varying reduction factor on the disease transmission
in low risk area (modeled by the parameter εh) on R0. From the results we note that increase on
the reduction factor decreases the size of R0. In particular, whenever εh is greater than 50% the
disease dies out in the population. Fig. 2. (b) shows the effect of varying the new recruitment of
susceptible humans (modeled by the parameter βh) on R0. Overall we can note that whenever the
Λh is greater than 20% the disease does not persist in the population. Fig. 5 shows the contour plot
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Fig. 5. Contour plot of the basic reproduction number R0 as the function of
treatment rate on infected individuals (modeled by parameter θh) and progression

rate of exposed humans to infectious class (modeled by parameter αh)

of basic reproduction number R0 as the function of treatment of infected individuals (modeled by
parameter θh) and progression rate of exposed humans to infectious class (modeled by parameter
αh). Overall we can note that regardless of the treatment rate, increase on progression rate of
exposed humans to infectious class by more than 50% in the population the malaria disease persists
in the community.

3.3 Parameter estimations using weekly reports of malaria cases in
Zimbabwe

In this section, we use the real data of Malaria cases reported in Zimbabwe to numerically solve
the model system (2.1) and estimate the parameters (εh, θh, αh) that minimize the deviation of
real data from prediction of model system (2.1). Fitting the model using real data and parameter
estimation in the fractional order models is an integral part in the disease modeling. Therefore, in
this study we use both the least squares and Nelder mead algorithm methods [7] to fit and estimate
the parameters (εh, θh, αh) of the proposed model (2.1). The real data used in this study are weekly
reported cases in Zimbabwe as presented in Table 3, and the commutative new infections predicted
by the model (2.1) is obtained using the equation (3.13):

c
bD

q
tC(t) =

βhSh(t)Iv(t)

Nh(t)
(3.13)

We use the following function to compute the best fitting:

F : R3
(εh,θh,αh) → R(εh,θh,αh) (3.14)

where εh, θh, αh are variables such that:

(1) For a given (εh, θh, αh), solve numerically the model differential equations (2.1) to obtain a
solution Ŷi(t) = (Ŝhi, Êhi, ˆIhi, Âhi, R̂hi, Ŝv, Êv, Îv which is an approximation of the reported
Malaria cases Y (t).

(2) Set t0 = 1 (the fitting process starts in week 1) and for t = 2, 3, ..., 52, corresponding to weeks
in where data are available, evaluate the computed numerical solution for Ih(t); that is.,
Îh(1), Îh(2), Îh(3),....., Îh(52).

(3) Compute the root mean square (RMSE) of the difference between Îh(1), Îhh(2), ...., Îh(52) and
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observed cases. This function F returns the root-mean-square error (RMSE) where

RMSE =

√√√√ 1

n

52∑
k=1

(Ih(k)− Îh(k))2, (3.15)

(4) Determine a global minimum for the RMSE using Nelder-Mead algorithm. The function F
takes values in R3 and returns a positive real number. Using the formula (3.15), we computed
the RMSE and was found to be 2.6571. This shows that the proposed model has deviations
from observed real data. On performing the fitting process we assumed the following initial
conditions Sh1(0) = 100, Eh1(0) = 90, Ih1(0) = 60, Rh1(0) = 20, Ah1(0) = 20, Sh2(0) = 800,
Eh2(0) = 100, Ih2(0) = 100, Rh2(0) = 90, Ah2(0) = 10, Sv(0) = 115, Ev(0) = 50 and
Iv(0) = 36 and the model parameters are in Table 1.

Table 3. Commutative detected of malaria cases for 52 weeks in 2014 reported in
Zimbabwe

week 1 2 3 4 5 6 7 8 9 10 11 12

Cases 1381 1939 2567 2672 1114 2516 2714 2529 1767 1677 2157 2102

Week 13 14 15 16 17 18 19 20 21 22 23 24

Cases 1782 2466 3194 1801 2396 2592 3184 2139 2576 2936 2091 3365

Week 25 26 27 27 28 29 30 31 32 33 34 35

Cases 3957 3737 4820 3622 3742 3027 2938 4750 4238 4508 5204 4302

Week 36 37 38 39 41 42 43 44 45 46 47 48

Cases 3945 3723 4938 4008 4068 5130 4670 4640 3914 4051 668 2228

Week 49 50 51 52

Cases 2638 2603 2409 2409

Fig. 6. Estimation of the fractional-order model with α = 0.514 with RMSE=2.6557
with R0 = 3.6899

Fig. 6. shows commutative detected cases of malaria as reported in Zimbabwe. We used the 52
weekly reports of malaria cases to fit in the model system (2.1). From the results we can note for
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the first 30 weeks estimates from fractional-order model deviates from the reported cases of real
data and thereafter estimates significantly better forecasts of the disease for the 35 to 52 weeks.
Overall we conclude that in a long range interaction of vectors and hosts fractional order model
present better forecasts of dynamics of malaria disease in the population.

(c)
Fig. 7. Graphical representation of residuals against time for malaria cases in

Zimbabwe for the model system (2.1)

Fig. 7. shows the graphical representation of residuals of the model system (2.1) for 52 weekly
reports of malaria cases reported in Zimbabwe. Overall we can conclude that the residuals did not
follow any particular path (exhibited random pattern) which shows that the fractional-order model
(2.1) present better forecasts to the reported real data of malaria cases in Zimbabwe. This result is
more reliable and realistic which is inline to that in [48] published.

3.4 Simulation of the model to support the analytical results

In this section, we simulated the model (2.1) at α ∈ (0, 1] to support the analytical results. We
first simulate the model at R0 < 1, followed by simulation at R0 > 1 to show the behavior of
dynamical solution in a long-range of interaction between humans and mosquitoes. Numerical
simulation in Fig. 8. shows the convergence of model solutions to the disease-free equilibrium with
different derivative orders. The solution were obtained upon setting θh = 0.4, σh = 0.05, εh =
0.4, Λh1 = Λh2 = 0.00001, ρ = 0.005, Λv = 0.001. giving R0 = 0.0013. Overall, we can note
that as the order of derivative approaches unit the time taken by the solution to converge to the
disease-free equilibrium increases.

Numerical simulation in Fig. 9 shows the dynamical solutions of infected humans and mosquitoes for
R0 = 3.6899. Overall we can observe that in a long range interaction of humans and mosquitoes,
the solution profiles are associated with periodic oscillations. The implication of results is that
inclusion of asymptotic individuals in the population destabilize the solution of model system leads
to periodic outbreaks of malaria disease in the population. Additionally, we can note that whenever
the derivative order α is reduced from 1, the memory effect of the system increases, as a result the
number of infected mosquitoes and humans increase over time.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Dynamical solutions of model system (2.1) with different order derivatives
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 9. Dynamical solutions of model system (2.1) with different order derivatives.

The solutions were obtained upon setting
θh = 0.4, σh = 0.05, εh = 0.4, Λh1 = Λh2 = 0.00001, ρ = 0.005, and Λv = 0.001 giving

R0 = 3.6899.
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4 Conclusions

In this study we proposed and analyzed a new fractional-order derivative model of malaria disease
transmission using Atangana-Baleanu in Caputo sense. In the model analysis we computed the basic
reproduction number R0 and showed that whenever R0 < 1 the disease dies out in the population
and persists whenever R0 > 1. We proved the existence and give the criteria for uniqueness of the
model solution using Lipschitz condition and Banach fixed point theorem. In numerical simulations,
We used the nonlinear least square method to perform the parameters estimation and fit the model
with real data of malaria disease reported in Zimbabwe. The results showed that the model fits
well with reported malaria cases and more relevant to those published inline[56]. We performed
the sensitivity analysis of the model parameters to determine the correlation between the model
parameters and R0. Overall, we noted that parameters Λv, βh, βv, σ, γu, γv and αh have a strongly
correlation to the threshold quantity R0. Finally, we used the Adam-Bashforth-Moulton scheme to
simulate the model. Overall, we noted that whenever the derivative order α is approaches 1, the
memory effects of infected vectors and humans increase as a results that the number of oscillations
increases overtime. The findings in this study is more useful in health authorities specifically in
developing countries where malaria disease is still endemic in most areas. In future, this model
can be extended and include the human and vector migrations and assess their effects on spread of
malaria disease in the population.
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