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Abstract 

 
Methods for estimating regression models to data in the areas showing varying variances is considered. The 

centre of attention is on diverse methods of evaluating varying variances. The nonparametric approach which 

incorporates the smoothing methods and the choice of the ideal bandwidth is discussed. Normally, the 

cardinal shortcoming which is of interest is the selection of the smoothing method and picking of the best 

bandwidth [1], Zhai, C. and Lafferty, J. [2]. The two oftenly used smoothing methods; the Gaussian Kernel 

and Spline are compared. The two smoothing techniques are illustrated and compared using data obtained 

from Nairobi Securities exchange (NSE) and found that the Gaussian Kernel outperforms the Spline 

smoother since it gives the best estimate of the variance. 

 

 

Keywords: Kernel smoother; spline; smoothing; bandwidth. 

 

1 Introduction 

 
The breakdown of fixed exchange rate system has sharply increased financial risks in financial institutions. 

Recent finance disasters in trade portfolios like the national bank of Kenya for example, have underlined the 

need for accurate financial risk measures in institutions such as banks and investment firms. The nature of 

financial risks has changed with time and therefore the method to measure them must adapt to recent 
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experience. It is in this context that quantitative measures have become vital in the management for both internal 

and external requirements parallel with others models of returns. 

 

Due to globalization, which has resulted to a fast financial world, there is motivation to develop efficient and 

effective risk measures which will respond to news just like the other forecasts and must be easy to understand 

even when the situation is complex. Despite the simplicity of the risk, its management has remained a 

challenging statistical problem partly because it depends on the joint distribution of the portifolio returns which 

typically changes overtime. It is for this reason that we estimate the variance function of shares volume of 

Nairobi stock exchange market. The purpose of the paper is to provide financial managers and shareholders with 

a non-technical and flexible model for market-to-market reporting.   

 

The study has a variance model that will help financial managers and shareholders in the following ways: -

Information reporting, Resource allocation and Performance evaluation.  

 

Variance function is essential for modifying performance for insecurity in business. This is important in an 

environment where there is large volume of trading and traders have to take on extra risk. The study of 

nonparametric approach to estimation of non- constant variance function provides encouragement to traders. 

 

The way the variance function should be described in many applications is not clear. According to [3] the 

likelihood of drawing wrong conlusions exist if the estimating model is not correctly specified. Observation 

should be left uncorrelated even in a situation where the mean of the non-parametric is left unspecified [4]. 

 

1.1 The model 

 
Let’s consider the bivariate data   𝑋𝑖 , 𝑌𝑖  , 𝑖 = 1, … , 𝑛  where the random variable 𝑋𝑖  is from uniform distribution 

and   iiii XmY  , ~  2,0 N . The variable X is distributed over the unit interval since it’s a uniform 

distribution and the errors term i  follows a standard normal distribution with mean zero (0) and variance  𝜎2 . 

The assumption also is that the errors terms and the X-variate are uncorrelated that is and the design points are 

assumed to be mutually uncorrelated. 

 

Model 1 (Parametric regression model) 
 

  iii xfY   , , where  .f  is a known function,   is the unknown parameter to be estimated, and the 

errors terms i  are (i.i.d), such that   0iE  and   iiE  022   for constant variance. 

 

Model 2 (Non-parametric regression model) 

 

Let   ,iii XmY   where  .m  is unknown function to be estimated and the errors terms  i  are 

independent and identically distributed and satisfying and satisfying the conditions   0iE  and 

  022  iiE  (non-constant variance). 

 

The regression curve 𝑓 𝑥 = 1 − 𝑥 + 𝑒−100 𝑥−
1

2
 

2

 and the structures of the variance function (variance of the 

observations is a function of the mean). 

 

Case 1 

 

𝐸 𝜀𝑖 = 𝑣𝑎𝑟 𝑌𝑖 = 𝑣𝑎𝑟 𝑓 𝑥𝑖  = 𝜎2 𝑓 𝑥𝑖   𝑜𝑟 𝜎𝑖
2 = 𝑚 𝑋𝑖 + 5  
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Case 2 

 

 𝜎𝑖
2 = 𝑋𝑖

2 + 5  

 

In case 1, the variance function is mean dependent, where it depends on the design points in case 2. 

 

Data Simulation Using Case 1 and 2 and Scatter Plots of Residuals aganist 

X-Variate and Residuals aganist  xm̂  
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2 Concept of Smoothing 

 
Let f(.) be a smooth function at x, then it is known that the observed points at ix , neighboring x must have 

details about the value of f(.) at x. Therefore, the estimator for f(x) can be constructed using the neighborhood 

mean of data adjacent to x. Levelling or smoothing of a data set   𝑋𝑖 , 𝑌𝑖  , 𝑖 = 1, … , 𝑛 calls for the the estimation 

of the expected response curve f(.) in the regression equation where the regression curve is the function of 

concern Cai, Z., J ̈onsson, P., Jin, H., and Eklundh, L. [5].  

 

In the inconsequential case in which f(.) is reliable, approximation of f(.) tends to the point of locus. In most 

situations and realistic research, it is improbable that the regression curve is continuous. Therefore, the 

assumption which is taken in consideration is that for a smooth constant function, the curve is customized as a 

smooth continuous function in small locality about x [6]. To investigating whether a two-dimensional scatter 

plot of a regression curve is provisionally constant is not easy.  Therefore, an estimation of the regression curve 

f(.) will therefore be a point acting as a substitute of point near to the middle of this loop of outcome variables 

[3].  

 

The localized mean process can be seen as the fundamental objective of smoothing.  The procedure is illustrated 

as 

 

𝑓  𝑥 = 𝑛−1  𝑤𝑖 𝑥 𝑦𝑖 ,
𝑛
𝑖=1                                    

  

Where   𝑤𝑖(𝑥) ,  i = 1.,..,n represents aa arrangement of weights which may rely on the whole vector ix   ,i= 

1, 2,…,n. Every levelling or smoothing method to be illustrated in this work is closely coinciding with of the 

form 𝑓  𝑥 = 𝑛−1  𝑤𝑖 𝑥 𝑦𝑖
𝑛
𝑖=1 . Most often the estimate 𝑓  𝑥  is mostly called the smoother and the aftermath of 

smoothing process is referred to as the smooth. 

 

The levelling parameter is the one that shapes the weights sequence  𝑤𝑖(𝑥) ,  i = 1,..,n, since the smoother 

averages on data with different means. To greater extent the levelling parameter synchronizes the size of the 

locality near x implying that a local mean over too large a locality would destroy away the good with the bad 

[7]. Practically in most circumstances an utmost over-levelled curve would result to favored estimate𝑓  𝑥 . 

Looking for a process that helps to locate the best levelling parameter that brings equilibrium between over 

levelling and under levelling is called the smoothing parameter selection problem [8]. 
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3 Kernel and Spline Smoothers 

 
3.1 Kernel function K (.) 

 
The search for an ideal bandwidth for a given levelling parameter is one of the vital studies in the areas of 

estimation in statistics recently. A number of methods are available in literature even though none of them is 

entirely adequate. In this study we set forth to usually used methods of leveling in a data set; Kernel and spline 

smoothers. 

 

1-dimensional Kernel function takes the form𝐾𝑏 𝑥 − 𝑋𝑖 =
1

𝑏
𝐾  

𝑥−𝑋𝑖

𝑏
 = 𝐾 𝑢 . 

 

It is a type of local smoother which assigns weights to the observations iX . The weights decrease with the 

distance between the point of estimation x and iX , i=1, 2, 3…n. 

 

Various forms of kernel form of kernel exist including uniform, triangle, Epenechnikov, Bisquare and Gaussian 

among others. Among these kernel function, Gaussian has infinite support while all the others are bounded in [-

1,1] (Carrlo, R.J and Ruppert, D 1987). In this study we use the Gaussian kernel which takes the form K(u)









 2

2

1
exp

2

1
u


     where     𝑢 =

𝑥−𝑋𝑖

𝑏
. The parameter b is called the bandwidth which determine how 

large neighbourhood of the target point x, is used in estimation. A large value of b (bandwidth) generates a 

smooth curve but with a high possibility of obscuring the interesting structures. A very small bandwidth 

generates a wigglier curve. 

 

In both applied and theoretical study, the choice of the Kernels is restricted. Considering the bivariate data 

 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 , the smoothed value  .m̂  produced by a Kernel function K(.) can be given as 

 

𝑓 .  =
𝑛−1  𝐾 

𝑥−𝑥𝑖
𝑏

 𝑌𝑁
𝐼=1

𝑛−1   
𝑥−𝑥𝑖
𝑏

 𝑁
𝑖=1

       ,    0 < x, ix < 1, i =1,...,N 

 

[9] 

 

3.2 Cubic spline 

 

A usual test of “loyalty to the data” for a curve f is the residuals sum of squares   𝑦𝑖 − 𝑓 𝑥𝑖  
2𝑛

𝑖=1 if f is 

permitted to be any curve open in functional form. Through the interpolation of data, the distant measure can be 

reduced to nil by any function f. The spline levelling perspective evades this unconceivable interpolation of the 

data by appraising the contest between the focus to generating a curve without too much expeditious local 

variation (Carrlo, R.J and Ruppert, D 1987). A number of methods exist for appraising the local disparities. One 

of the main ways is to express the test of roughness, for example, on the first, second and subsequent 

derivatives. The roughness penalty which is expressed by  

 

  𝑓" 𝑥  
2
𝑑𝑥  

 

 is used here to justify local disparities. The weighted sum is therefore expressed by 

 

𝑠𝑟(𝑓) =   𝑦𝑖 − 𝑓 𝑥𝑖  
𝑛
𝑖=1

2
+ 𝑟   𝑓" 𝑥  

2
𝑑𝑥  

 

 Where r expresses a levelling/smoothing parameter. The smoothing parameter 𝑟  represents the rate of change 

between deviation errors and roughness of the curve f. The problem of minimizing 𝑠𝑟 .   on the group of all 

double differentiable functions on the interval  𝑥(1), 𝑥(𝑛)  with a distinctive result )(ˆ xm which is described as 
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the cubic spline. The data points to put into consideration are adjacent to x since y data points far away from x 

will have, in basically very different expected values. In obtaining smoothed curve the selection of the spline 

function is not enough but rather the consideration of the bandwidth b is equally very important [10]. 

 

The comparison of the Kernel and Spline leveling parameters is illustrated on generated data set. There exist 

diverse forms of Kernel functions in literature which are easier to use. The most important concept to consider is 

the correct amount of smoothing to use. The main difficult in smoothing is the choice of best bandwidth that 

justifies the preference to lessen the variability of the estimator and yet takes into account important little 

features in the affected distribution (which requires a restricted bandwidth). Every leveling method has to be 

accommodated by some smoothing parameter which stabilizes the degree of correctness to the data against the 

flatness of the best estimated curve. A choice of the smoothing parameter has to be made in practice and 

controls the performance of the estimators. The important thing to note in the study is that the beneficially of a 

nonparametric levelling method should be careful that the last result about an assessed regression curve is 

partially patented since even essential ideal smoothers has a certain amount of noise that leaves space for 

patented discernment. This therefore means that for one to make ideal decision about the about the best 

smoother, then one has to have a a computer with proper statistical packages. To show the optimal function we 

consider the Gaussian Kernel which is given by  

 

K(x) 







 2

2

1
exp

2

1
x


                        x <1 

 

Since several methods of acquiring the best bandwidth are in the literature, the selection for the best bandwidth 

in this study is to present several plots from simulated data set and then come up with the bandwidth which is 

the most outstanding amongst others. The selection criterion here has been made fast and easy by using 

computer software S-plus where we have come up with a program which will perform this task. In our 

investigation here we compare the techniques of smoothing by using data obtained from Nairobi stock 

exchange. The choice of the best levelling parameter is therefore arrived at by assessing the curves plotted using 

this program and hence choosing the one that adequately fits the data (that is the one which is optimal). In this 

data set, varying smoothing parameters is done until the optimal one is found. The optimal smoothing parameter 

that is obtained here can be applied to any data set.  

 

4 Choice of Levelling/Smoothing Parameter 

 
In non-parametric regression the trouble of resolving the extent of how much to smooth is vital. Hence in this 

section we will be focusing on finding a good way of choosing the smoothing parameter of various smoothing 

methods. The qualifications for a good bandwidth selection criterion is that it should have conceptual beneficial 

properties and it should relevant in use. The conceptual beneficial properties have been proposed and it assess 

how the estimation function is to the close to the curve. 

 

Description of the smooth is what informs the choice of the smoothing technique [11]. If the main reason of 

levelling in a given set of data is to increase the ‘’wave to noise ratio” for demonstrating or to recommend a 

simple regression model, then a little “over levelled” curve with a distinctive chosen leveling parameter might 

be advisable. A rather under-levelled curve would be advisable if the attention is merely in approximating the 

regression curve itself. On the other hand, a well programmed and produced parameter is of great use beginning 

with. One of the merit of a computer generated for the Kernel smother rest in the use  An advantage of 

automatic selection of the bandwidth for kernel smoothers is that comparison between laboratories can be made 

on the basis of a standardized method. Another advantage of the same lies in the application of supplementary 

models for exploring of  more complicated regression data. 

 

We compare two smoothing techniques using simulated data sets. 

 

Some of the smoothing techniques are; 

 

(i) Kernel smoothing technique 

(ii) Spline smoothing technique 
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Kernel smoothing technique 

 

 
 

Fig. 1. Shows 100 generated data of data points with a Kernel smoothing method with leveling 

parameters:  b = 0.005, 0.185, 0.4 and 0.8. The blue curve whose leveling parameter b=0.185, gives a 

better smooth than the rest as the best smoothing parameters 

 

Spline smoothing method 

 

 
 

Fig. 2. Shows 1000 generated data points with a spline levelling method with leveling parameters: 𝒓 = 10, 

25, 40, 55. The blue wave with leveling parameter 𝒓 = 35 has the ideal bandwidth 
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5 A Case Study Using Real Data Set 

 
The assumption here is that the function of the variance is anonymous. The main purpose for approximating a 

regression curve in non-parametric includes;  

 

- To forecast the worth of the response variable for observation whose information regarding the 

independent variable is at hand. 

- to approximate the results of some independent variables on the response variable [12,13].  

 

The variance function denoted by 𝑉𝑎𝑟 𝑥𝑖 , 𝛽   or Var 𝑐𝑖 . The variance function is estimated using the residuals 

and the residuals are defined by  ̂,ii xfy  . 

 

Then the expectation of the squared residuals gives the estimate of the variance function given by  

 

𝐸(𝑟𝑖
2) = 𝐸 𝑦𝑖 − 𝑓 𝑥𝑖 , 𝛽  

2 ≅ 𝑉 𝑥𝑖 , 𝛽  [7] 

 

We can also have the model in the design alone which is defined as  

   

𝑉𝑎𝑟(𝑦𝑖) = 𝜎𝑖 = 𝑉𝑎𝑟 𝑐𝑖                                     
 

where Var(.) is unknown 

 

and  ic  is a set of i.i.d independent of  ԑ𝑖 . 

 

In more practical cases, to obtain a smooth environment we use a large data set with the aid of programmable 

computers and leveling techniques. 

 

6 Example 

 
The two smoothing methods presented above are illustrated from data obtained from the Nairobi securities 

exchange. The share volume in consecutive months for a stretch of five years four months of Kenya commercial 

bank are used for finding the best smoother. The model which relates to the time ( ix ) and ( iy ) the share 

volume is modelled and plotted in the graphs below. Other variables include time, share volume in Kenyan 

shilling, residuals and residuals squared. 

 

Graphs of share volume against time, Residuals squared against time, Residuals squared against time and 

Kernel and Spline smooth of squared residuals against time 
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Fig. 3. a) Shows a scatter plot of share volume on time b) Shows residuals squared on time c) Shows 

residuals squared against time d) Shows both kernel and spline smooth of squared residuals on time 

 

7 Conclusion 

 
The main contribution of this study is that Kernel smoother produces the best estimate when compared to the 

Spline smoother. The results in Fig. 3 (d) shows that the variance of the Kernel smoother is less than that of the 

Spline smoother. It can also be seen from the same Fig. 3(d) that the spline has more variability around the 

middle and this shows that its variance is higher. 

 

The main challenge of this study was the computational limitation of both Kernel and spline smoothers. There is 

a great difference along the boundaries (that is beginning and the end of the two curves). I recommend that more 

research be conducted to find out why there is such discrepancy on the boundaries. I also recommend that 

further research be conducted to explore on other data smoothing methods. 
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