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In this paper, we classified the paracontact metric (x, y)-manifold satisfying the Miao-Tam critical equation with x > —1. We proved
that it is locally isometric to the product of a flat (1 + 1)-dimensional manifold and an #-dimensional manifold of negative constant

curvature —4.

1. Introduction

Inspired by the positive mass theorem and the variational
characterization of Einstein metrics on a closed manifold,
with an aim to find a proper concept of metrics that would
sit between constant scalar curvature metrics and Einstein
metrics, in [1], Miao and Tam studied the variational proper-
ties of the volume functional on the space of constant scalar
curvature metrics with a prescribed boundary metric. Specif-
ically, they derived the following sufficient and necessary
condition for a metric to be a critical point:

Theorem 1 (Theorem 5 in [1]). Let Q be a compact n -dimen-
sional Riemannian manifold with smooth boundary X, y be a
given metric on X, and /%]If be the space of metrics on Q which
have constant scalar curvature K and have induced metric on
Zgivenbyy. Let g € ﬂf be a smooth metric such that the first
Dirichlet eigenvalue of (n— 1)A, + K is positive. Then, g is a
critical point of the volume functional in M, if and only if
there is a smooth function A on Q such that A=0 on X and

~(441) g + Vi1 - ARic(g) = g, (1)

where A, and V; are the Laplacian and Hessian operators
with respect to g, and Ric(g) is the Ricci curvature of g.

For brevity, we call such critical metric as Miao-Tam
critical metric and refer to equation (1) as the Miao-Tam
equation. A fundamental property of a Miao-Tam critical
metric is that its scalar curvature is a constant (see Theorem
7 in [1]). Some explicit examples of Miao-Tam critical
metrics can be found in [1, 2], including not only the stan-
dard metrics on geodesic balls in space forms but the spatial
Schwarzschild metrics and AdS-Schwarzschild metrics
restricted to certain domains containing their horizon and
bounded by two spherically symmetric spheres. In [2], the
authors classified all Einstein and conformally flat Miao-
Tam critical metrics. In fact, they proved that any connected,
compact, Einstein manifold with smooth boundary satisfying
Miao-Tam critical condition is isometric to a geodesic ball in
a simply connected space form. And then several generaliza-
tions of this rigidity result were found by different authors,
replacing the Einstein assumption by a weaker condition
such as harmonic Weyl tensor [3], parallel Ricci tensor [4],
or cyclic parallel Ricci tensor [5]. For Some other generaliza-
tions or rigidity results, we can refer to [6-10], etc.

Recently, some geometricians focus on the study of
Miao-Tam equation within the framework of contact metric
manifolds. In [11], the authors proved that a complete
K-contact metric satistying the Miao-Tam critical condition
is isometric to a unit sphere $***!. Furthermore, they studied
(k, p)-contact metrics satisfying the Miao-Tam equation.
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Moreover, the Miao-Tam equation within the framework of
Kenmotsu and almost Kenmotsu manifolds was studied in
[12], and it was proved that a Kenmotsu metric satisfying
the Miao-Tam equation is Einstein. In addition, in [13], the
authors studied the critical point equation on K-paracon-
tact manifolds; especially, they proved that any K-paracon-
tact manifolds satisfying the Miao-Tam equation must be
Einstein. We also note that some geometric structures such
as Ricci soliton were studied within the framework of para-
contact metric (k, y)-manifold (see [14]). In this direction,
it is natural to study paracontact metric (x, y#)-manifold sat-
isfying the Miao-Tam equation. In this paper, we will prove
the following main result:

Theorem 2. Let M*"*1 (¢, &, 1, g) be a paracontact metric (x, )
-manifold of dimensional (2n+ 1) with x> —1. If (g, A) is a
nonconstant solution of the Miao-Tam equation, then
M?"*1is locally flat in dimension 3, and in higher dimensions
(n>1), it is locally isometric to the product of a flat (n+1)
-dimensional manifold and an n-dimensional manifold of
negative constant curvature equal to —4.

2. Preliminaries

In this section, we recall some basic definitions and facts on
paracontact metric manifolds which we will use later. For
more details and some examples, we refer to [15-26].

A (21 + 1)-dimensional smooth manifold M?"*! is said to
have an almost paracontact structure (@, &, ), if it admits a
(1, 1)-tensor field ¢, a vector field £, and a 1-form # satisfying
the following conditions:

) n&)=1,¢*=id-nel

(ii) The tensor field ¢ induces an almost paracomplex
structure on each fiber of 2 = Ker (1), i.e., the eigen-
distributions Z* and &~ of ¢ corresponding to the
eigenvalues 1 and —1, respectively, have same dimen-
sion n

From the definition, it is easy to see that & =0, 70 ¢ =0,
and the endomorphism ¢ have rank 2xn. An almost paracon-
tact structure is said to be normal if and only if the tensor
field N, = [p, 9] — 2dn ® & vanishes identically. If an almost
paracontact manifold admits a pseudo-Riemannian metric
g such that

9(¢X, 9Y) =—g(X,Y) +n(X)n(Y), (2)

forall X, Y € I'(TM), then we say that M has an almost para-
contact metric structure, and g is called compatible metric. It
follows that = g(-, &) and g(-, ¢ - ) =—g(¢-, -). Notice that
any such a pseudo-Riemannian metric is necessarily of signa-
ture (n+ 1, n).

Ifin addition dy(X, Y) = g(X, ¢Y) for all vector fields X, Y
on M, then the manifold M*"*! (¢, £, 7, g) is said to be a para-
contact metric manifold. In this case, # becomes a contact
form, i.e., 7 A (dn)" # 0, with & its Reeb vector field. In a para-
contact metric manifold, one defines two self-adjoint opera-
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tors h and [ by h=1/2Z¢¢ and I = R(-, §)§, where Z; is the
Lie derivative along &, and R is the curvature tensor of g. It
is known in [25] that the two operators / and [ satisfy

Trh=0,hE=0,1§ =0, hgp = —ph. (3)

And there also holds
Vx§ = —¢X + hX, (4)
V5h=(ph2 -9l (5)

where V is the Levi-Civita connection of the pseudo-
Riemannian manifold (M, g). Moreover, h =0 if and only if
£ is a Killing vector field, and in this case, the paracontact
metric manifold M is said to be a K -paracontact manifold.
A normal paracontact metric manifold is said to be a paraSa-
sakian manifold.

The study of nullity conditions on paracontact geometry
is the most interesting topics in paracontact geometry. Moti-
vated by the relationship between contact metric and para-
contact geometry, in [18],. Cappelletti Montano et al.
introduced the following.

Definition 3. A paracontact metric manifold M>"*! (¢, &, 1, g)
is said to be a paracontact metric (x,y) -manifold, if its
curvature tensor R satisfies

R(X, Y)§ =x[n(Y)X —n(X)Y] +un(Y)hX -n(X)hY], (6)

for all tangent vector fields X, Y on M, where «, y are real
constants.

On a paracontact metric (k, 4)-manifold M*"*!(¢, 1, &,
g)(n = 1), the following formulas are valid [18]:

W= (1+x)9% (7)

QE = anE’ (8)

where Q is the Ricci operator associated with the Ricci tensor
Ric.

Paracontact metric (x, p)-spaces satisfy (7) but this con-
dition does not give any type of restriction over the value of
%, unlike in contact metric geometry, because the metric of
a paracontact metric manifold is not positive definite.
However, The geometric behavior of the paracontact metric
(k, p)-manifold is different according x < —1,x=1 and x>
—1. In particular, for the case x < -1 and x > —1, (k, 4)-nul-
lity condition (7) determines the whole curvature tensor field
completely. The case « = —1 is equivalent to h* = 0 but not to
h =0, which is different from contact («, 4)-space. Indeed,
there are examples of paracontact metric (k, y)-spaces with
h? =0 but h=0, as was first shown in [18, 27, 28]. In this
paper, we consider the paracontact metric (k, ¢)-manifolds
with the condition x > —1.
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3. The Proof of Theorem 2

Before giving the proof of Theorem 2, we introduce some
important lemmas which will be used later. First of all, we
recall a basic fact about paracontact metric (x, p)-manifold.

Lemma 4 (Corollary 4.14 in [18]). In any (2n+ 1) -dimen-
sional paracontact metric (x, p)-manifold M***(¢,&,1, g)
such that x > —1, the Ricci operator Q of M is given by

QX =12(1-n)+nuX +[2(n—1)+ ulhX

©)
+[2(n=1) +n(2k = @)n(X)8,

for any vector field X. In particular, (M, g) is y-Einstein if and
only if y=2(1—n), Einstein ifand only ifk=p=0and n=1
(in this case, the manifold is Ricci-flat). Further, the scalar
curvature of M is 2n(2(1 — n) + x + ny).

In the following, we consider paracontact metric («, y)
-manifold satisfying the Miao-Tam equation.

Lemma 5. Let (g, A) be a nonconstant solution of the Miao-
Tam equation on the k-dimensional semi-Riemannian mani-
fold M* with scalar curvature S. Then, the curvature tensor R
can be expressed as

R(X, Y)DA = (XA)QY — (YA)QX + A(V5Q)Y
—AMVyQX + (X)Y = (YSX,

for any vector field X, Y on M, where f =—(AS+1)/(k—1).
Proof. Tracing (1), we obtain

AS+k
Ag)\——k_l. (11)

Then, the Miao-Tam equation (1) can be exhibited as
VDA =AQX + fX, (12)
for any vector field X on M, where f=-(AS+1)/(k-1).

Taking the covariant derivative of (12) along an arbitrary
vector field Y on M, we obtain

Vy(VxDA) = (YA)QX + A(VyQ)X + AQ(VyX)

(13)
+(Y)X +fVyX.
Similarly, we have
Vy(VyDA) = (XA)QY + A(V4Q)Y + AQ(VyY) (14)

+(Xf)Y + fVyY,

for any vector field X, Y on M. Comparing the preceding two
equations and using (12) in the well-known expression of the
curvature tensor R(X,Y) =[Vy, Vy] - V|xy), we obtain the
result.

Lemma 6. Let M*"*1(¢, &, 1, g) be a paracontact metric (x, )
-manifold of dimensional (2n + 1) withk > —1, and (g, A) be a
nonconstant solution of the Miao-Tam equation on M?™*!.
Then, we have

p(n+x+1)=2x (15)

Proof. Firstly, taking covariant derivative of (8) along any
vector field X, and using (4), we can obtain

(Vx Q)¢ = Q(X — phX) — 2nk(pX — phX). (16)

Taking the inner product of (10) with £ and using (8) and
(16), we have

G(R(X, Y)DA, §) = 2nk[(XA)n(Y) = (YA )n(X)]
+49(Q(X ~ phX), Y)
-Ag(Q(@Y — 9hY), X) + 4Ankg(9Y, X)
+(X)n(Y) = (Y)n(X),
(17)
where f = —-(AS+1)/(2n) (noting that the dimension of M is
2n+1).

It follows from (6) that R(¢X, ¢Y)& = 0. Then, replacing
X by ¢X and Y by ¢Y in (17), respectively, we obtain

AQe + 9Q + Qh + hQg — 4nke|X = 0. (18)
Since A is nonconstant on M, it is easy to see that
(Qp +¢Q + 9Qh + hQg — 4nkp)X = 0. (19)
Replacing X by ¢X in (9), we have
QoX =[2(1—-n) +nu|eX +[2(n—1) + ulheX. (20)
Then, the action of h on the (20) gives

hQeX = [2(1 — n) + nulheX + (1 +«)[2(n - 1) + uleX,
(21)

where we have used (7).
Operating (9) by ¢, we have

PQX = [2(1 = n) + np|eX + [2(n — 1) + u]phX. (22)
Replacing X by hX in (22) and using (7) again, we get

@QhX = [2(1 = n) + nuJehX + (1 +«)[2(n - 1) + pu]eX.
(23)

Substituting equations (20)-(23) into (19) yields
p(n+x+1) =2k (24)

which completes the proof of Lemma 6.
Next, we will give the complete proof of Theorem 2.



Proof. Firstly, taking X =& in (17) gives

9(R(& Y)8, DA) = g(x[n(Y)S ~ Y] — phY, DA)
k(EAMN(Y) = kYA — u(hY)A.

—

Putting X =& in (6) and comparing with the forgoing
equation, we obtain

kDA + uhDA - 2nx((§A)E — DA) — (k(EA) + (Ef))E + Df = 0.
(26)

Noting that the scalar curvature S is a constant, it follows
from f =—(AS+1)/(2n) that

2nDf = -SDA. (27)
Then, we can obtain from (26) and (27) that

2nkDA + 2nphDA — 4n*k((EL)E — DA)

(28)
— 2n(x(EX) + ())& — SDA=0.

On the one hand, taking Y =& in (6), since h& =0, it
follows that

R(X, £)E = k[X - n(X)&] + u[hX — n(X)hé] = kp’X + phX,

(29)
which gives
I =Ko + ph. (30)
Substituting (7) and (30) in (5), we get
Veh = —pgh = phe. (31)

On the other hand, we obtain from (12) and (8) that

VeDA = (2nxA + f)8. (32)

Next, taking covariant derivative of (28) along & and
making use of (31) and (32), we have

(2nx + 4n’x — S) (2nKA + f)& + 2nu” hgDA

— 4n’kE(EM)E — 2niE (EX)E — 2nE(Ef )E = 0. %)
Operating this equation by ¢ shows
2nu*hDA = 0. (34)
By the action of 4 in (34), it follows from (7) that
p(k+1)¢*DA=0. (35)

Since we assume that x > —1, we divide it into two cases:
Case (i): = 0; case (ii): 9’ DA = 0.
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If case (i) occurs, it follows from Lemma 6 that x=0.
Hence, the definition of paracontact metric (x, ¢)-manifold
gives that R(X, Y)& = 0 for any vector field X,Y. From Theo-
rem 3.3 of [26], M*"*! is locally flat in dimension 3, and in
higher dimensions (n > 1), it is locally isometric to the prod-
uct of a flat (n + 1)-dimensional manifold and an n-dimen-
sional manifold of negative constant curvature —4.

If case (ii) occurs, then ¢*DA=DA- (EA)E=0, ie,
DA = (EL)E. Differentiating this along an arbitrary vector
field X together with (4) implies that

ViDA=X(ENE - (EN)(9X - ghX).  (36)

It follows from (12) that g(VyDA, Y) = g(Vy DA, X), and
then the foregoing equation shows that

XENn(Y) = Y(EM(X) = (F1)dn(X, Y)=0.  (37)

Replacing X by ¢X, Y by ¢V, and noting that dy is
nonzero for any paracontact metric manifolds, it follows that
EA=0. Hence, DA=0, A, is a constant, which gives a
contradiction.

This completes the proof of Theorem 2.
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