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ABSTRACT 
 

Recently, researchers have shown much interest in developing new continuous probability 
distributions by adding one or two parameter(s) to the some existing baseline distributions. This act 
has been beneficial to the field of statistical theory especially in modeling of real life situations. 
Also, the exponentiated family as used in developing new distributions is an efficient method 
proposed and studied for defining more flexible continuous probability distributions for modeling 
real life data. In this study, the method of exponentiation has been used to develop a new 
distribution called “Exponentiated odd Lindley inverse exponential distribution”. Some properties of 
the proposed distribution and estimation of its unknown parameters has been done using the 
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method of maximum likelihood estimation and its application to real life datasets. The new model 
has been applied to infant mortality rate and mother-to-child HIV transmission rate. The results of 
these two applications reveal that the proposed model is a better model compared to the other 
fitted existing models by some selection information criteria.  

 
 
Keywords: Odd Lindley inverse exponential distribution; exponentiated family; properties; maximum 

likelihood estimation; applications. 
 
1. INTRODUCTION 
 
In past years, different probability distributions 
have been utilized for the purpose of analyzing 
lifetime situations however it has been 
discovered that some of these distributions do 
not efficiently analyze these real life datasets and 
hence creating a problem in statistical theory and 
applications. 

 
Consequently, several compound probability 
distributions have been introduced and studied 
for modeling most real life situations and these 
compound distributions are proven to be           
flexible and more better in statistical theory 
compared to their standard counterparts ([1]- 
[12]). 

 
Due to these reasons, different authors have 
developed different extensions of the exponential 
distribution and a list of some of these 
distributions include the following: [13] proposed 
the odd Lindley inverse exponential distribution, 
[14] also introduced and studied the Exponential 
Inverse Exponential distribution, the 
Kumaraswamy Inverse Exponential distribution 
was also developed by [15], in a similar way [16] 
defined and studied the exponentiated 
generalized Inverse Exponential distribution, a 
new Lindley-Exponential distribution was 
proposed and studied by [17], a Lomax-
exponential distribution was also developed by 
[18], a transmuted odd generalized exponential-
exponential distribution was studied by [19], [20] 
derived the transmuted exponential distribution, 
[21] proposed and studied a transmuted inverse 
exponential distribution, the odd generalized 
exponential-exponential distribution was also 
studied by [22], a transmuted Weibull-
exponential distribution was considered and 
studied by [23] and the Weibull-exponential 
distribution was proposed by [24]. 
 
In line with the above propositions and the need 
for a flexible extension of the odd Lindley inverse 
exponential distribution, this paper introduced 
and studied a new distribution called 

“exponentiated odd Lindley inverse exponential 
distribution”. 

 
The probability density function (pdf) of the odd 
Lindley inverse exponential distribution 
(OLinInExD) according to [13] is defined by 
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The corresponding cumulative distribution 
function (cdf) of odd Lindley inverse exponential 
distribution (OLinInExD) is given by 
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where, 0, 0, 0x     ;   is the shape 

parameter and   is a scale parameter [13]. 
defined and studied some mathematical and 
statistical properties of  the OLinInExD and 
discovered that it is better than the                    
Lindley, exponential and inverse exponential 
distributions. 

 
Hence, this article aimed to develop a new 
continuous distribution called “an Exponentiated 
Odd Lindley Inverse Exponential distribution 
(ExpOLinInExD)”. The remaining sections of the 
article are organized as follows: formulation of 
the new distribution and its graphs is presented 
in section 2. The derivation of its properties is 
given in section 3. The estimation of parameters 
via method of maximum likelihood estimation is 
done in section 4. Application of the proposed 
distribution together with other existing ones to 
infant mortality rate and mother-to-child HIV 
transmission rate is presented in section 5. In 
section 6, the summary and conclusion of the 
study is given. 
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2. THE EXPONENTIATED ODD LINDLEY 
INVERSE EXPONENTIAL 
DISTRIBUTION (EXPOLININEXD) 

 

Following the work of [25], a random variable X is 
said to have an exponentiated form of distribution 
function if its cdf and pdf are respectively given 
by; 
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where; x > 0, and   is the extra shape 

parameter,  G x  and  g x  are the cdf and pdf of 
any continuous distribution to be extended 
respectively. 
 
Putting equation (1) and (2) into equation (3) and 
(4) and simplifying, we obtain the cdf and pdf of 
the ExpOLinInExD given in equation (5) and (6) 
respectively as follows: 
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where 
0, 0, 0, 0x      

,  and   are the shape parameters and   is the scale parameter. 
 
Graphs of the pdf and cdf of the ExpOLinInExD using different parameter values are presented in Fig. 
1 as follows. 
 

 
 

Fig. 1. (a)-PDF and (b)-CDF of the ExpOLinInExD for different values of the parameters 
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Based on the Fig. 1, it is revealed that the pdf ExpOLinInExD distribution is positively skewed and has 
different shapes with respect to the parameter values. Again the plot of the cdf depicts that the cdf 
equals to one when x approaches infinity and equals zero when x tends to zero as it should be, 
meaning that it is a valid cdf. 
 

3. STATISTICAL PROPERTIES OF ExpOLinInExD 
 
Section 3 presents useful properties of the ExpOLinInExD distribution. These amongst others include 
are: 
 
3.1 Moments 
 
Let X denote a continuous random variable, the n

th
 moment of X is given by; 
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where f(x) the pdf of the ExpOLinInExD and is stated from (6) as: 
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Prior to substitution in (8), the expansion and simplification of the pdf is done as follows: 
Let 
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Using the generalized binomial theorem on A gives: 
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Making use of the result in (10) above, equation (8) becomes: 
 

   
   

 
2 2

31
0

1 11
( ) exp 1

1 1 1

x

x

ii
x

x

ii
xi

x e e e
f x i

i e e










  




  


  

                     


                        (11) 

  
First, by expanding the exponential term in (11) using power series, it gives: 
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Using (12) above and simplifying, (11) becomes 
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Also, using the generalized binomial theorem, the last term from the above result can be written as: 
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Using (14) above in equation (13) and simplifying gives: 
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Again making use of the generalized binomial expansion on the last term from equation (15) above, 
we have: 
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Hence, the pdf in equation (15) can again be written in its simple form as follows: 
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Consequently, the pdf in (17) can also be written in its simplest form as: 
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Now, using the linear form of the pdf of the ExpOLinInExD in equation (18), the nth ordinary moment of 
the ExpOLinInExD is derived as follows: 
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Making use of integration by substitution method in equation (19) leads to the following operations: 
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Substituting for ,x  u  and dx  in equation (19) and simplifying; we have: 
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Thus we obtain the n

th
 ordinary moment of X for the ExpOLinInExD as follows: 
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Using the above moments can help in the calculation of variation, skewness and kurtosis with 
appropriate formulas. 
 

3.2 Moment Generating Function 
 
The moment generating function of a random variable X can be obtained as 
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Recall that by power series expansion, 
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Therefore, the moment generating function can also be expressed as: 
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Using the result in (23) and simplifying the integral in (22) gives: 
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    (24) 

 

3.3 Characteristics Function 
 
A representation for the characteristics function is given by 
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Recall that by power series expansion, 
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Hence, simple algebra and use of (26) above produces the following results: 
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3.4 Quantile Function 
 
According to [26], the quantile function for any distribution with cdf, F(x) is defined in the form, 

   1
qQ u X F u 

, where 
 Q u

 is the quantile function of F(x) for 0 1u   
 
Using the cdf of the ExpOLinInExD and inverting it as above gives the quantile function as follows: 
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Collecting like terms and simplifying equation (27) above gives: 
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Considering equation (29), we can see that 

1 e
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  is the Lambert function of the real argument

    11 1 eu     
 because the Lambert function is defined as:    ew xw x  

 
 
It is also important to recall that the Lambert function has two branches with a branching point located 

at  1e ,1
. The lower branch,  1W x  is defined in the interval 

1e ,1    and has a negative singularity for 

0x  . The upper branch,  0W x , is defined for 
1e ,x      . Therefore, (29) can be expressed as: 
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Recall that for any 0   and 
 0,1u

, 
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. Hence 
investigating the lower branch of the Lambert function, equation (30) can be stated as: 
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Solving equation (31), the quantile function of the ExpOLinInExD is expressed as: 
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where 
 1 .W  stands for the negative branch of the Lambert function and u is uniform interval (0,1). 

 
From (32), the median of X based on the ExpOLinInExD is calculated by letting u=0.5 and this gives: 
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Consequently, random samples could be obtained from ExpOLinInExD from (32) by letting 

 Q u X
 which is known as inverse transformation method of simulation. Hence it gives the 

representation: 
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From (32) and according to Kennedy and Keeping [27], the Bowley’s measure of skewness is defined 
as: 
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Similarly, Moors [28] defined Moors’ kurtosis based on octiles from (32) as: 
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where 
 .Q

 is calculated from equation (32). 
 

3.5 Reliability Analysis of the ExpOLinInExD 
 
The Survival function describes the likelihood that a system or an individual will not fail after a given 
time. Mathematically, the survival function is given by: 
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                                                                                                                     (37) 

 
 
Applying the cdf of the ExpOLinInExD in (37), the survival function for the ExpOLinInExD is obtained 
as: 
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(38) 
 
Hazard function is a function that describes the chances that a product or component will breakdown 
over an interval of time. It is mathematically defined as: 
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Therefore, our definition of the hazard rate of the ExpOLinInExD is given by 
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where , , 0    . 
The survival function (SF) and hazard function (HF) of ExpOLinInExD based on arbitrary parameter 
values are presented as followed below in Fig. 2: 
 

 
 

Fig. 2. (a)-SF and (b)-HF of ExpOLinInExD for selected values of the parameters 
 

Fig. 2(a) describes the behavior of the survival function, it indicates that the likelihood of survival for 
any random variable following the proposed distribution is higher at the beginning or initial stage and 
decreases as time increases and tends to zero at infinity. Fig. 2(b) also shows that the proposed 
distribution has increasing failure rate which implies that the probability of failure for any random 
variable following the distribution increases as time increases, that is, probability of death increases 
as the component ages. 
 

4. ESTIMATION OF UNKNOWN PARAMETERS OF ExpOLinInExD 
 

Let 1 2, ,..., nX X X  be a sample of size " "n  independently and identically distributed random variables 

from the ExpOLinInExD with unknown parameters ,  and  . 
 
The likelihood function is given by: 
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Let the log-likelihood function be  log | , ,l L X   
 therefore: 
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Differentiating � partially with respect to ,  and  respectively gives; 
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To solve for the maximum likelihood estimates, 
equation (42), (43) and (44) are set to zero (0) 
and the solution of the non-linear system of 
equations is obtained to give the maximum 

likelihood estimates (MLEs) of parameters 
ˆˆ , 

and ̂ . For this paper, the “AdequacyModel” 
package in R software was used to obtain the 
estimates of the parameters of the                       
proposed distribution using real life data                  
sets since the manual solution cannot be 
obtained. 
 
5. APPLICATIONS 
 
This particular section of the paper considered 
the application of the proposed distribution to two 
real life datasets to validate modeling ability of 
the proposed distribution compared to some 
other existing extensions of the inverse 
exponential distribution. Some of the distributions 
compared under this section are as follows: the 
Exponentiated Exponential Inverse Exponential 
distribution (ExpExInExD), (the proposed model), 
the Exponential Inverse Exponential distribution 
(ExInExD), Odd Lindley Inverse Exponential 
distribution (OLINExD), Lindley distribution 

(LIND), Inverse Exponential distribution (InExD) 
and Exponential distribution (ExD). To select the 
most fitted distribution to each of the two 
datasets, the following model selection 
information criteria were used. They are the 
value of the log-likelihood function evaluated at 
the MLEs (ℓ), Akaike Information Criterion, AIC, 
Consistent Akaike Information Criterion, CAIC, 
Bayesian Information Criterion, BIC, Hannan 
Quin Information Criterion, HQIC, Anderson-
Darling (A*), Cramѐr-Von Mises (W*) and 
Kolmogorov-smirnov (K-S) statistics. More about 
these statistics A*, W* and K-S can be seen in 
[29]. Some of these statistics are computed using 
the following formulas: 
 

2 2AIC k   ,
 2 log ,BIC k n 

 
2

1
2 kn

n k
CAIC

 
  

 and
 2 2 log logHQIC k n     

 
 

Where ℓ denotes the value of log-likelihood 
function evaluated at the MLEs, k is the number 
of model parameters and n is the sample size. 
Decisively, the distribution with the lowest values 
of these criteria is considered to be the most 
fitted model to the dataset. Also, all the required 
computations are performed using the R 
package “AdequacyModel”. 
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5.1 Application to Infant Mortality Rate 
(IMR) 

 
This section presents a dataset on infant 
mortality rate in Nigeria from the year 1964 to the 
year 2019 with its descriptive statistics or 
summary. 
 
This infant mortality rate per 1,000 of population 
in Nigeria from 1964 to 2019 is as given below. 

 
192.71657, 188.26883, 183.91102, 179.70244, 
175.60699, 171.38654, 166.80645, 162.17431, 
157.23233, 152.27853, 147.39343, 142.71809, 
138.29272, 134.21357, 130.67731, 127.81633, 
125.55941, 123.88542, 122.88514, 122.49766, 
122.52200, 122.85743, 123.36316, 123.86249, 
124.21932, 124.40590, 124.31438, 124.04075, 
123.65079, 123.14077, 122.40752, 121.33929, 
119.82728, 117.87892, 115.53888, 112.84664, 
109.97357, 107.02932, 104.03164, 101.04458,  
98.10692,  95.21899,  92.53070,  90.07801,  
87.96513,  86.11200,  84.57112,  83.25569,  
82.19877,  81.23519,  80.41503,  79.51666,  
78.52203,  77.27902,  75.74067,  74.16032. 

 
Data source: www.data.unicef.org 
 

The Table 1 shows a good summary of the above 
dataset with some important explanations: 
 
The descriptive statistics in Table 1 shows that 
the infant mortality rate skewed to the right with a 
very low kurtosis not far different from that of the 
normal distribution. 

 

The results from this R package and the 
commands are shown in tables as follows: Table 
2 lists the Maximum Likelihood Estimates of the 
model parameters, Table 3 presents the statistics 
AIC, CAIC, BIC and HQIC while A*, W*            
and K-S for the fitted models are given in Table 
4. 
 

The Fig. 3 presents a histogram and estimated 
densities and cdfs of the fitted models to the 
dataset. 
 

The results from Tables 3 and .4 show that the 
proposed distribution (ExpOLinInExD) fits the 
infant mortality rate data better compared to the 
other five fitted distributions (OLINExD, ExInExD, 
LinD, InExD and ExD) based on the information 
criteria (AIC, CAIC, BIC and HQIC). Also, the 
statistics in Table 4 reveal that the proposed 
model fits the dataset than the other distributions 
because the ExpOLinInExD has the minimum 
values of A*, W* and K-S statistic compared to 
every other model fitted to the dataset. 
 

The histogram of the dataset together with the 
fitted densities and estimated cumulative 
distribution functions given in Fig. 3 also confirm 
that the proposed model analyses the dataset 
better than the LIND, OLINExD, ExInExD,InExD 
and the conventional ExD. Also, the probability 
plots presented in Fig. 4 prove that the proposed 
distribution (ExpOLinInExD) is more flexible than 
the other five distributions (LIND, OLINExD, 
ExInExD, ExD and InExD) as already revealed 
previously in Tables 3 and 4 as well as Fig. 3 
respectively. 
 

 
 

Fig. 3. Histogram and plots of the estimated densities and Cdfs of the fitted distributions to the 
dataset 
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Table 1. Descriptive statistics for the dataset 
 

parameters n Minimum 
1Q  

Median 
3Q  

Mean Maximum Variance Skewness Kurtosis 

Values 56 74.16 94.55 122.69 131.56 120.74 192.72 983.73 0.5022 -0.3814 
 

Table 2. Maximum likelihood parameter estimates for the dataset 
 

Distribution ̂  ̂  ̂  
ExpOLinInExD 3.4845787 0.1336563 9.1914488 
LIND - 0.01626093 - 
OLINExD 4.503531 1.303863 - 
ExD 0.00853896 - - 
ExInExD 8.14101338 0.08348915 - 
InExD 9.545694 - - 

 
Table 3. The statistics ℓ, AIC, CAIC, BIC and HQIC based on the dataset used 

 

Distribution ̂  
AIC CAIC BIC HQIC Ranks 

ExpOLinInExD 273.4536 552.9072 553.3687 558.9832 555.2629 1st 
LIND 305.0766 612.1532 612.2273 614.1785 612.9384 2

nd
 

OLINExD 1839.102 3682.204 3682.43 3686.254 3683.774 3rd 
ExD 324.4683 650.9366 651.0107 652.962 651.7219 4

th
 

ExInExD 323.5324 651.0648 651.2912 655.1155 652.6353 5
th
 

InExD 411.5954 825.1908 825.2649 827.2162 825.9761 6th 
 

Table 4. The A
*
, W

*
,
 
K-S statistic and P-values based on the dataset used 

 

Distribution A* W* K-S P-Value (K-S) Ranks 
ExpOLinInExD 1.040266 0.1914481 0.19037 0.02988 1st 
LIND 1.003272 0.1781881 0.34529 1.814e-06 2

nd
 

OLINExD 2.71767 0.3955851 1.0000 7.772e-16 3rd 
ExD 1.002866 0.1782446 0.46914 7.992e-12 4

th
 

ExInExD 1.001909 0.1783947 0.51303 3.386e-14 5
th

 
InExD 1.078119 0.201275 0.87922 7.772e-16 6th 
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Fig. 4. Probability plots for the six fitted distributions based on the infant mortality rate dataset 
 
The above discussions have proven the general 
statement that adding parameter(s) to continuous 
probability distributions produce distributions with 
greater flexibility in modeling real life data as it 
has already been reported by many other 
authors in the previous studies. 
 

5.2 Application to Mother-to-Child HIV 
Transmission Rate (MTCHIVTR) 

 
This section presents a dataset on the rate of 
mother-to-child transmission of HIV (Human 
Immunodeficiency Virus) in Nigeria from the year 
2000 to the year 2019. The descriptive statistics 
of the dataset is also presented. 
 
The mother-to-child HIV transmission rate per 
1,000 of population in Nigeria between 2000 and 
2019 is as given below. 

37.35, 37.08, 37.00, 36.98, 36.79, 36.75, 34.35, 
32.96, 31.84, 30.35, 30.53, 28.96, 26.71, 22.50, 
19.84, 20.04, 19.44, 20.82, 22.09, 22.16 

 
Data source: www.data.unicef.org 

 
The Table 5 presents a summary of the above 
dataset with some important details: 

 
Following the descriptive statistics in Table 5,                
it is clear that the rate of transmission of                        
HIV from mother to child is bimodal and 
approximately normally distributed. 

 
The Fig. 5 shows the trend in the rate of mother-
to-child HIV transmission from 2000 to 2019 
using a bar chart. 
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Table 5. Descriptive statistics for the dataset 
 

Parameters n Minimum 
1Q  

Median 
3Q  

Mean Maximum Variance Skewness Kurtosis 

Values 20 19.44 22.14 30.44 36.76 29.23 37.35 47.55 -0.18919 -1.55278 
 

 
 

Fig. 5. A Bar chart showing the trend of mother-to-child HIV transmission rate in Nigeria from 2000 to 2019 
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Following the spread of the dataset with the bar 
chart in Fig. 5, it can be said that mother-to-child 
HIV transmission was at its high rate as from the 
year 2000 to 2005 with a non-decreasing rate. 
The transmission rate experienced a decreasing 
trend as from the year 2006 to 2014 but what we 
have from the year 2015 to 2019 is certainly an 
increasing pattern in the rate of mother-to-child 
transmission of HIV which indicates that more 
efforts or research need to be put in place to 
adequately reduce or eradicate the increasing 
rate of mother-to-child HIV transmission in 
Nigeria. 
 
Applications of the selected models to this data 
has been done and the results are presented as 
follows: Table 6 lists the Maximum Likelihood 
Estimates of the model parameters, Table 7 
presents the statistics AIC, CAIC, BIC and HQIC 
while A*, W* and K-S for the fitted models are 
given in Table 8. 
 
The Fig. 6 presents a histogram and estimated 
densities and cdfs of the fitted models to the 
dataset. 

Based on the results from Table 7, it is revealed 
that the proposed distribution (ExpOLinInExD) 
fits the MTCHIVTR data better as compared to 
the other five fitted distributions (OLINExD, 
ExInExD, LinD, InExD and ExD) using the 
information criteria (AIC, CAIC, BIC and HQIC). 
This is also evident from the statistics in Table 8 
which show that the proposed model fits the 
dataset better than the other fitted distributions, 
because the ExpOLinInExD has the minimum 
values of A

*
, W

*
 and

 
K-S compared to the other 

fitted models. 
 
Also, the histogram of the dataset together with 
the fitted densities and estimated cumulative 
distribution functions in Fig. 6 also confirm that 
the proposed model analyses the dataset better 
than the LIND, OLINExD, ExInExD,InExD and 
the conventional ExD. Also, the probability plots 
presented in Fig. 6 show that the proposed 
distribution (ExpOLinInExD) is more flexible than 
the other five distributions (LIND, OLINExD, 
ExInExD, ExD and InExD) as already revealed 
previously in Tables 7 and 8 as well as Fig. 6. 
 
 

Table 6. Maximum likelihood parameter estimates for the dataset 
 
Distribution ̂  ̂  ̂  
ExpOLinInExD 6.5769480 0.9830842 9.6667805 
LIND - 0.06968643 - 
OLINExD 2.2713912 0.1572961 - 
ExD 0.03577774 - - 
ExInExD 9.8619772 0.4947511 - 
InExD 3.568535 - - 

 
Table 7. The statistics ℓ, AIC, CAIC, BIC and HQIC based on the dataset used 

 
Distribution ̂  

AIC CAIC BIC HQIC Ranks 

ExpOLinInExD 68.39668 142.7934 144.2934 145.7806 143.3765 1
st
 

LIND 80.9853 163.9706 164.1928 164.9663 164.165 2nd 
OLINExD 80.91053 165.8211 166.5269 167.8125 166.2098 3

rd
 

ExD 87.52211 177.0442 177.2664 178.0399 177.2386 4th 
ExInExD 84.74545 173.4909 174.1968 175.4824 173.8797 5

th
 

InExD 111.0148 224.0297 224.2519 225.0254 224.2241 6th 
 

Table 8. The A
*
, W

*
,
 
K-S statistic and P-values based on the dataset used 

 
Distribution A* W* K-S P-Value (K-S) Ranks 
ExpOLinInExD 1.093851 0.1666872 0.19085 0.4087 1st 
LIND 1.042332 0.1534715 0.4152 0.001231 2

nd
 

OLINExD 1.04276 0.1536098 0.41068 0.00145 3rd 
ExD 1.044428 0.1540887 0.50118 3.587e-05 4

th
 

ExInExD 1.052848 0.1565771 0.52702 1.051e-05 5
th

 
InExD 1.111589 0.1715118 0.8323 6.661e-16 6th 
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Fig. 6. Histogram and plots of the estimated densities and cdfs of the fitted distributions to the 

dataset 
 

 
 

Fig. 7. Probability plots for the six fitted distributions based on the MTCHIVTR dataset 
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Again, this analysis has proven the general 
statement that adding parameter(s) to continuous 
probability distributions produce distributions with 
greater flexibility in modeling real life data as it 
has already been reported by many other 
authors in the previous studies. 

 
6. CONCLUSION 
 
This article presents a new continuous 
distribution called “exponentiated odd Lindley 
inverse exponential distribution”. The article has 
generated some important properties of the new 
distribution such as the moment, moment 
generating function, characteristics function, 
quantile function, coefficient of skewness and 
kurtosis, survival function and hazard function. 
The unknown parameters of the new distribution 
have been estimated in the article using the 
method of maximum likelihood estimation. The 
proposed distribution has been applied to a 
dataset on infant mortality rate and mother-to-
child HIV transmission rate in Nigeria in 
comparison with other existing distributions. Data 
exploratory analysis of the two datasets indicate 
that both infant mortality and mother-to-child HIV 
transmission rates are serious health problems in 
Nigeria and need to be attended to by relevant 
health agencies. The results from the fitted 
models based on the IMR and MTCHIVTR 
datasets show that the exponentiated odd 
Lindlley inverse exponential distribution fits both 
datasets much better than the other five fitted 
distributions. This excellent performance by the 
proposed model also indicates that it can be a 
good model especially in the area of survival 
analysis. This shows that the new model is more 
flexible than the other five models considered in 
this study and should be used for modeling other 
real life situations most especially in health 
related cases. 
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