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ABSTRACT 
 

Distribution functions, their properties and interrelationships play a significant role in modeling 
naturally occurring phenomena. Numerous standard distributions have been extensively used over 
the past decades for modeling data in several fields, however, generalizing these standard 
distributions has produced several compound distributions that are more flexible compared to the 
baseline distributions. Acquired immune deficiency syndrome is a disease caused by human 
immunodeficiency virus (HIV) that leads to a continuous decay of the human body immune system. 
Over the past few years, the rate of mother-to-child transmission of HIV has been on a non-
decreasing trend in Nigeria and hence becoming a threat to the health of the nation. The Weibull 
generalized family of distributions has been efficient in developing new continuous probability 
distributions with additional two shape parameters. In this paper, a Weibull-based model has been 
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proposed and it is called “a Weibull-Exponential Inverse Exponential distribution”. The properties, 
estimation of parameters and application of the new distribution are presented and discussed in 
this paper. Adequate application and investigation of the new model was done using a dataset on 
the rate of mother-to-child transmission of HIV and the result was compared with that of other 
competing models.  
 

 
Keywords: Weibull-G family; Weibull-exponential inverse exponential distribution; properties; 

maximum likelihood estimation; application. 
 

1. INTRODUCTION  
 
Recently, numerous extended or compound 
probability distributions have been proposed in 
the literature for modeling real life situations and 
these compound distributions are found to be 
skewed, flexible and more better in statistical 
modeling compared to their standard 
counterparts [1-14].  
 
In the year 2017, [15] developed an exponential 
inverse exponential distribution (EIED) with two 
parameters (a shape and scale parameter). This 
distribution was found to be better than the 
exponential and inverse exponential distribution 
with a study of its important mathematical and 
statistical properties, maximum likelihood 
estimation of parameters and applications              
using real life datasets can be found in [15].                     
It was also found to be skewed and flexible            
with an increasing hazard rate and different 
shapes.  
 
The probability density function (pdf) of the 
Exponential Inverse Exponential distribution 
(EIED) according to [15] is defined by 
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The corresponding cumulative distribution 
function (cdf) of Exponential Inverse Exponential 
distribution (EIED) is given by 
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Where, 0, 0, 0x     ;   is the shape 

parameter and   is a scale parameter. 
 
Similarly, other generalizations of the inverse 
exponential distribution in the literature are; the 
odd Lindley inverse exponential distribution [16], 

the Kumaraswamy Inverse Exponential 
distribution [17], the exponentiated generalized 
Inverse Exponential distribution [18], a new 
Lindley-Exponential distribution [19], the 
transmuted odd generalized exponential-
exponential distribution [20], the transmuted 
exponential distribution [21], transmuted inverse 
exponential distribution [22], the odd generalized 
exponential-exponential distribution [23], and the 
Weibull-exponential distribution [24].  
 
Therefore, the aim of this article is to introduce a 
new continuous distribution called the Weibull-
Exponential Inverse Exponential distribution 
(WEIED) using a method of generating 
continuous probability distributions proposed by 
[7].  
 
The rest of this paper is organized in sections as 
follows: the newly proposed distribution is 
defined with its plots in section 2. Section 3 
presents statistical properties of the new 
distribution. Section 4 looks at the estimation of 
parameters using maximum likelihood estimation 
(MLE). An application of the newly proposed 
model with other existing distributions to mother-
to-child HIV transmission rate presented in 
section 5 and the final summary and conclusion 
is provided in section 6. 
 

2. THE WEIBULL-EXPONENTIAL 
INVERSE EXPONENTIAL 
DISTRIBUTION (WEIED) 

 
In this section, we have defined the cdf and pdf 
of the Weibull-exponential inverse exponential 
distribution using the method proposed by [7]. 
According to [7], the formula for deriving the cdf 
and pdf of any Weibull-based continuous 
distribution is defined as:  
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Respectively, where 
 g x

 and 
 G x

 are the 
pdf and cdf of any continuous distribution to be 

generalized respectively and   and 


 are the 
two additional new parameters responsible for 
the shape of a distribution respectively. 
 

Substituting equation (1) and (2) into equation (3) 
and (4) and simplifying, we obtain the cdf and pdf 
of the WEIED given in equation (5) and (6) 
respectively as: 
 

e

1 e
( ) exp log 1 e

x

x
F x












 
   
  

    
              (5) 

 

and 
 

e 1

e e1 e

1 1
2 e

2

1 e

e e
( ) log 1 exp log 1e e

1 e 1 e

x

x
x xx

x x
x

x

x

e e
f x

x




 

 






 

 








 

 




 
        
           

         
    
  

        
                                           

                                                                          (6) 
 

Where 
0, 0, 0, 0x      

,
, 

 and 


 

are the shape parameters and   is the scale 
parameter.  
 
Plots of the pdf and cdf of the WEIED using 
some parameter values are presented in Fig. 1 
as follows. 

From the Fig. 1, it is clear that the pdf of WEIED 
distribution is positively skewed and takes 
various shapes depending on the parameter 
values. Also, from the above plot of the cdf, it is 
seen that the cdf equals to one when x 
approaches infinity and equals zero when x 
tends to zero as normally expected. 
 

3. USEFUL STATISTICAL PROPERTIES 
OF WEIED 

 
In this section, useful properties of the WEIED 
distribution have been derived and discussed as 
follows:  
 

3.1 Quantile Function 
 
According to [25], the quantile function for any 
distribution is defined in the form 
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 where 
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 is the 

quantile function of F(x) for 0 1u   
 

Taking F(x) to be the cdf of the WEIED and 
inverting it as above will give us the quantile 
function as follows: 
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Simplifying equation (7) above and solving for x 
presents the quantile function of the WEIED as: 

 

 
 

Fig. 1. (a) PDF and (b) CDF of the WEIED for different values of the parameters 
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This function is used for obtaining some 
moments like skewness and kurtosis as well as 
the evaluation of median and for generation of 
random variables from the distribution.  
 
3.2 Skewness and Kurtosis 
 
This paper presents the quantile based 
measures of skewness and kurtosis due to non-
existence of the classical measures in some 
cases.  
 
According to [26], the Bowley’s measure of 
skewness based on quartiles is given by: 
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Also, the Moors kurtosis based on octiles 
proposed by [27] and is given by; 
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Where 
 .Q

 is obtainable with the help of 
equation (8). 
 

3.3 Reliability Analysis of the WEIED 
 

The Survival function describes the likelihood 
that a system or an individual will not fail after a 
given time. Mathematically, the survival function 
is given by: 
  

   1S x F x 
                          (11) 

  
Applying the cdf of the WEIED in (11), the 
survival function for the WEIED is obtained as: 
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Hazard function is a function that describes the 
chances that a product or component will 
breakdown over an interval of time. It is 
mathematically defined as: 
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Therefore, our definition of the hazard rate of the 
WEIED is given by 
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.            

Where 
, , , 0     . 

 

The figure below presents a plot of both the 
survival function and hazard function of WEIED 
based on some selected parameter values as 
follows: 
 

The plot in Fig. 2(a) show that the chances of 
survival equal are higher at the beginning or 
early age and decrease as the time increases 
and tends to zero at infinity. Figure 2(b) also 
revealed that the proposed distribution has 
increasing and constant failure rate which implies 
that the probability of failure for any random 
variable following a WEIED increases as time 
increases and could be constant for other 
parameter values. 
 

4. ESTIMATION OF UNKNOWN 
PARAMETERS OF THE WEIED 

 

In this section, the estimation of the parameters 
of the WEIED is done by using the method of 
maximum likelihood estimation (MLE). Let 

nXXX .,,........., 21  be a sample of size ‘n’ 
independently and identically distributed random 
variables from the WEIED with unknown 

parameters , ,    and 


 defined previously.  
 
The likelihood function of the WEIED using the 
pdf in equation (6) is given by; 
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Let the natural logarithm of the likelihood function 

be,
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the natural logarithm of the function above gives: 
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Fig. 2. (a)-Survival function and (b)-Hazard function of WEIED for selected values of the 
parameters 
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Equating (17), (18), (19) and (20) to zero (0) and 
solving for the solution of the non-linear system 
of equations above will give the maximum 

likelihood estimates 
ˆ ˆ ˆ, ,  

 and 
̂

 of 

parameters , ,    and 


 respectively. 

However, these solutions cannot be obtained 
manually except numerically with  
the aid of suitable statistical software such as R 
software as used in this study.   
 

5. APPLICATION TO MOTHER-TO-CHILD 
HIV TRANSMISSION RATE 
(MTCHIVTR)  

 
This section presents a dataset on the rate of 
mother-to-child transmission of HIV (Human 
Immunodeficiency Virus) in Nigeria from the year 
2000 to the year 2019. The descriptive statistics 
and graphs of the dataset are also presented.  
 
The mother-to-child HIV transmission rate per 
1,000 of population in Nigeria between 2000 and 
2019 is as given below. 
 
37.35, 37.08, 37.00, 36.98, 36.79, 36.75, 34.35, 
32.96, 31.84, 30.35, 30.53, 28.96, 26.71, 22.50, 
19.84, 20.04, 19.44, 20.82, 22.09, 22.16 
 
Data source: www.data.unicef.org 
 
The following table and figures present a good 
exploration of the dataset with some 
explanations. 

 
A summary of the dataset in Table 1 and Fig. 3 
has shown that the rate of transmission of HIV 
from mother to child is bimodal and 
approximately normally distributed. 
 
Also, the trend in the rate of mother-to-child HIV 
transmission from 2000 to 2019 using a line plot 
is shown in Fig. 4. 
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Table 1. Summary statistics of the dataset 
 

Parameters n Minimum 
1Q  

Median 
3Q  

Mean Maximum Variance Skewness Kurtosis 

Dataset A 20 19.44  22.14  30.44  36.76  29.23   37.35  47.55  -0.18919 -1.55278  

 

 
 

Fig. 3. A graphical summary of the dataset 
 

 
 

Fig. 4. A Line plot of Mother-to-child HIV Transmission Rate in Nigeria from 2000 to 2019 
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From Fig. 4, the plot reveals the trend in the rate 
of mother-to-child transmission of HIV which 
shows that mother-to-child HIV transmission was 
a very big problem from the year 2000 to 2005 
with a non-decreasing rate. Also, there came a 
decreasing trend in the rate of HIV transmission 
from mother to child as from the year 2006 to 
2014, however, the trend from the year 2015 to 
2019 is certainly an increasing move in the rate 
of mother-to-child transmission of HIV which 
predicts that more work have to be done by 
relevant stakeholders or organizations to 
drastically reduce or possibly eradicate the rate 
of mother-to-child HIV transmission in Nigeria. 
 
This increasing trend in the rate of mother-to-
child HIV transmission has been attributed to 
some causes such as high prevalence of HIV 
among pregnant women, high total fertility rate, 
prolonged breast feeding/missed feeding culture, 
lack or non-use of modern health facilities for 
antenatal and delivery sessions in the country 
[28-30].  
 
Sequel to this challenge, this study fits the 
proposed Weibull-Exponential Inverse 
Exponential distribution (WEIED) to the above 
dataset in comparison with other existing 
probability distributions such as Exponential 
Inverse Exponential distribution (EIED), Odd 
Lindley Inverse Exponential distribution 
(OLinED), Inverse Exponential distribution (IED), 
Weibull distribution (WD) and Exponential 
distribution (ED). 

The model selection process has been done 
using the following model selection criteria: the 
value of the log-likelihood function evaluated at 
the MLEs (ℓ), Akaike Information Criterion (AIC), 
Consistent Akaike Information Criterion (CAIC), 
Bayesian Information Criterion (BIC), Hannan 
Quin Information Criterion (HQIC), Anderson-
Darling (A*), Cramѐr-Von Mises (W*) and 
Kolmogorov-smirnov (K-S) statistics. Other 
details information on these criteria or              
statistics (A*, W* and K-S) can be found from 
[31].  
 
Note: the probability model or distribution with 
the lowest values of these criteria is considered 
to be the best model that fit the dataset. Also, all 
the required computations are performed using 
the R package “AdequacyModel” which is freely 
available from http://cran.r-
project.org/web/packages/AdequacyModel/Adeq
uacyModel.pdf. The results from this R package 
and the commands are shown in tables as 
follows: 
 
Table 2 lists the Maximum Likelihood Estimates 
of the model parameters, Table 3 presents the 
statistics AIC, CAIC, BIC and HQIC while A*, W* 
and K-S for the fitted models are given in Table 
4. 
 
The following figure presents a histogram and 
estimated densities and cdfs of the fitted models 
to the MTCHIVTR dataset. 

 
Table 2. Maximum likelihood parameter estimates from MTCHIVTR dataset 

 
Distribution ̂  ̂  ̂  ̂

 
WEIED 9.2809134  0.5474425  9.3280471  2.0293554 
OLinED 9.1879682  0.6327105  - - 
EIED 7.2246774  0.2803205 - - 
ExD 0.03421484 - - - 
WD  - -  0.0376618  0.7354662  
IED 2.68577 - - - 

  
Table 3. The statistics ℓ, AIC, CAIC, BIC and HQIC based on MTCHIVTR 

 
Distribution ̂  

AIC CAIC  BIC  HQIC Ranks 

WEIED 67.85642  143.7128  146.3795  147.6958  144.4904  1
st
  

OLinED 81.13441  166.2688  166.9747  168.2603  166.6576  2nd  
EIED 85.10735  174.2147  174.9206  176.2062  174.6035  3

rd
   

ExD 87.50186  177.0037  177.2259  177.9994  177.1981  4th   
WD 98.40054  200.8011  201.507  202.7926  201.1898  5

th
  

IED 116.0583  234.1166  234.3388  235.1123  234.311  6th  
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Fig. 5. Histogram and plots of the estimated densities and cdfs of the fitted distributions to the 
dataset 

 

 
 

Fig. 6. Probability plots for the six fitted distributions based on the MTCHIVTR dataset 
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Table 4. The A
*
, W

*
,
 
K-S statistic and P-values based on the dataset used 

 
Distribution A* W* K-S P-Value (K-S) Ranks 
WEIED 1.1421  0.1795449  0.19121  0.4064  1

st
  

OLinED 1.044315  0.1541706  0.42399  0.0008895  2
nd

  
EIED 1.052061  0.1563206  0.46355  0.0001864  3rd   
ExD 1.044722  0.1541682  0.4858  7.176e-05  4

th
   

WD 1.058792  0.1578691  0.58284  5.526e-07  5th  
IED 1.109782  0.1710509  0.87096  2.2e-16  6

th
  

 
A brief discussion of the tables above is as 
follows: from the results in Table 3 it is 
understood that the proposed distribution 
Weibull-Exponential inverse exponential 
distribution (WEIED) is better compared to the 
performance of the other fitted distributions 
following the values of the first four information 
criteria (AIC, CAIC, BIC and HQIC). Similarly, 
from the other model selection criteria in Tables 
4, it is also clear that the WEIED has the 
minimum values of A*, W* and K-S statistic 
compared to every other model fitted to the 
MTCHIVTR dataset. Based on these model 
selection criteria, it is clear that the WEIED has 
the overall best fit to the mother-to-child HIV 
transmission rate dataset and therefore it is 
taken as the most appropriate model for 
analyzing this MTCHIVTR dataset as considered 
in this study.  
 
Also, the histogram of the MTCHIVTR dataset 
together with the fitted densities and estimated 
cumulative distribution functions given in figure 5 
prove that the proposed model analyses the 
dataset better than the other five distributions. 
Furthermore, the probability plots in figure 6 are 
evidences that the proposed distribution 
(WEIED) is more flexible than the other five 
distributions (OLinED, EIED, ED, WD and IED) 
as already revealed previously by the statistics in 
Tables 3 and 4 as well as in Fig. 5.  
 
From our results in this study, it is true that 
adding parameter(s) to most continuous 
probability distributions leads to more flexible 
distributions that could be used in modeling real 
life data which is in line with many other previous 
results.  

 
6. CONCLUSION 
 
Just as discussed above, this paper developed a 
new distribution called “a Weibull-Exponential 
Inverse Exponential distribution”. The statistical 
properties of this model which are useful have 
been derived and studied. The quantile function, 
coefficient of skewness and kurtosis, survival 

function and hazard function were defined and 
discussed in this paper. The unknown 
parameters of the proposed model were 
estimated using the method of maximum 
likelihood estimation. The WEIED was used to fit 
a dataset on mother-to-child HIV transmission 
rate in Nigeria from the year 2000 to 2019 in 
comparison with other existing extensions of the 
inverse exponential distribution. It was also 
discovered that the rate of mother-to-child 
transmission of HIV in Nigeria is on the increase 
following its trend from 2000 to 2019 and there is 
need for immediate actions from relevant health 
agencies or organizations. Our results from 
application of the proposed model to the HIV 
transmission data reveal that the Weibull-
exponential inverse exponential distribution fits 
the dataset much better than the other five fitted 
distributions. This fitting ability of our model is an 
indication that the proposed model will be useful 
for describing other medical situations and 
survival analysis in general.         
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