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Abstract

The distribution of chitinolytic enzymes in eight organs of the golden cuttle-
fish Sepia esculenta was determined. Chitinase activity (activity of endo-type
chitinolytic enzyme) was measured using pNP-(GIcNAc), (n = 2, 3) as sub-
strates, with high activity detected in the liver, posterior salivary gland, and
stomach. - N-acetylhexosaminidase (Hex) activity (activity of exo-type chiti-
nolytic enzyme) was determined using pNP-(GIcNAc) as a substrate, and high
activity was observed in six organs, including the liver, branchial heart, post-
erior salivary gland, and stomach. In addition, two chitin-binding proteins
(CBP-A, CBP-B) were isolated from the liver using a chitin affinity column.
Two full-length cDNAs (SeChi-1: 1484 bp; SeChi-2: 1748 bp) encoding chiti-
nases were obtained from the liver of S esculenta. SeChi-1 contained a
1377-bp open reading frame (ORF) encoding 459 amino acids, and SeChi-2
contained a 1656-bp ORF encoding 552 amino acids. Domain structures pre-
dicted from the deduced amino acid sequences of SeChi-1 and SeChi-2 (Se-
Chi-1, SeChi-2) contained signal peptides, a GH Family 18 catalytic domain,
one chitin binding domain (CBD) in SeChi-1, and two CBDs in SeChi-2.
Proteome analysis revealed that 125 peptide residues of CBP-A were present
in SeChi-1, and 116 peptide residues of CBP-B were present in SeChi-2. Or-
gan expression analysis revealed that SeChi-1 and SeChi-2 were expressed on-
ly in the liver of S. esculenta. Phylogenetic analysis of SeChi-1, SeChi-2, and
GH family 18 chitinases revealed that SeChi-2 belongs to a group of previous-
ly reported squid chitinases, while SeChi-1 does not belong to any previously
reported group of mollusk chitinases.
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1. Introduction

Chitin, a f-1,4-linked polysaccharide of N-acetyl-D-glucosamine (GlcNAc), is
an abundant reproducible biomass found widely in the exoskeletons of arthro-
pods, the cell walls of fungi, and the cuticles of nematodes [1] [2] [3] [4]. Chiti-
nolytic enzymes can be classified into two categories according to their degrada-
tion patterns: endo-type chitinolytic enzymes, called chitinase (EC 3.2.1.14),
which degrade a random chitin polymer to produce chitin oligosaccharides
(GlcNAc),, and exo-type chitinolytic enzymes, called S- N-acetylhexosaminidase
(Hex) (EC 3.2.1.52), which degrade (GlcNAc), from the nonreducing end of it to
produce GIcNAc [5] [6]. Chitinases are found in various living organisms, in-
cluding animals, plants, and microorganisms, and have important roles in bio-
logical processes, such as digestion, morphological changes during growth, and
immunity [5] [7]. Chitinases are classified into glycoside hydrolase (GH) family
18 or 19, based on the homology of amino acid sequences [4] [8] and catalytic
mechanisms in their active domains [9] [10]. GH family 18 chitinases are found
widely in biology, including in microorganisms, animals, and plants [5]. Con-
versely, GH family 19 chitinases are found mainly in plants [11].

In marine animals, studies have reported the purification, properties, and
cDNA cloning of chitinase isozymes mainly obtained from the fish stomach,
which are involved in digestion [12]-[17]. Chitinases in the fish stomach are
classified into two groups based on differences in their primary structure and the
patterns of degradation of (GlcNAc),: acidic fish chitinase-1 (AFCase-1) and
acidic fish chitinase-2 (AFCase-2) [16] [17] [18] [19]. Conversely, studies re-
porting the cDNA cloning and expression of chitinases and chitinase-like pro-
teins from bivalves and gastropods, which are mollusks, have noted that these
play roles in shell formation [20] [21] [22], immunity [23] [24] [25] [26], and
digestion [27]. Chitinase isozymes have been purified and studied from the liver
of Decembrachiata (squid and cuttlefish), and are involved in digestion [28] [29]
[30] [31]. Furthermore, two chitinase isozymes have been reported in the liver of
Japanese common squid, and identified based on differences in molecular weight
and N-terminal amino acid sequences [29] [30], and two chitinase isozymes
have been reported in the liver of spear squid, and identified based on expressed
sequence tag (EST) analysis [32]. However, the full-length genes have not yet
been determined. Conversely, chitinases have been obtained from the posterior
salivary gland of octopus [33] and cuttlefish [34], and found to act as poison. A
chitotriosidase gene, which is involved in the induction of luminescent bacte-

ria, has been found in the light organ of the Hawaiian bobtail squid Euprym-
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nascolopes [35]. Thus, the roles of mollusk chitinases are not limited to diges-
tion and range widely; thus, many isozymes exist to support these different
roles.

Golden cuttlefish Sepia esculenta, used in the present study, belongs to De-
cembrachiata and is a type of mollusk that mainly ingests crustaceans, which
contain chitinous substances, and fish [36]. We have previously reported the
distribution of chitinase activity using glycolchitin as the substrate [37] and pu-
rification and properties of a chitinase obtained from the liver of S. esculenta
[31]; however, no findings of enzyme proteins and genes corresponding with the
chitinase isozymes have been reported. In this study, we first observed the dis-
tribution of chitinase activity using two kinds of chitinase specific substrates in
the body of S. esculenta, and isolated two types of chitin-binding proteins
(CBPs) from the liver that exhibited particularly high chitinase activity. Next, we
cloned chitinase genes from the liver and obtained two types of full-length genes.
Furthermore, the organ expression of the genes was analyzed, domain structures
were compared, and phylogenetic analyses was performed based on the deduced
amino acid sequences. The relationship between the two types of CBPs was elu-
cidated and the different chitinase genes obtained were examined by proteome
analysis. In summary, this study is the first to discuss the distribution of chitino-
lytic enzymes in S. esculenta, the presence of chitinase isozymes and features of
their domain structure, and the positioning of chitinase isozymes in phylogenet-

ic analysis.

2. Materials and Methods
2.1. Materials

Fresh S. esculenta was purchased from Tsukiji Fish Market (body weight: 183 g,
liver weight: 9.5 g).

2.2. Measurement of Chitinolytic Enzyme Activity

Organs were removed from S. esculenta for subsequent analysis. Each organ was
homogenized in five volumes of 20 mM phosphate buffer (pH 7.2), and then the
homogenate was centrifuged at 7000 x g for 20 min. The supernatant was used as
the crude enzyme solution. Chitinase and Hex activities were measured using
p-nitrophenyl (GlcNAc),, (PNP-(GIcNAc),) (n = 2, 3) (Seikagaku, Tokyo, Japan)
and pNP-GIcNAc (Seikagaku) as substrates, respectively, according to the me-
thod described by Ohtakara [38], with slight modification. Briefly, 3.0 uL of
crude enzyme solution and 2.5 pL of 4mM substrate solution were added to 10
uL of 0.2 M phosphate-0.1 M citrate buffer (pH 6.0), and then the solution was
incubated at 37°C for 20 min. After incubation, 65 pL of 0.2 M sodium carbo-
nate solution was added, and the absorbance of released p-nitrophenol was
measured at 420 nm. One-unit of chitinolytic enzyme activity (U) was defined as
the amount of enzyme that liberated 1 pmol of p-nitrophenol per minute, and

was expressed as the activity per gram of organ.
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2.3. Isolation of CBPs from the Liver of S. esculenta

Unless otherwise noted, all processes were carried out at 0°C - 4°C. Livers were
collected from fresh S. esculenta and kept at —80°C until use. The livers were
homogenized with five volumes of 50 mM sodium acetate buffer (pH 5.5) and
centrifuged at 7000 xg for 20 min. Ammonium sulfate was added to the super-
natant to give 70% saturation, and the preparation was left to stand for 24 h. The
precipitate was then collected by centrifuging at 7000 xg for 20 min, and di-
alyzed in 20 mM sodium phosphate buffer (pH 7.2). The dialyzed solution was
centrifuged at 7000 xg for 20 min and NaCl was added to bring the concentra-
tion to 1 M. This solution was applied to a chitin affinity column (Chitin EX
column) (Funakoshi, Tokyo, Japan) (1.5 x 10 cm) previously equilibrated with
20 mM sodium phosphate buffer (pH 7.2) containing 1 M NaCl, and the
non-adsorbed fractions were eluted with the same buffer. Adsorbed fractions
were eluted with 0.1 M acetic acid. Finally, the adsorbed fractions were dialyzed

with distilled water. Chitinase activity was measured using pNP-(GIcNAc),.

2.4. Amino Acid Sequence of the CBPs Isolated from the
Liver of S. esculenta

The chitinase-active fraction was subjected to sodium dodecyl sulfate-polyacry-
lamide gel electrophoresis (SDS-PAGE) and stained with AE-1360 Ez Stain Sil-
ver (ATTO, Tokyo, Japan). A gel slice was cut into small pieces and destained
with destaining solution (15 mMK;[Fe(CN)], 50 mM Na,S,0,). Destained gel
pieces were trypsinized as described in the manual for the In-Gel Tryptic Diges-
tion Kit (Thermo Scientific, Waltham, MA). The peptide mixtures obtained were
subjected to a nanoscale liquid chromatography-electrospray (Thermo Scientif-
ic) equipped with a captive spray ionization source (Michrom Bioresources,
Auburn, CA) and an Advance UHPLC System (Michrom Bioresources).

2.5. cDNA Cloning of Chitinases from the Liver of S. esculenta

Total RNA was extracted from the S. esculenta liver using ISOGEN II (Nippon
Gene, Tokyo, Japan) according to the manufacturer’s instructions. Next, cDNA
was synthesized using 1.0 ug of total RNA, a PrimeScript reverse transcriptase
(Takara Bio, Shiga, Japan), and an oligo dT primer (Table 1). The reaction con-
ditions were 90°C for 3 min, 42°C for 60 min, and 70°C for 10 min. The primers
used are listed in Table 1, and the primer combinations are shown in Figure 1.
Internal sequences were amplified in a solution containing the synthesized
cDNA, Go Taq Green Master Mix (Promega, Madison, USA), and degenerate
primers designed using the conserved amino acid sequences of GH family 18
chitinases from several organisms. PCR parameters for the first PCR were as
follow: initial denaturation at 95°C for 2 min, followed by 35 cycles of 95°C for
30 s, 55°C for 1 min, and 72°C for 2 min. Nested PCR was performed using the
same PCR parameters except that the sample was 10-fold diluted for the first

PCR products. Forward and reverse primers were designed from the chitinase
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Figure 1. Schematic representation of the cDNA structure of (a) SeChi-1, (b) SeChi-2
and location of the primers. Arrowheads indicate the primers, and lines between the ar-
rowheads indicate the amplified cDNA fragments.

Table 1. Primers used for PCR, RACE, and organ expression.

Primer Sequence (5'-3") Purpose

Oligo dT CTGTGAATGCGACTACGATTTTTTTTTTTTTTTTTTT cDNA synthesis

Chi-a* GGNGGNTGGAAYATGGG Primary PCR
Chi-b* TNGCNGCNTTYGARTGGAAYGA Primary PCR
Chi-c* ANCANRANCCNTTRGTYACCCA Primary PCR
SeChi-1-1 GCACCAAAGAAAAAAGTTGAT 3RACE
SeChi-2-1 GGACATAACAGCCCTCTG 3'RACE
3R CTGTGAATGCGACTACGAT 3'RACE
SeChi-1-2 GCCCATGTTCCAGCCACC 5RACE
SeChi-1-3 TTCGTCGTTCCACTCAAAAGC 5RACE
SeChi-1-4 CCCATTCAGTTTGGCAAAAGC 5RACE
SeChi-2-2 CGCTACCATGGCAGTGAAAGG 5RACE
SeChi-2-3 CTTCATCCATGGTTCAGATTC 5RACE
AAP GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG 5RACE
AUAP GGCCACGCGTCGACTAGTAC 5RACE
SeChi-1-5 ACACATTACAGCAAA Full-length ORF
SeChi-1-6 TAATAAATACCAAGATTAT Full-length ORF
SeChi-2-4 CGAGTTCTGGTGGACAAA Full-length ORF
SeChi-2-5 GGCTGAAAAATAAAATGT Full-length ORF
pS-actin-a GGTATGTGCAAAGCTGGTTTT Organ expression
pS-actin-b GTGGGTGACACCATCACCAGA Organ expression
SeChi-1-a GAAACTTTGATGGTTTGGACAT Organ expression
SeChi-1-b TGTGTCCATACAAAGCAATTCC Organ expression
SeChi-2-a GAGAAATACCCACTGCTGAAGA Organ expression
SeChi-2-b AGAACAGTTAGGAATAGCGGAT Organ expression

*Degenerate primers; 5’AAP: 5’RACE abridged anchor primer; AUAP: abridged universal anchor primer.
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gene sequences obtained by the internal sequence amplification, and the up-
stream (5') and downstream (3') regions were amplified using the rapid amplifi-
cation of cDNA ends (RACE) method. PCR parameters for the 3' RACE analyses
were as follow: initial denaturation at 95°C for 2 min, followed by 35 cycles of
95°C for 30 s, 55°C for 1 min, and 72°C for 2 min. The 5' RACE analyses were
performed using kits provided by Invitrogen (Carlsbad, CA), according to the
manufacturer's instructions. Internal sequences and PCR products obtained by
RACE were electrophoresed in 2% agarose gel, and DNA was extracted using
Quantum Prep®Freeze'N Squeeze spin columns (Bio Rad, Hercules, CA) and li-
gated into the pGEM-T Easy Vector (Promega). Full-length chitinase genes ob-
tained from the liver of S. esculenta were amplified using platinum®Pfx DNA
polymerase (Invitrogen), which has proofreading activity. The reaction condi-
tions were: 35 cycles of 94°C for 15 s, 55°C for 30 s, and 68°C for 2 min. The
full-length genes obtained were extracted using the same method described for
the internal sequence amplification. Base sequences were determined using the
Big Dye Terminator Cycle Sequencing FS Ready Reaction Kit (Applied Biosys-
tems, Foster City, CA).

2.6. Organ Expression of SeChi-1 and SeChi-2

Total RNA was extracted from . esculenta organs. cDNA was synthesized using
0.5 pg of total RNA obtained from each tissue and an oligo dT primer, and am-
plified using PCR with 1.0 ug of the synthesized cDNA, primers for SeChi-1,
SeChi-2, and Decembrachiata S-actin amplification primers (Table 1). The reac-
tion conditions were: 30 cycles of 95°C for 30 s, 55°C for 1 min, and 72°C for 2

min.

2.7. Phylogenetic Analysis of Chitinases

Phylogenetic analysis, based on the deduced amino acid sequences of the
full-length SeChi-1 and SeChi-2 genes, was performed using chitinase genes ob-
tained from multiple organisms. The analysis was performed using ClustalW

(http://clustalw.ddbj.nig.ac.jp/) and Tree view.

3. Results and Discussion
3.1. Distribution of Chitinolytic Activities

Chitinolytic activity measurement using pNP-(GlcNAc), and pNP-(GlcNAc), as
substrates showed that out of eight measured organs of S. esculenta, the liver and
stomach, which are involved in digestion, and the posterior salivary gland, which
contains chitinase genes that were also found to be present in other cephalopods
[33] [34], exhibited high activity (Figure 2(a)). When using glycolchitin as sub-
strate, chitinase activity was detected only liver, stomach, and caecum [37].
Moreover, Hex activity, which is characteristic of exo-type chitinolytic enzymes,
was high in the following six organs: the liver, heart, branchial heart, posterior

salivary gland, stomach, and caecum (Figure 2(b)).
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Figure 2. The distribution of the chitinolytic activities in the organs: (a) Chitinase activ-
ity; (b) Hex activity. (») pNP-(GlcNAc),; (=) pNP-(GlcNAc),; (O0) pNP-(GlcNAc).

In digestive organs, chitinases and Hex are involved in the degradation of chi-
tinous substances following their intake as feed. This is consistent with the feed-
ing habit of S. esculenta; that is, S. esculenta ingests organisms containing chi-
tinous substances, such as shrimps and crabs [36], suggesting that S. esculenta
degrades chitin from feed into GIcNAc using both endo- and exo-type enzymes.
In addition, it is possible that chitinases in the posterior salivary gland act as a
poison, as observed in other cephalopods [33] [34]. Furthermore, because blood
chitinases in mollusks have important roles in immunity [23], chitinases in the
heart and branchial heart, which are not involved in digestion, are involved in
defense against organisms containing chitinous substances, such as parasitic

crustaceans and nematodes.

3.2. Isolation of CBPs from the Liver of S. esculenta

Using a chitin affinity column, CBPs were separated from the enzyme solution
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obtained from . esculenta liver via 0% - 70% ammonium sulfate fractionation
(Figure 3). SDS-PAGE was performed using the fraction with the highest chiti-
nolytic activity; CBPs with molecular weights of 52 and 62 kDa (CBP-A, CBP-B)
were detected (Figure 4).

0.7 1 r 0.5
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¢ 0.6:

- 0.4
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S 0.4 - 03 2
3 e
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2 1 Acetic acid 5
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Figure 3. Separation of chitin binding proteins (CBPs) from the liver of S. esculenta by
using chitin affinity column chromatography. Sample solution was applied to a Chitin EX
column previously equilibrated with 20 mM sodium phosphate buffer solution (pH 7.2)
containing 1 M NaCl, and the non-adsorbed fraction was eluted with the same buffer.
The adsorbed fraction was eluted with 0.1 M acetic acid.

1 2
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Figure 4. SDS-PAGE of CBPs. (1: Marker; 2: Chitinase active fraction obtained by Chitin
EX column chromatography.)
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CBP-B was considered to be SeChi, which is a chitinase purified from the liver
of S. esculenta [31], because the molecular weight of CBP-B (62 kDa) was con-
sistent with that of SeChi. Two types of chitinase isozymes with molecular
weights of 38 [28] and 42 kDa [30] have previously been purified from the liver
of Japanese common squid. This suggests that the CBP-A newly detected in this
study is an isozyme of chitinase in the liver of S. esculenta.

3.3. cDNA Cloning of Chitinases from the Liver of S. esculenta

The liver of S. esculenta was used as a sample, and internal sequences of chiti-
nase cDNA were amplified by PCR using degenerate primers designed from
conserved amino acid sequences of GH family 18 chitinases. As a result, ampli-
fied fragments approximately 550 bp in size were found, and two types of base
sequences were obtained by base sequencing. NCBI Blast analysis revealed that
these base sequences share homology with chitotriosidase of Hawaiian bobtail
squid E. scolopes [35]. The upstream and downstream sequences of the afore-
mentioned base sequences were amplified by the RACE method. As a result, in-
itiation and termination codons were identified in the upstream and down-
stream regions. Then, full-length cDNAs were amplified using Platinum®Pfx
DNA polymerase.

Two full-length cDNAs, SeChi-1 (1484 bp) and SeChi-2 (1748 bp), were ob-
tained and found to contain 1377-bp (459 amino acids) and 1656-bp (552 amino
acids) open reading frames (ORFs), respectively. The molecular weights of Se-
Chi-1 and SeChi-2 were 51.2 and 61.0 kDa, respectively, based on the deduced
amino acid sequences of SeChi-1 and SeChi-2, (Figure 5 and Figure 6). The
molecular weights were very similar to those of CBP-A (52 kDa) and CBP-B (62
kDa), respectively, which were determined by SDS-PAGE. Isoelectric points
calculated from the amino acid sequences of SeChi-1 and SeChi-2 were 8.87 and

AAATAGTGAATTTCCAAGGAGATACACATTACAGCAAA  —1
ATGTCCATGAAGTGTTTCTTTTCTCTGTTGCTGTTTTTATTTATTGCAAGTAGAATAGAAGCTTCACGCCGTGGTGCT TCTATACAAACTGGGCTCAGTATCGAAAAGGTGGTGCTAGA 120
CFFSLLLFLFIASRIEASRRWCFYTNWAQYRKGGAR
TTTCTTCCCAAAGATATTGATGCAAGATTTTGCACCCACATCTCTTATGCTTTTGCTACAT TGAAGAATGGTGAAT TAGCAGCTTTTGAATGGAATGATGATGACACACCTTATGCAGAA 240
FLPKDIDARFCTHISYAFATLKNGELAAFEWNDDDTPYAE
GGAATGTATAAACAAGTGAATAATGTGAAGAAACAAAATCCTGGTTTGAAGACTCTTCTCGCAATTGGTGGTTGGAATATGGGTTCAAATTTATTTTCTGATATGGTTGCTACAAAACAA 360
GMYKQVNNVKKQNPGLKTLLAIGGWNMGSNLFSDMVATKAQ
ACCCGCCAAAAGTTCATTACATGAACTATATCATTCTTGAGCTCAAGAAACT TTGATGGTTTGGACATTTGCTGGGAATATCCAACAAAGAGAGGCAGCCCACCCCAAGACAAAGAAAGG 480
TROQKFITSTISFLSSRNFDGLDIGCWEYPTKRGSPPQDKER
TTTGGACTTCTTCTGAAGGAAT TAAGAACTGCAT TTGATGAGAATGCCAAAAAAGGTTTGTCAAAACTTATCCTTGGAATAGT TGTGGETACAGATGAAAATTTGATTGAAAATGCTTAT 600
FGLLLKELRTAFDENAKKGLSKLILGIVVGTDENLTIENAY
GACATTGATGCTATTAAATCATCAGTAGATGCTGTGTCCCTTTTGTCCTATGATTTCTACAGTGCAATGTCAACTGACTCTGCTGTTCATACCAGTGCTCTTTATGCAAGTAATATAACT 720
DIDAIKSSVDAVSLLSYDFYSAMSTDSAVHTSALYASNIT
AAAGGTTCAGATGGTAAAAAGAATGTTGAGTATGTTGCTAAATCTTGGGTCAAGAATGGAATTCCAAAGAACCTGATTAATATAGGAATTGCTTTGTATGGACACAGTTATCGTTTAAAG 840
KGSDGKKNVEYVAKSWVKNGIPKNLINIGIALYGHSYRLK
GATACAAATGCAAAGGGAGAAGGTGCCT TAATCAGCGGACCAGGTGCTGCTGGACGTTACACTAATACTCCAGGTTTTCTAGCCTATTATGAAGTCTGTGAGATGATAAATAATGETGGC 960
DTNAKGEGALISGPGAAGRYTNTPGFLAYYEVCEMINNGG
ATTGTTACATTCATAAAAGGGAGAGGTGTTCCTTACCTGETGCTGGGCAATCAATGEGTTGCTTTTGAAAATGAAGAGAGTGTTACACTGAAAACAAAAT TTGCTCTCAATGAAGETTAT 1080
IVTFIKGRGVPYLVLGNQWVAFENEESVTLKTKFALNEGY
GGTGGTGTGATGATCTGGTCATTTGATAATGATGACT TTTCTGGGATGTGTCAAGGTGGAAAAATTTATCCCCTTTTTAAAGCCT TCTATAATGCAATGCAAATGCCTCAAACAACACCA 1200
VMIWSFDNDDFSGMCQGGKIYPLFKAFYNAMQMPQTTP
GATCCTAATTGGCCAAAGAAGTTCTGCTTAAAACATGGCAATGGAT TTTTTGGATTAGACTGTAAACGGT TTATGATATGCACCAATGGAAATGGTTTTGTAAGTCAGTGTACACAAGGT 1320
DPNWPKKFCLKHGNGFFGLDCKRFMICTNGNGFVSQCGCTAQG
CAACTCTGGGATAAAAAGCTAAATACATGTGTAAATGCAAAACTGACTACATGTACATAAACTGTTGTTATTAGTTGTTGTATTAGTGTTGTTATACAGTTGTTCATAAATAAATGTTCA 1440
QLWDKKLNTGCVNAKLTTGCT *
TAAATTTCAACAAAAAAAAAAAAAAAAAAA 1560

Figure 5. cDNA and deduced amino acid sequence of SeChi-1. DDBJ accession nos.
AB986212. Underlined sequence show matching with the peptide fragments of the sepa-
rated and trypsinized CBP-A (coverage: 27.23%, 125 residues). Calculated molecular
weight: 51228.59. Isoelectric point: 8.87.
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CGAGTTCTGGTGGACAAACGACGAAAAGGCACA  —1
ATGCTTGCTGTGTCCCTGTTACTCTTACTGGCCGTTGECGGAGTCAGCAGTGCTGGGTACCGCCGGETATGT TATCATACCAACTGGTCTCAATACAGACCTTCTCCTGGAAAGTATTTC 120
MLAVSLLLLLAVGGVSSAGYRRVCYHTNWSQYRPSPGKYF
CCCGAAAACATTGATCCAACACTCTGCACCCATATTTGTTACGCTTTTGCCAAACTGAATGGGAATCACCTCACAGCTTTTGAGTGGAACGACGAATCTGAACCATGGATGAAGGGAATG 240
PENIDPTLCTHICYAFAKLNGNHLTAFEWNDESEPWMKGM
TATGAGAGAACCATGGCCCTAAAAAAGAAAAACCCGTCAGTGAAGATTTTGATCTCAATTGGTGGCTGGAACATGGGCTCTCCACCTTTCACTGCCATGGTAGCGAACGCCGCGAAGAGG 360

MALKKKNPSVKILISIGGWNMGSPPFTAMVANAANR
AAGBACTTCATTGACCACGGTATTAAATGGATGCGAAAACGAGGTTTTGATGGT TTGGACT TCGACTGBGAATACCCAGCCAACCGAGBAAGTCCACCAGAAGATAAAAACCGATTCTCG 480

DHGIKWMRKRGFDGLDFDWEYPANRGSPPEDKNRFS
GCTCTCATTAGGGAAACCCGTCTTGCCT TCGATGCTGAAGCGAAAACATCTGGAAATCCTCATCTCCTTTTGGCAACGECTGTGTCCGCGEGAAAGGACAAAATTGACACAGETTATGAC 600
ALIRETRLAFDAEAKTSGNPRLLLATAVSAGKDKIDTGYD
ATTCCTGAAATTTCAAAATACTTTGACTTCATGACCATTATGACT TATGATCTTCATGGTGCTTGGGAAAAGT TCACCGGACATAACAGCCCTCTGTACGGACGCAGCGATGAGCAAGGA 720
IPEISKYFDFITIMTYDLHGAWEKFTGHNSPLYARSDEQG
CTTCAGAAGAATCTCAACACGAAATGGGCTTCGGAATACTGGGTATCGAAAGGTGCACCGAAATCAATTCTTAACATCGGAATGGCTCTGTATGGACGAGGATTTACACTGACCAACAAG 840
LOQKNLNTKWASEYWVSKGAPKSILNIGMALYGRGFTLTNK
GCAAATACCAAGCCAGGTGACAGCGTCAAAGGTCCATGCAATAAGGGAAGATATACCCGTGAGAAAGGAT TCCTCTCCTATTACGAAATCTGTGACATGATTAAAACCGGTGEAACAACT 960
ANTKPGDSVKGPCNKGRYTREKGFLSYYEIGCDMIKTGGTT
CACTGGATTAAAGAACAAGAAGTACCCTATGTCGTCAAAGGTGACCAATGGGTGGGATACGATGACAAGAAGAGT TTGACGATTAAGACAAACTGGGTGAAATCCAATGGTTATGGAGGA 1080
HWIKEQEVPYVVKGDQWVGYDDKKSLTIKTNWVKSNGYGG
ATTGCTGTGTGGGCTTTGCCTCTTGATGATTTTGTCGGCATGTGCGGTGGAGAGAAATACCCACTGCTGAAGACCAT TGTCAGAACCT TGEGTGATGCCGTCGTCCCCAGTGACGGTCCA 1200
IAVWALPLDDFVGMCGGEKYPLLKTIVRTLGDAVVPSDGP
CCAATTGTTACACCCAAACCTCCAACCCTTCCACCTGETAAGGAGGATACACTGTGTTCTGETAAAGCTGACGGTACCTACGCCCACCCAAAGTCCTGCACGEACTATGTACTCTGTCAG 1320
PIVTPKPPTLPPGKEDTLCSGKADGTYAHPKSCGCTDYVLCAQ
AGTGGTAAAACATACATAGATCACTGCACCGCAGGTATGTGGAACGATGCCATCAAAGACTGCGATCCAACTCCTGACT TCGAATGCCBCCGCGGCAACT TAGTCGTCACGAACCCACCG 1440
SGKTYIDHCTAGMWNDAIKDCDPTPGFEGRRGNLVVTNPP
GCAGTTGTCACGAAAGATGTAACACGAGCTTCGGGAAGAATGGACGGAAAGT TTTGCAGTGGAAAATCCGACGGTTTGTACGCTGACCCGAAAGATTGCAATGGCTACTACAATTGCGCG 1560

KHVTRPSGRMDGKFCSGKSDGLYADPKDGCNGYYNCA
GCAGGCCTTACTTTCCACAGTTTGTGCGGACCCAACACTGGAT TCGATCCCAAAATCAAAAGCTGCAACT TTAAATCCGCTATTCCTAACTGTTCTTGAAACTTTTGGCTGAAAAATAAA 1680
A FHSLCGPNTGFDPKIKSCNFKSAIPNGCS *

ATGTAAACCTGAAAGGAAAAAAAAAAAAAAAAAAA 1715

Figure 6. cDNA and deduced amino acid sequence of SeChi-2. DDBJ accession
n0s.LC319665. Underlined sequence show matching with the peptide fragments of the
separated and trypsinized CBP-B (coverage: 21.01%, 116 residues). Calculated molecular
weight: 61012.53. Isoelectric point: 8.79.

8.79, respectively. These values are approximate to those of chitinase isozymes
purified from the liver of Japanese common squid, at 8.3 [28] and 9.2 [30], sug-
gesting that chitinases from the liver of Decembrachiata are basic proteins.

SeChi-1 and SeChi-2 were found to consist of N-terminal signal peptides, a
GH Family 18 catalytic domain, one chitin binding domain (CBD) for SeChi-1,
and two CBDs for SeChi-2 (Figure 7). The domain structure of SeChi-2 was
consistent with that of a squid chitinase previously reported to possess two
CBDs [35]. SeChi-1, which has only one CBD, was revealed to be a new Decem-
brachiata chitinase.

Figure 8 compares the domain structure of mollusk and fish chitinases. Fish
chitinases have previously been reported to contain one CBD [18] [19]. The do-
main structures of common mackerel stomach chitinases (SjChi-1 and SjChi-2)
are shown in Figure 8 as examples. Conversely, the domain structures of mol-
lusk chitinases are diverse; a chitinase from the gonad of sea hare (A4Chi) and a
chitinase from Japanese oyster chitinase 3 (CgChi-3) possess no CBD; 8. escu-
lenta liver chitinase 1 (SeChi-1) and a snail Biomphalaria glabrata chitinase
3-like protein 1 (BgChi-3.pl) possess one CBD; and S. esculenta liver chitinase 2
(SeChi-2) and chitinase 3 from the mantle of Hyriopsis cumingii (HcChi-3)
possess two CBDs. This suggests that mollusk chitinases have several domain

structure, which correspond to their physiological roles.

3.4. Amino Acid Sequence of the Chitinases

Two CBPs (CBP-A and CBP-B) (Figure 3 and Figure 4) obtained from the liver
of S. esculenta were fragmented into peptides by trypsin treatment and com-

pared with the amino acid sequences of SeChi-1 and SeChi-2 via proteome analysis.
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Figure 7. Multiple alignment of deduced amino acid sequences of S. esculenta Chitinases (SeChi-1 and SeChi-2) with Euprymna
scolopes chitotriosidase (EsChito), and Todarodes pacificus Chitinase (7pChi). GenBank accession nos.: EsChito, AHM92582.1;
TpChi, LC146770. Matched sequences are shown in black.

AkChi
CgChi-3

SeChi-1

BgChi-3Ip

SeChi-2

HcChi-3

SjChi-1

1 !!!!-I

SjChi-2

Figure 8. The schematic representation molluscan and fish chitinases. Black boxes show
signal peptide. White boxes show GH family 18 catalytic domain. Gray boxes show the
chitin-binding type-2 domain. GenBank accession nos.: AkChi, BAS44269; CgChi-3,
AJ971239; BgChi-3ip, XP013090777; HcChi-3, AFO53261; SjChi-1, AB686657; SjChi-2,
AB689022.

A sequence obtained from peptide fragments of CBP-A was consistent with the
amino acid sequence of SeChi-1 (coverage: 27.23%, 125 residues) (Figure 5). A
sequence obtained from the peptide fragments of CBP-B was consistent with the
amino acid sequence of SeChi-2 (coverage: 21.01%, 116 residues) (Figure 6).
These results indicate that SeChi-1 and SeChi-2 encode CBP-A and CBP-B, re-
spectively. In other words, CBP-A was a protein band of chitinase isozyme Se-

Chi-1 and CBP-B was a protein band of chitinase isozyme SeChi-2.
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Trypsin is reported to cleave the C-terminal side of lysine (K) and arginine (R)
[39]. It was confirmed that trypsin worked adequately at all cleavage sites be-
cause all of the obtained peptides ended with K or R.

3.5. Organ Expression of SeChi-1 and SeChi-2

The expression of SeChi-1 and SeChi-2 was investigated in eight S. esculenta or-
gans, with both genes found to be expressed only in the liver (Figure 9). Expres-
sion of SeChi-2 was stronger than that of SeChi-1 (Figure 9). This result was
consistent with findings from SDS-PAGE of CBPs isolated from the liver, such
that the CBP-B band encoded by SeChi-2 was thicker than that of CBP-A en-
coded by SeChi-1 (Figure 4). Because SeChi-1 and SeChi-2 were found to be
expressed in the liver, where chitinolytic activity was found, SeChi-1 and Se-
Chi-2 are suggested to encode enzymes involved in chitin degradation in this
organ. Furthermore, although high chitinolytic activity was detected in the post-
erior salivary gland, as shown in Figure 2, neither SeChi-1 nor SeChi-2 were ex-
pressed there. The presence of chitinases acting as poison in the posterior sali-
vary gland of other cephalopods has been reported [33] [34]. Additionally, the
presence of chitinases isozymes, which differ from SeChi-1 and SeChi-2, is sug-

gested in the posterior salivary glandof S. esculenta.

3.6. Phylogenetic Analysis of SeChi-1 and SeChi-2

On the basis of amino acid sequence homology, phylogenetic analysis was con-
ducted using SeChi-1, SeChi-2, GH family 18 chitinases of other organisms, and
a GH family 18 chitinase of Serratiamarcescens, as an outgroup. SeChi-2 formed
a group with other Decembrachiata chitinases, whereas SeChi-1 did not form a
group with any of the mollusk chitinases (Figure 10). Considering that SeChi-1
is the first chitinase with one CBD to be identified in Decembrachiata (Figure

8), it was considered to be a new-type chitinase.

500 bp
400 bp

300 bp
200 bp

600 bp
500 bp

©

Figure 9. Chitinase and S-actin expressions in various organs. (a) f-actin; (b) SeChi-1; (c)
SeChi-2. (M, markers; 1, liver; 2, heart; 3, branchial heart; 4, gill; 5, posterior salivary
gland; 6, stomach; 7, caecum; 8, mantle).
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LsChi-3
BgChi-3lIpl

SmChiA

AFCase-2
{fChi-3™

Sm@}ni-? . "'_‘ SeChi-lh

""""""""" " AcAMCase _ 01
Abbreviation Species Accession number
SeChi-1 Sepia esculenta AB986212
SeChi-2 Sepia esculenta LC319665
TpChi Todarodes pacificus LC146770
EsChito Euprymna scolopes KF015222
HcChi-3 Hyriopsis cumingii JN582038
CgChi-3 Crassostrea gigas AJ971239
AcAMCase Aplysia californica XMO005112601
AkChi Aplysia kurodai LC085435
BgChi-3lpl Biomphalaria glabrata XP013090777
LsChi-3 Lymnaea stagnalis LC069028
SjChi-1 Scomber japonicus BAL40979
SjChi-2 Scomber japonicus BAL41779
SmChi-1 Sebastiscus marmoratus AB686658
SmChi-2 Sebastiscus marmoratus AB686659
fChi-1 Paralichthys olivaceus AB121732
fChi-2 Paralichthys olivaceus ABI121733
SmChiA Serratia marcescens X03657

Figure 10. Phylogenetic analysis of chitinase amino acid sequences by the neigh-
bor-joining method of the program ClustalW. A bacterial chitinase, Serratia marcescens
chitinase, was used as the out group. The scale bar indicates the substitution rate per re-
sidue. The arrows show SeChi-1 and SeChi-2 obtained in the present study.

4. Conclusion

In this study, the distribution of chitinolytic enzyme activity in S. esculenta was
measured and high chitinolytic activity was found in digestion-related organs
such as the liver. These chitinases can potentially degrade ingested chitinous

substances. In addition, high chitinolytic activity was observed in the posterior
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salivary gland. Chitinases in the posterior salivary gland may act as a poison, as
observed in other cephalopods. Chitinolytic activity in other organs suggests that
chitinases are involved in defense against parasites and other activities. Two
CBPs (CBP-A and CBP-B) with molecular weights of 52 and 62 kDa, respective-
ly, were separated from the liver of S. esculenta. The molecular weight of CBP-B
was consistent with that of SeChi, a chitinase previously purified from the liver
of 8. esculenta. CBP-A was suggested to be a chitinase isozyme obtained from
the liver of S. esculenta. Full-length cDNAs (SeChi-1, SeChi-2) encoding two
chitinases (SeChi-1, SeChi-2) were obtained from the liver of S. esculenta. The
molecular weights of SeChi-1 and SeChi-2 calculated from their amino acid se-
quences were 51.2 and 61.0 kDa, respectively, and their isoelectric points were
8.87 and 8.79, respectively, indicating that they are basic proteins. SeChi-1 con-
tained one CBD and SeChi-2 contained two CBDs. Peptide fragments of CBPs
isolated from the liver of S. esculenta were analyzed and compared with the
amino acid sequences of SeChi-1 and SeChi-2 by proteome analysis. A sequence
obtained from peptide fragments of CBP-A was consistent with the amino acid
sequence of SeChi-1 (27.23%) and a sequence obtained from peptide fragments
of CBP-B was consistent with the amino acid sequence of SeChi-2 (21.01%).
Among the S. esculenta organs studied, SeChi-1 and SeChi-2 were only ex-
pressed in the liver. This suggests that the two chitinases are involved in chitin
degradation in the liver. The two chitinase genes were not expressed in the post-
erior salivary gland, where high chitinolytic activity was detected. This suggests
that other chitinase isozymes are present in the posterior salivary gland. Phylo-
genetic analysis revealed that SeChi-2 formed a group with other Decembra-
chiata chitinases, whereas SeChi-1 did not group with mollusk chitinases. Con-
sidering that SeChi-1 represents the first chitinase to possess one CBD in De-
cembrachiata, SeChi-1 is considered to be a new-type chitinase.
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