Hindawi

Advances in High Energy Physics
Volume 2021, Article ID 5562179, 5 pages
https://doi.org/10.1155/2021/5562179

Research Article

Hindawi
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In this work, we present an exact analysis of the two-dimensional noncommutative hydrogen atom. In this study, the Levi-Civita
transformation was used to perform the solution of the noncommutative Schrodinger equation for Coulomb potential. As an
important result, we determine the energy levels for the considered system. Using the result obtained and experimental data, a

bound on the noncommutativity parameter was obtained.

1. Introduction

The concept of noncommutativity in physical theories was
formally introduced by Snyder in 1947 [1-3]. In a seminal
paper, Snyder stated that spatial coordinates would not
commute with each other at small distances. In this sense,
a new paradigm was proposed in which the space-time
should be understood as a collection of tiny cells of mini-
mum size, where there is no such idea of a point. So far,
once the minimum size is reached, in the realm of some
high-energy phenomenon, the position should be given by
the noncommutative coordinate operators. As a direct con-
sequence, it would be impossible to precisely measure the
position of a particle. Over the last years, the interest of
the scientific community on noncommutative geometry
has increased due to works on nonabelian theories [4],
gravitation [5-7], standard model [8-10], and quantum
Hall effect [11]. More recently, the discovery that the
dynamics of an open string can be associated with noncom-
mutative spaces has contributed to the latest revival of non-
commutative theories [12]. Noncommutative physics has a
wide range of applications, from noncommutative geometry
to corrections in classical systems due to noncommutative
coordinates. Particularly, noncommutative geometry has
been a promising approach to understanding some limit

of quantum gravitation [13]. Some models foresee a possi-
ble experimental measurement given the current advance
in astrophysical techniques applied to black holes [14].

From the mathematical point of view, the simplest alge-
bra obeyed by the coordinate operators xA* is

[xA", xNY] = IO, (1)

where @ is a skew-symmetric constant tensor called non-
comutativity parameter. It is worth to point out that the
mean values of the position operators do correspond to the
actual position observed. Thus, it is said that such operators
are Hermitian ones. It is well known in quantum mechanics
that a noncommutative relation between two operators leads
to a specific uncertainty relation; hence, the above expression
yields

1
AxNFAxN > 5 |©], (2)

which implies a set of uncertainty relations between position
coordinates analogous to the Heisenberg uncertainty princi-
ple. Following the ideas introduced by Snyder, it is possible to
associate the minimum size with a distance of the /|@*"|
order of magnitude. Thus, the noncommutative effects turn


https://orcid.org/0000-0001-6532-3087
https://orcid.org/0000-0003-0945-786X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5562179

out to be relevant at such scales. Usually, the noncommuta-
tivity is introduced by means of the Moyal product defined
as [2]

ferats) = (307 )| . )

y—x

with a constant ®"V. Then, the usual product is replaced by
the Moyal product in the classical Lagrangian density. In a
similar perspective, the noncommutative quantum mechan-
ics is introduced by imposing further commutation relations
between the position coordinates themselves.

In this perspective, we aim to apply the ideas about non-
commutativity of space to the hydrogen atom. The hydrogen
atom is an electrically neutral atom with a positively charged
proton and a negatively charged electron bounded to the
nucleus. This system plays a significant role in quantum
mechanics and field theory. There are many good reasons to
address the hydrogen atom [15]. As an example, the hydrogen
atom with high-precision measurements in atomic transitions
is one of the best laboratories to test quantum electrodynamics
theory [16]. Other applications of the hydrogen atom appear
in many occasions, such as to examine the constancy of fine
structure constant over a cosmological time scale [17]. There
are some approaches to treat the hydrogen atom in a non-
commutative space. Such approaches are differentiated by
the role of non-commutativity in a specific representation. In
this context, it is interesting to note that corrections for Lamb’s
displacement were obtained in a context of non-commutative
quantum electrodynamics [18]. Even non-commutative cor-
rections for the hydrogen atom in a curved space were
obtained [19]. In this paper, we analyze the two-dimensional
noncommutative hydrogen atom. A two-dimensional hydro-
gen atom can be defined as a system in which the motion of
the electron around the proton is constrained to be planar.
Then, in this work, we consider that this plane is noncommu-
tative. As a practical example, a semiconductor quantum well
under illumination is a quasi-two-dimensional system, in
which photoexcited electrons and holes are essentially con-
fined to a plane [20, 21]. There are many works that consider
the hydrogen atom in a noncommutative context, but they
present disagreement in results. Our method presents an
approach using the Levi-Civita mapping, which allows an
exact treatment.

This paper is organized as follows. In Section 2, we pres-
ent the mathematical framework of the two-dimensional
hydrogen atom. The Levi-Civita mapping is presented in Sec-
tion 3. In Section 4, we obtain the solution and spectrum for
the noncommutative hydrogen atom. Finally, in Section 5,
we present our concluding remarks.

2. Mathematical Framework of
Noncommutative Two-Dimensional
Hydrogen Atom

The Hamiltonian that defines two-dimensional hydrogen
atom is given by
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where p, and p, stands for the momentum of the electron in
directions x and y, respectively; x and yrepresents the elec-
tron coordinates and the constant k = e*/47e,,, where e is
the elementary charge and ¢, is the vacuum electric permit-
tivity. To quantize the Hamiltonian given in Equation (4),
as usual, the momentum operators are given by p, = —ifh(d/
0x) and p, = —ih(0/dy), where i =h/2m and h is the Planck
constant.

In the noncommutative perspective, we define the follow-
ing position operators:

0
3
) (5)
0
o

in which © is the noncommutativity parameter in Cartesian
coordinates. We notice that

%51 =i6, (6)

as expected.

However, the treatment of the Hamiltonian given in
Equation (4) is difficult because of the operators in the
denominator of the potential energy term. For this reason,
in the next section, we present a transformation that puts
the system in a more suitable way.

3. Levi-Civita Mapping

The Levi-Civita (also known as Bohlin) transformation is a
parabolic coordinate mapping that is capable of converting
the planar Coulomb problem into a two-dimensional har-
monic oscillator [22-25]. It is a R* — R? surjection defined

by
x=u' -V, (7)

y=2uv. (8)

Given Equation (7), it is immediate to conclude that
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As a direct consequence of Equation (10), the momen-
tum operators can be rewritten in this new coordinate system
as

_ pu—py

Pe= 2(u? +2) (12)
_ pyv+pu
py_ 2(1,{2 +‘V2) ' (13)

It should be noted that the Levi-Civita mapping is a
canonical transformation [24].

Applying Equations (7) and (12) in Equation (4), we
obtain the following transformed Hamiltonian:

_LLpiwﬁ }_( k (14)

C2m 42+ (u+v?)

Finally, the hypersurface defined by H = E is given by

S (0 §7) —4E( ) =4k (15)

Equation (15) is the main result of this section and is the
one to be used from now on.

4. Analysis of Two-Dimensional
Hydrogen Atom

Applying the following set of operators in Equation (15),

—,V=v-

i0 0 i0
2 0v 2

0
ou (16)
N ——'ha - ——'ha
p,=-1 a»l’v— e

we obtain the modified Schrodinger equation as

IS ,\ [Py oy
_<%_E6><W+W
(17)
A oy Oy
_ 2 2 _ v 2 —
4E{(u +vh )y z@(vau u&/)} aky,

where y = y(u, v) is the potential, 6 is the noncommutativity
parameter in parabolic coordinates, [, 7] =10, [%,p,]|=ih,
and [,p,] = ih. It is crucial to note that the order of 6 is 0
~/®, due to Equation (6).

The solution of Equation (17) can be obtained from the
following change of variables z = u? + v?, and then, Equation
(12) can be rewritten as

d'y(2)
¢ dz? " dz

with B=((h*/2m) — E6*). Defining w(z) = e *¢(z), where
A = /—E/f, Equation (18) can be written as

d¢(2) dg(z) | (k
12 +(1-2Az) I +<[3

Performing the change of variable w =2Az, we finally
obtain

wdd¢l£1211) +(1-w) —d(ZS)U) + % (% - /\> $(w) =0. (20)

It should be noted that Equation (20) is a special case of
Kummer’s differential equation [26, 27]. Therefore, its solu-
tion can be written in terms of a linear combination of Kum-
mer’s confluent hypergeometric functions [26, 27]. However,
in this paper, the solution will be written in terms of Laguerre
polynomials; that is why we note that Equation (20) has the
following form:

z

—/\>¢(z) =0. (19)

we'' +(1-w)gp' +1¢=0, (21)

which is the Laguerre differential equation. If [ is an integer
[=0,1,2,3, -, the solution of Laguerre’s equation is given
by Laguerre polynomials L;(x). It could also be noted that
Laguerre polynomials can be defined through confluent
hypergeometric functions [26, 27]. Finally, we obtain the
solution

v(u,v) = e_’\(”zwz)Ll (2A(u? +47)). (22)

The energy levels can be determined from

1/k
I=—(—= -1, 23
(1) )
with /=0, 1,2, 3, ---. Using the condition given in Equation
(23), the spectrum can be calculated as
n K

F*- ~ _E- —_ =0, 24
2mb? n26? (24)

where n =2[ + 1. Solving Equation (24), we obtain the spec-
trum of noncommutative two-dimensional hydrogen atom

b - n w |, J6kime (25)
" 4m® Ambo? hin2

Considering 16k*m?6*/li*n* < 1 and using the binomial

series (1+x) =1+ jx+j(j—1)x%2+---, we calculate the
following approximation:

—met Sm30*

= + . 26
8m2e2h’n?  32miethtnt (26)

n

Notice that in the limit 6 — 0, we obtain the same result



of the usual two-dimensional hydrogen atom given in the lit-
erature [16, 17]. Notice also that the first-order term in 6 does
not contribute to the energy of this system.

Then, the noncommutative correction, AEy, for the
energy is given by

eSm>6?

AEye~ —M—.
Ne 327T4s§h6n4

(27)

The result given in Equation (27) can be used to estimate
the bound on the noncommutativity parameter 6. The exper-
imental value for 1S — 3S frequency transition in the
hydrogen atom is vg_ 5 =(2922743278671.6 +0.9) kHz
[28]. The uncertainty in this experimental value Av=0.9
kHz can fix the upper bound on the parameter 0. In this
sense, the theoretical value for the error in transition 1S
— 38§, denoted by AE,__,, is given by

AE,_ ;= (28)

m3e86> [80
81|’

32mieth® (81

Using the fact that in the two-dimensional case, the
energy is four times the energy of the three-dimensional case,
then AE,__;/4 = hAv, where h is the Planck constant. So, we
have

1—3

5 m3e8 (29)

os [ererrey

Performing all the calculations, we obtain 6 < 1.4-107"7
m. In this case, the bound of the noncommutativity parame-
ter ®is © < 1.96 - 10* m?. Using the definition of the length
scale factor, I'yc = V/|©® |, that is, the length scale where the
noncommutative effects of the space will be relevant, we
found for the considered case I'yc < 1.4-107"" m, which is
about one hundred times smaller than the proton radius
r,~0.833-107" m.

It is interesting to note that the noncommutative rela-
tionship depends on the coordinates adopted, given that the
dimension of the noncommutative parameter itself changes
with such a choice. Thus, we denote by ® the parameter with
dimension of squared distance, which establishes a noncom-
mutative relationship between the Cartesian coordinates. On
the other hand, 8 denotes the parameter that establishes this
same relationship for parabolic coordinates. There is cer-
tainly a nontrivial algebraic relationship between these
parameters. But as we are already in an approximate regime,
we are guided by dimensional analysis to establish a limit for
®. Such a limit will be a good approximation for the real
order of magnitude of this parameter.

5. Concluding Remarks

Using the Levi-Civita mapping, we treated the nontrivial
problem of the noncommutative hydrogen atom. As a result,
we obtain the solution of the Schrodinger equation for this
system and calculate the energy levels. Using the spectrum
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obtained and experimental data, we estimated the noncom-
mutativity parameter ®, which has an order of magnitude
of 107** m?, and the noncommutative effects will be relevant
to a length smaller than 1077 m. This result has the same
order of magnitude obtained in [29], in which the authors
studied the hydrogen atom in rotationally invariant noncom-
mutative space. In this way, they founded the corrections to
the energy levels of the hydrogen atom up to the second order
in the parameter of noncommutativity. The upper bound of
the parameter of noncommutativity is estimated on the basis
of the experimental results for 1s to 2s transition frequence.
The calculations for obtaining the corrected energy levels
were performed using a perturbative method while in our
research, the calculations of energy levels are performed
exactly. Our results are in agreement with the literature [28,
30], bearing in mind that there is no prediction of energy
dependence with a noncommutativity parameter linearly. It
is interesting to write the parameter of noncommutativity
in natural units in order to compare it with possible experi-
mental data. Therefore, it is necessary to divide 6 by #c,
which results to =7.11-1072 GeV . It is important to say
that the 2D atom is not a real model; it is more of a toy model
that enables us to make some conclusions about the system.
It is interesting to notice that the model does not allow to
verify a transition between states 1s and 2s, because #, which
appears in the energy, is an odd integer. In the sequence, we
intend to analyze the noncommutative three-dimensional
hydrogen atom. In addition, in order to obtain better accu-
racy in estimating of noncommutative parameter, we intend
to analyze the noncommutative Zeeman and Stark effects.
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