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We propose a new model for hadrons with quantum mechanical attractive and repulsive interactions sensitive to some spatial
correlation length parameter inspired by the Beth-Uhlenbeck quantum mechanical nonideal gas model (Uhlenbeck and Beth,
1937). We confront the thermodynamics calculated using our model with a corresponding recent lattice data at four different
values of the baryon chemical potential, 4, =0, 170, 340, 425 MeV over temperatures ranging from 130 MeV to 200 MeV and for
five values for the correlation length ranging from 0 to 0.2 fm. For equilibrium temperatures up to the vicinity of the chiral
phase transition temperature ~160 MeV, a decent fitting between the model and the lattice data is observed for different values
of r, especially at (¢, ) = (170,0.05), (340, 0.1), and (340, 0.15), where g, is in MeV and r is in fm. For the vanishing chemical
potential, the uncorrelated model (r = 0), which corresponds to the ideal hadron resonance gas model, seems to offer the best fit.
The quantum hadron correlations seem to be more probable at nonvanishing chemical potentials, especially within the range p,

€ [170, 340 MeV].

1. Introduction

One of the key goals of the ultrarelativistic nuclear collisions
is to gain information on the hadron-parton phase diagram,
which is characterized by different phases and different types
of the phase transitions [1]. Quantum Chromodynamics
(QCD), the gauge field theory that describes the strong inter-
actions of colored quarks and gluons and their colorless
bound states, has two important intensive state parameters
at equilibrium, namely, temperature T and baryon chemical
potential 4. A remarkable world-wide theoretical and exper-
imental effort has been dedicated to the study of strongly
interacting matter under extreme condition of temperature
and baryon chemical potential. The lattice QCD simulations
provide an a priori nonperturbative regularization of QCD
that makes it compliant with analytic and computational
methods with no model assumptions other than QCD itself
being needed to formulate the theory. The temperature and
density (chemical potential) dependence of the bulk thermo-
dynamic quantities, commonly summarized as the equation

of state (EoS), provides the most basic characterization of
equilibrium properties of the strongly interacting matter. Its
analysis within the framework of lattice QCD has been
refined ever since the early calculations performed in pure S
U(N) gauge theories [2]. The EoS at vanishing chemical
potentials does already provide important input into the
modeling of the hydrodynamic evolution of hot and dense
matter created in heavy-ion collisions [3, 4]. While this is
appropriate for the thermal conditions met in these collisions
at the LHC and the highest RHIC beam energies, knowledge
of the EoS at nonvanishing baryon, strangeness, and electric
charge chemical potentials is indispensable for the hydrody-
namic models of the conditions met in the beam energy scan
(BES) at RHIC [5] and in future experiments at facilities like
FAIR at GSI and NICA at JINR [6, 7].

Bulk thermodynamic observables such as pressure, energy
density, and entropy density as well as the second-order quan-
tities such as the specific heat and velocity of sound have now
been obtained at vanishing chemical potentials for the three
lightest quark flavors [8]. By the analysis of the chiral transition
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temperature, T = 154 + 9 MeV [9], it has also been shown that
the bulk thermodynamic observables change smoothly in the
transition region probed. Due to the well-known sign problem
encountered in the lattice QCD formulations at finite chemical
potential, a direct calculation of the EoS at nonzero chemical
potential is unfortunately not fully reliable. Lots of effort have
been made to circumvent the divergences at the nonzero
chemical potential, such as the Taylor expansion of the thermo-
dynamic potential on course lattices besides other sophisticated
computational techniques [10-15] which made it possible to
conduct calculations covering the range 0 <, /T <3 that is
expected to be explored with the BES at RHIC by varying the
beam energies in the range 7.7 < /s <200GeV [16]. A
promising approach in this quest is the investigation of hadron
production. The hadron resonance gas (HRG) is customarily
used in the lattice QCD calculations as a reference for the
hadronic sector [17, 18]. At low temperatures, they are found
to be in quite good agreement with the HRG model calcula-
tions [19], although some systematic deviations have been
observed, which may be attributed to the existence of
additional resonances which are not taken into account in
HRG model calculations based on well-established resonances
listed by the particle data group [20] and perhaps the need to
extend the model to incorporate interactions.

In the HRG model, the thermodynamics of a strongly
interacting system is conjectured to be approximated as an
ideal gas composed of hadron resonances with masses < 2
GeV [3, 19] that are treated as a free gas, exclusively in the
hadronic phase, i.e., below T'. Therefore, the hadronic phase
in the confined phase of QCD could be modeled as a nonin-
teracting gas of the hadron resonances. It is reported in
recent literature that the standard performance of the HRG
model seems to be unable to describe all the available data
that is predicted by recent lattice QCD simulations [21, 22].
The conjecture to incorporate various types of interactions
has been worked out in various studies [4, 23-25]. When
comparing the thermodynamics calculated within the HRG
framework with the corresponding data obtained using
lattice QCD methods, one has to decide how to incorporate
interactions among t/he hadrons.

Arguments based on the S-matrix approach [26-28]
suggest that the HRG model includes attractive interactions
between hadrons which lead to the formation of resonances.
More realistic hadronic models take into account the contri-
bution of both attractive and repulsive interactions between
the component hadrons. Repulsive interactions in the HRG
model had previously been considered in the framework of
the relativistic cluster and virial expansions [27], via repulsive
mean fields [29, 30], and via excluded volume (EV) correc-
tions [31-36]. In particular, the effects of EV interactions
between hadrons on HRG thermodynamics [37-44] and on
observables in heavy-ion collisions [45-52] have extensively
been studied in the literature. Recently, repulsive interactions
have received renewed interest in the context of lattice QCD
data on fluctuations of conserved charges. It was shown that
large deviations of several fluctuation observables from the
ideal HRG baseline could well be interpreted in terms of
repulsive baryon-baryon interactions [23, 52, 53].
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The present script is organized as follows: In Section 2,
we review the detailed formalism of the conventional ideal
(uncorrelated) HRG model, then we develop a nonideal
(correlated) statistical correction to the ideal HRG model
inspired by the Beth-Uhlenbeck (BU) quantum theory of
nonideal gases. The calculations of the HRG thermodynam-
ics based on the proposed correction are discussed in Sec-
tion 3. Section 4 is devoted to the conclusions and outlook.

2. Model Description

In this study, we use the particle interaction probability term
originally implemented in the expression for the second virial
coefficient worked out in Ref. [54] in order to suggest a statis-
tical correction to the uncorrelated HRG model. Uhlenbeck
and Beth suggested a connection between the virial coeffi-
cients and the probabilities of finding pairs, triples, and so
on, of particles near each other [55]. In the classical limit,
which is usually designated by sufficiently high temperatures
and/or low particle densities, it was shown that these proba-
bilities (explicit expressions are to follow in the next section)
can be expressed by Boltzmann factors so long as the de
Broglie wavelength, which is a common measure of the
significance of the quantum nonlocality, is small enough
compared with the particle spacial extent measured by the
particle “diameter” [55] as it was dubbed by Uhlenbeck and
Beth themselves. Such a particle diameter can be considered
as a measure of the spatial extent within which a particle
can undergo hardcore (classical) interactions. Based on a
comparison of their model with experimental results on
helium molecules, the authors of [55] concluded that at
sufficiently low temperatures for which the thermal de Bro-
glie wavelength is comparable with the particle diameter,
deviations from the classical excluded volume model due to
quantum effects will be significant [55].

An extension has been made by the same authors to
the quantum mechanical model of the particle interac-
tions proposed in Ref. [55]. This extension considered
the influence of Bose or Fermi statistics in addition to
the effect of the inclusion of discrete quantum states for
a general interaction potential that is not necessarily cen-
tral [54]. The expression for the second virial expansion
developed in Ref. [55] and extended in Ref. [54] was later
generalized using the cluster integral to describe general
particle interactions provided that such particles do not
form bound states [26, 27, 56].

The extended BU quantum mechanical approach [54]
was used quite recently to model the repulsive interac-
tions between baryons in a hadron gas [25]. The second
virial coefficient or the excluded volume parameter was
calculated in [54] within the extended BU approach
[54] and found to be temperature dependent and found
also to differ dramatically from the classical excluded vol-
ume (EV) model result. Moreover, it was shown in [54]
that at temperaturesT =100 — 200 MeV, the widely used
classical EV model [57-59] underestimates the EV
parameter for nucleons at a given value of the nucleon
hard-core radius (assumed =0.3fm) by large factors of
3-4. It was thus concluded in [25] that previous studies,
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F1GURE 1: Normalized pressure P/T*, normalized energy density p/T*, and trace anomaly (p —3P)/T* (dashed curves) calculated using
our statistically corrected HRG model and confronted to the corresponding lattice data taken from Ref. [66] (symbols with error bars),
at p, =0MeV. Comparison is made for four different values of the correlation length r.

which employed the hardcore radii of hadrons as an
input into the classical EV model, have to be reevaluated
using the appropriately rescaled quantum mechanical EV
parameters.

In this section, we first introduce the basic formulation of
the ideal HRG model. Then, we develop a statistical model
inspired by the Beth-Uhlenbeck (BU) quantum theory of
nonideal (correlated) gases [54] as a correction to the ideal
(uncorrelated) HRG model. We thereby implement in our
calculations a modified version of the partition function of
a typical ideal hadron gas. In the framework of a bootstrap
picture [60, 61], an equilibrium thermal model for an interac-

tion free gas has a partition function Z(T, y, V) from which
the thermodynamics of such a system can be deduced by tak-
ing the proper derivatives.

2.1. Noncorrelated Ideal HRG. In a grand canonical ensem-
ble, the partition function reads [3, 4, 19, 62-64].

2T, Vo) =Tr [exp (“NTH)} 1)

where H is the Hamiltonian combining all relevant degrees of
freedom and N is the number of constituents of the statistical
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TasLE 1: x?/dof statistic for the normalized pressure P/T*, trace anomaly (p — 3P)/T*, and normalized energy density p/T* calculated in our
statistically corrected hadron resonance gas (HRG) model confronted to the corresponding lattice data taken from Ref. [66, 67], at four values

of baryon chemical potential y, =0, 170, 340, and 425 MeV.

w, (MeV) r (fm) x%/dof for P/T* x*/dof for (p - 3P)/T4 x2/dof for p/T4
0 0.020 + 0.00065 0.061 +0.0025 0.080 + 0.0034
0.05 0.013 +0.00037 0.097 £0.0011 0.089 +0.0012
0 0.1 0.009 +0.00051 0.091 +£0.0021 0.174 + 0.0033
0.15 0.102 £ 0.0010 0.024 +0.0018 0.370 £ 0.0052
0 0.002 +0.0002 0.3698 + 0.0050 0.036 £ 0.0010
0.05 0.008 +0.00041 0.3190 + 0.0045 0.062 +0.002
170 0.1 0.010 + 0.00062 0.1452 +£0.0011 0.075 +0.0035
0.15 0.028 £ 0.0009 0.069 +£0.0017 0.145 +0.0051
0 0.020 £ 0.0014 0.853 +0.0028 0.241 +0.0040
0.05 0.010 £ 0.0016 2.46 £ 0.0062 1.206 £ 0.011
340 0.1 0.005 +0.0010 1.31 £ 0.0075 0.399 + 0.0093
0.15 0.015 +0.0007 0.335+0.0029 0.101 +0.005
0 0.065 +0.0012 2.12+0.15 4.28 +£0.0007
0.05 0.351 £ 0.0030 6.0+ 0.0019 3.3+0.024
42 0.1 0.035+0.0091 2.77 £0.0012 1.68 £0.017
0.15 0.058 +0.0015 1.44 +0.0038 0.376 £ 0.0082

ensemble. Equation (1) can be expressed as a sum over all
hadron resonances taken from the recent particle data group
(PDQG) [20] with masses up to 2.5GeV,

In Z(T, V,p) =Y In Z,(T, V, )

AN/ e —&ilp)

_VZ27TZJO tp°dpln [1iliexp( T )],
2)

where the pressure can be derived as T0 In Z(T, V, u)/0V
and t stands for fermions and bosons, respectively. ¢; =

(p> +m2)" is the dispersion relation and A, is the fugacity
factor of the i-th particle [19],

3)

By, +S.u. +Q;
M(T, M):eXp< it “;S QHMQ>,

where B;(y,), S;(ug), and Qi(,uQ) are baryon, strangeness,
and electric charge quantum numbers (their corresponding
chemical potentials) of the i-th hadron, respectively. From
the phenomenological point of view, the baryon chemical
potential ¢, —along the chemical freezeout boundary, where
the production of particles is conjectured to cease—can be
related to the nucleon-nucleon center-of-mass energy

Vo 651,
a

RN )

Hy

where a=1.245+0.049GeV and b=0.244 +0.028 GeV".
In addition to pressure, the number and energy density,
respectively, and likewise the entropy density and other
thermodynamics can straightforwardly be derived from
the partition function by taking the proper derivatives

_ 9 % 1

T =2 o J, 7 ey ©
~ 7 —Eipy T

Pt 25| P e ©

It should be noticed that both T and y = By, + S;pg + -+
are related to each other and to | /sy [19]. As an overall ther-
mal equilibrium is assumed, yg is taken as a dependent vari-
able to be estimated due to the strangeness conservation, i.e.,
at given T and yy, the value assigned to g is the one assuring
(ng) — (ng) = 0. Only then, yg is combined with T and g, in
determining the thermodynamics, such as the particle num-
ber, energy, and entropy. The chemical potentials related to
other quantum charges, such as the electric charge and the
third-component isospin, can also be determined as functions
of T, u,, and pg and each of them must fulfill the correspond-
ing conservation laws.

2.2. Quantum-Statistically Correlated HRG. In the beginning
of Section 2, we qualitatively motivated a statistical correc-
tion scenario to the HRG model inspired by the generalized
BU quantum mechanical particle interaction model. In the
following, we are going to draw a quantitative picture of such
a correction and how it can be smoothly blended with the
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F1GURE 2: The same as in Figure 1 but at y, = 170 MeV.

ideal HRG model. For a quantum gas of fermions and bosons
with mass m; and correlation (interaction) distance r, at
temperature T and vanishing g, a two-particle interaction
probability of the form

1+exp (—4m°m,Tr%), (7)

was first introduced by Uhlenbeck and Beth [54] in an
attempt to model the interactions of a quantum gas of parti-
cles assuming a general potential and neglecting the possibil-
ity for bound state formation. The Boltzmann-like term
exp (—4m*m;Tr*) remains in effect even for an ideal gas,
which is a typical approximation at sufficiently high temper-

atures. The + sign expresses the apparent attraction (repul-
sion) between bosons (fermions) due to the change of
statistics [54]. Inspired by such a correction, we introduce a
correction for the probability term in the expression for the
ideal hadron gas partition function given in Equation (1).
We propose a new probability term of the form

144 exp (%@) 1texp (4r?mTr)].  (8)

This corrected probability function obviously incorporates
interactions in the hadron resonance gas in the sense of Uhlen-
beck and Beth quantum correlations [54] with r being the
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F1GURE 3: The same as in Figure 1 but at y, = 340 MeV.

correlation (interaction) length between any two hadrons at
equilibrium temperature T. Based on our proposed corrected
probability function, we modify the noncorrelated HRG parti-
tion function Z(T, y, V) to have the following form:

InZ'(T,V,u)=) Vv

912 [ +p*dpIn {1 + A, exp (m)
— 2, T
©)

[Lxexp (4n2miTr2)ﬂ ,
which apparently sums over all hadron resonances following

the same recipe described in motivating Equation (2) for the
case of noncorrelated HRG. The thermodynamics of the corre-

lated HRG can thus be calculated by taking the proper deriva-
tives of InZ as explicitly stated in the corresponding
noncorrelated HRG case discussed above.

3. Calculation Results

We confront the data of the thermodynamics calculated
using our statistically corrected HRG model based on Equa-
tion (9) with the corresponding lattice thermodynamics data
from [66, 67] in the temperature range T € [130,200 MeV].
These temperatures are rather typical for the phenomenolog-
ical applications in the context of heavy-ion collisions and
lattice QCD equation-of-state. In Refs. [66, 67], the authors
calculated the QCD equation of state using Taylor
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F1GURE 4: The same as in Figure 1 but at y, = 425 MeV.

expansions that include contributions from up to the sixth
order in the baryon, strangeness, and electric charge chemical
potentials. Calculations have been performed with a highly
improved staggered quark action in the temperature range
T €[130, 330 MeV] using up to four different sets of lattice
cut-offs. The lattice data we are confronting with our model
are taken from Ref. [66], the total pressure in the (2 + 1)-fla-
vor QCD (left) and the total energy density in the (2 + 1)-fla-
vor QCD (right) for several values ofys, /T.

Figure 1 of this letter depicts the temperature dependence
of the normalized pressure P/T*, normalized energy density
p/T*, and trace anomaly (p — 3P)/T* (dashed curves) calcu-
lated using our statistically corrected HRG model based on

Equation (9). Moreover, in Figure 1, our model data are con-
fronted with the corresponding lattice data taken from Ref.
[66] (symbols with error bars) at the vanishing baryon chem-
ical potential y, = 0 MeV. Comparison is made for four dif-
ferent values of the correlation length r. Table 1 lists the x?
/dof statistic for the normalized pressure P/T*, trace anomaly
(p - 3P)/T*, and normalized energy density p/T* calculated
in our statistically corrected hadron resonance gas (HRG)
model and confronted with the corresponding lattice data
from [66] for four values of the baryon chemical potential
#, = 0,170, 340, and 425 MeV.

At the vanishing chemical potential, the best fit to the lat-
tice data occurs for the case of zero correlation length which,



in this case, corresponds to the ideal HRG model. However, a
slight exaggeration (x/dof = 0.06 in the trace anomaly data)
of our model’s thermodynamics is observed in the vicinity of
the critical phase transition temperature (T, =160 MeV). In
the range T €[130,200 MeV], the discrepancy between our
model thermodynamics and the corresponding lattice data
is amplified. Generally, it is obvious that increasing the corre-
lation length emphasizes the mismatch between our model
and lattice data.

For the case y;, = 170 MeV and as it appears in Figure 2,
the best fit generally occurs for r = 0 and for r = 0.05 fm. This
good-fit temperature range extends from temperatures well
below T till T > T, =160 MeV. It is quite obvious here that
the model fits the lattice data better compared to the corre-
sponding vanishing chemical potential case(s). However, in
the temperature range T € [170,200 MeV], the mismatch of
our model with the lattice data becomes more pronounced
compared to the corresponding range of the vanishing chem-
ical potential case(s).

For the case of i, = 340 MeV, see Figure 3, the only inter-
esting observation is that for r = 0.15 fm, the model data well
below and in the vicinity of T, and up to T = 170 MeV signif-
icantly approaches the corresponding lattice data. The data
mismatch then diverges for higher temperatures.

For the case of u, =425MeV, Figure 4, the data mis-
match is generally too large to suggest any plausible correla-
tion at any of values of r and for all temperatures of interest.

4. Conclusions

We confronted a novel statistical correction of the HRG
model with recent lattice data [66, 67]. All our model calcu-
lations considered in this study do not seem to satisfactorily
mimic the corresponding lattice data in the full temperature
range under investigation, T € [130,200 MeV]. However,
the best matching occurs locally in the vicinity of T in the
range T € [140, 170 MeV] for the case of y, =170 MeV at
zero and 0.05 fm correlation radii, r, respectively. Another
remarkable matching between our model data with the corre-
sponding lattice data occurs for the the case of 1, = 340 MeV,
at 0.1 and 0.15 fm correlation radii for temperatures T < T
and up to T =170 MeV. In the lower temperature range, T
€[130,160 MeV], most of the cases investigated in this
research show reasonable match with the corresponding
lattice data for different correlation lengths except for the
case in which y, = 425 MeV where no good fitting is observed
for any correlation length.
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